2,487 research outputs found

    Divide-and-Conquer Distributed Learning: Privacy-Preserving Offloading of Neural Network Computations

    Get PDF
    Machine learning has become a highly utilized technology to perform decision making on high dimensional data. As dataset sizes have become increasingly large so too have the neural networks to learn the complex patterns hidden within. This expansion has continued to the degree that it may be infeasible to train a model from a singular device due to computational or memory limitations of underlying hardware. Purpose built computing clusters for training large models are commonplace while access to networks of heterogeneous devices is still typically more accessible. In addition, with the rise of 5G networks, computation at the edge becoming more commonplace, and inspired by the successes of the folding@home project utilizing crowdsourced computation, we consider the scenario of the crowdsourcing the computation required for training of a neural network particularly appealing. Distributed learning promises to bridge the widening gap between singular device performance and large-scale model computational requirements, but unfortunately, current distributed learning techniques do not maintain privacy of both the model and input with- out an accuracy or computational tradeoff. In response, we present Divide and Conquer Learning (DCL), an innovative approach that enables quantifiable privacy guarantees while offloading the computational burden of training to a network of devices. A user can divide the training computation of its neural network into neuron-sized computation tasks and dis- tribute them to devices based on their available resources. The results will be returned to the user and aggregated in an iterative process to obtain the final neural network model. To protect the privacy of the user’s data and model, shuffling is done to both the data and the neural network model before the computation task is distributed to devices. Our strict adherence to the order of operations allows a user to verify the correctness of performed computations through assigning a task to multiple devices and cross-validating their results. This can protect against network churns and detect faulty or misbehaving devices

    Leveraging the Cloud for Software Security Services.

    Full text link
    This thesis seeks to leverage the advances in cloud computing in order to address modern security threats, allowing for completely novel architectures that provide dramatic improvements and asymmetric gains beyond what is possible using current approaches. Indeed, many of the critical security problems facing the Internet and its users are inadequately addressed by current security technologies. Current security measures often are deployed in an exclusively network-based or host-based model, limiting their efficacy against modern threats. However, recent advancements in the past decade in cloud computing and high-speed networking have ushered in a new era of software services. Software services that were previously deployed on-premise in organizations and enterprises are now being outsourced to the cloud, leading to fundamentally new models in how software services are sold, consumed, and managed. This thesis focuses on how novel software security services can be deployed that leverage the cloud to scale elegantly in their capabilities, performance, and management. First, we introduce a novel architecture for malware detection in the cloud. Next, we propose a cloud service to protect modern mobile devices, an ever-increasing target for malicious attackers. Then, we discuss and demonstrate the ability for attackers to leverage the same benefits of cloud-centric services for malicious purposes. Next, we present new techniques for the large-scale analysis and classification of malicious software. Lastly, to demonstrate the benefits of cloud-centric architectures outside the realm of malicious software, we present a threshold signature scheme that leverages the cloud for robustness and resiliency.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91385/1/jonojono_1.pd

    AN APPROACH TOWARDS EXPLOITATION OF SOCIAL COMMUNICATIONS IN MOBILE SYSTEMS

    Get PDF
    Social network is the networking of communications which bond the people cooperatively and comprise the flow of information connecting people, business connections. Mobile social networks as promising social communication platforms have achieved enormous attention in recent times. Privacy preservation is an important issue of research in social networking. The protection of user’s privacy is connected to their profiles and their results of profile matching. The protocols of profile matching allow the users to get hold of the results of profile matching which enclose partial information of profile and can be categorized on the basis of profiles format and the types of matching functions into three classes such as non anonymity, conditional anonymity and full anonymity.  A family of novel protocols such as profile matching approaches of explicit comparison-based with conditional anonymity which allows two users to measure up to their values of attribute on a specific attribute devoid of revealing the values to each other; implicit comparison-based the responder organizes numerous categories of messages where two messages are created for each group; and implicit predicate-based with full anonymity permits the comparisons of numerous attributes intended for profile matching  were introduced

    Privacy Preserving User Data Publication In Social Networks

    Get PDF
    Recent trends show that the popularity of Social Networks (SNs) has been increasing rapidly. From daily communication sites to online communities, an average person\u27s daily life has become dependent on these online networks. Additionally, the number of people using at least one of the social networks have increased drastically over the years. It is estimated that by the end of the year 2020, one-third of the world\u27s population will have social accounts. Hence, user privacy protection has gained wide acclaim in the research community. It has also become evident that protection should be provided to these networks from unwanted intruders. In this dissertation, we consider data privacy on online social networks at the network level and the user level. The network-level privacy helps us to prevent information leakage to third-party users like advertisers. To achieve such privacy, we propose various schemes that combine the privacy of all the elements of a social network: node, edge, and attribute privacy by clustering the users based on their attribute similarity. We combine the concepts of k-anonymity and l-diversity to achieve user privacy. To provide user-level privacy, we consider the scenario of mobile social networks as the user location privacy is the much-compromised problem. We provide a distributed solution where users in an area come together to achieve their desired privacy constraints. We also consider the mobility of the user and the network to provide much better results
    • …
    corecore