
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

12-2022

Divide-and-Conquer Distributed Learning: Privacy-Preserving Divide-and-Conquer Distributed Learning: Privacy-Preserving

Offloading of Neural Network Computations Offloading of Neural Network Computations

Lewis C.L. Brown
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons

Citation Citation
Brown, L. C. (2022). Divide-and-Conquer Distributed Learning: Privacy-Preserving Offloading of Neural
Network Computations. Graduate Theses and Dissertations Retrieved from
https://scholarworks.uark.edu/etd/4705

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uark.edu%2Fetd%2F4705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fetd%2F4705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4705?utm_source=scholarworks.uark.edu%2Fetd%2F4705&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Divide-and-Conquer Distributed Learning:
Privacy-Preserving Offloading of Neural Network Computations

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science

by

Lewis Brown
University of Arkansas

Bachelor of Science in Computer Science, 2019

December 2022
University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Qinghua Li, Ph.D.
Thesis Chair

Brajendra Panda, Ph.D.
Committee Member

Lu Zhang, Ph.D.
Committee Member

ABSTRACT

Machine learning has become a highly utilized technology to perform decision making

on high dimensional data. As dataset sizes have become increasingly large so too have the

neural networks to learn the complex patterns hidden within. This expansion has contin-

ued to the degree that it may be infeasible to train a model from a singular device due

to computational or memory limitations of underlying hardware. Purpose built computing

clusters for training large models are commonplace while access to networks of heteroge-

neous devices is still typically more accessible. In addition, with the rise of 5G networks,

computation at the edge becoming more commonplace, and inspired by the successes of the

folding@home project utilizing crowdsourced computation, we consider the scenario of the

crowdsourcing the computation required for training of a neural network particularly ap-

pealing. Distributed learning promises to bridge the widening gap between singular device

performance and large-scale model computational requirements, but unfortunately, current

distributed learning techniques do not maintain privacy of both the model and input with-

out an accuracy or computational tradeoff. In response, we present Divide and Conquer

Learning (DCL), an innovative approach that enables quantifiable privacy guarantees while

offloading the computational burden of training to a network of devices. A user can divide

the training computation of its neural network into neuron-sized computation tasks and dis-

tribute them to devices based on their available resources. The results will be returned to

the user and aggregated in an iterative process to obtain the final neural network model.

To protect the privacy of the user’s data and model, shuffling is done to both the data and

the neural network model before the computation task is distributed to devices. Our strict

adherence to the order of operations allows a user to verify the correctness of performed

computations through assigning a task to multiple devices and cross-validating their results.

This can protect against network churns and detect faulty or misbehaving devices.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Qinghua Li, for his invaluable input and

guidance during the thesis process. My ability to pursue my graduate career was made

possible through his support.

I’d also like to express my immense gratitude for my committee members, Dr. Bra-

jendra Panda and Dr. Lu Zhang, for the time and knowledge they contributed to ensuring

the quality of this thesis.

This work is supported in part by the National Science Foundation under award

1946391.

DEDICATION

To the shoulders of giants we all stand upon so that we may reach higher. I am able

to produce this thesis because of the efforts of many. My family, my friends, my peers, my

fellow human beings.

EPIGRAPH

Our need will be the real creator.

—Plato

TABLE OF CONTENTS

1 Introduction . 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Contributions . 3
1.4 Thesis Organization . 5

2 Background . 6
2.1 Machine Learning . 6
2.2 Distributed Machine Learning . 10
2.3 Adversarial Attacks on Machine Learning . 12
2.4 Related work . 14

2.4.1 Federated Machine Learning . 14
2.4.2 DistBelief . 14
2.4.3 Distributed Learning in Edge Computing 15

3 Approach . 17
3.1 System Model . 17
3.2 Security Model . 19
3.3 Process Overview . 21
3.4 Partitioning, Shuffling, and Assignment . 23
3.5 Aggregation . 25

4 Evaluation . 28
4.1 Communication Cost Analysis . 28
4.2 Computation Cost of Attacks against Privacy 29
4.3 Correctness Validation . 32
4.4 Exploring Possible Implementations . 33
4.5 Operation Benchmarks . 33
4.6 Example Use Cases . 37

4.6.1 Distrusting Party Using a Cloud Provider 37
4.6.2 Edge Computing . 38
4.6.3 Public Crowdsourcing . 40

5 Conclusion and Future Work . 41
5.1 Conclusion . 41
5.2 Future Work . 41

Bibliography . 43

LIST OF FIGURES

Figure 2.1: Operations for a singular neuron . 6
Figure 2.2: Context of a layer of neurons feeding into a neuron 8
Figure 2.3: A layer of neurons feeding into a neuron in directed graph format 9
Figure 2.4: A fully connected 4 layer NN composed 8, 9, 9, 4 neurons respectively [16] 9
Figure 2.5: An example machine learning operational workflow 10

Figure 3.1: A visualization of a 1-2-3 network. 19
Figure 3.2: A general visualization of a network detailing network link requirements

between nodes. 20
Figure 3.3: A source image and a possible reconstruction from shuffled values. 21
Figure 3.4: A visualization describing the element association between an input and

weight matrix. 24
Figure 3.5: A visualization describing the the source ordering for a input and weight

matrix prior to shuffling. 24
Figure 3.6: A visualization describing the the shuffling process for a input and weight

matrix. 25
Figure 3.7: The context of a single shuffled input and weight vector. 25
Figure 3.8: The computed outer product from the single shuffled input and weight

vectors in Fig. 3.7 in shuffled order. 26
Figure 3.9: A visualization overviewing the unshuffling and aggregation to produce

the desired dot product result. 27

Figure 4.1: Server A Dockerized FLOPS Performance by Operation at Various Mem-
ory Sizes . 34

Figure 4.2: Server A Native FLOPS Performance by Operation at Various Memory
Sizes . 35

Figure 4.3: Desktop Dockerized FLOPS Performance by Operation at Various Mem-
ory Sizes . 35

Figure 4.4: Desktop Native FLOPS Performance by Operation at Various Memory
Sizes . 36

Figure 4.5: Laptop Dockerized FLOPS Performance by Operation at Various Memory
Sizes . 36

Figure 4.6: Laptop Native FLOPS Performance by Operation at Various Memory Sizes 37
Figure 4.7: A possible web server to cloud computing configuration of DCL. 39
Figure 4.8: DCL applied to an existing edge computing service. 39

LIST OF TABLES

Table 3.1: All node types and a brief description of their operation. 17

Table 4.1: Bandwidth used per node by type during calculation of MNIST input layer
to 128 neuron layer using floats to a 10 scheduler, 100 executor DCL network 29

Table 4.2: Utilized devices for operation benchmark 34

PUBLICATIONS

Lewis Brown and Qinghua Li, “Privacy-Preserving and Secure Divide-and-Conquer
Learning”, IEEE/ACM Symposium on Edge Computing (SEC), Workshop on Edge
Computing and Communications (EdgeComm), 2022.

1 Introduction

It is known that Neural Networks (NN) have the capacity to become universal func-

tion approximators [1]. They have seen use in image processing [2], autonomous vehicles [3],

content recommendation [4], gesture control [5], and more. Although there exist small NN

models, complex problems and high dimensional data require deeper and wider models to

have the capacity to represent the problem being learned [6]. In present day, the compu-

tation requirements presented by large scale models have surpassed current singular device

capabilities. Because of this fact, the field of distributed machine learning has evolved out

of necessity. These massive models are constrained to only distributed machine learning

approaches where privacy often comes at an additional cost. Large scale NN models are

usually trained in purpose built computing clusters, the cloud, or data centers since they

need a huge amount of computation power. Without access to these computing environ-

ments, individual users do not have the computing resources to train, and sometimes even

utilize, NN models of these sizes. On the other hand, there are many devices in the edge

of the network that have idling CPU cycles. With the increasing rise of 5G networks, high

bandwidth connections at the edge will allow distribution of large quantities of data to edge

devices quickly. These factors, and more, shaped this thesis’ research direction to create

a privacy-preserving method of crowdsourced computation by offloading the computational

burden of a neural network to a network of untrusted participants.

1.1 Motivation

Federated learning utilizes data parallelism to build a shared global model. Envi-

ronments utilizing data parallelism inherently require additive solutions to add security and

privacy into their approach. And because the complete input must be shared for model

parallelism environments, the same additive requirement for security and privacy emerges.

These observations lead to research into hybrid parallelism approaches, which ultimately

1

lead to the idea that data can be partitioned by the data dependencies for a given calcu-

lation. Building on this idea, data can be partitioned in such a way that the values can

be rearranged (or shuffled) such that the difficulty in determining their original order scales

with the width of the neural network. With the ubiquity of computing devices, we argue

the crowdsourcing of computation power to untrusted participants is a highly applicable

setting. Successes in crowdsourcing of computational problems like protein folding with the

folding@home project [7] hint at the possibility of crowdsourcing neural network computa-

tion. In addition, a privacy-first solution was desired. Considering these factors, in this

thesis, we perform a general investigation of privacy within distributed machine learning.

While privacy is commonly considered in data parallelism environments like that of feder-

ated learning, we find that model and hybrid parallelism environments are considerably less

researched. We additionally note that no existing literature, to our knowledge, notes the

differing privacy concerns due to the choice of parallelism.

Lastly, the heavily debated replication crisis [8] is a notable issue for all forms of

machine learning, centralized and distributed alike. Due to the heavy reliance on GPUs

for improved computation speed and the indeterministic nature of their normal operation,

exact replication of results is largely impossible [9, 10]. In a perfect world, replication of

results would be a streamlined process. A researcher would be able to pull code from a

remote repository, and given the same data, would have the capability to reproduce results

precisely to validate findings. We explore CPU specific and deterministic computation in a

distributed setting where operations follow strict order of operations. This introduces the

ability to validate operations performed by untrusted nodes to serve as a defense against

active attacks and detection of faulty or misconfigured nodes alike.

1.2 Research Questions

In this thesis, we explore the idea of spatially decoupling the underlying computations

that make up a feed forward neural network and offloading them to distributed parties. With

this idea, we try to answer the following research questions:

2

1. How to design a framework for decoupling neural network training into smaller tasks,

offloading them to computation-limited devices, and aggregating the results to obtain

a trained neural network model?

2. How might privacy be preserved and quantified with this approach?

3. What is the communication cost of this approach?

4. How might faulty nodes or active attacks be detected while using this approach?

1.3 Contributions

In this thesis, we answer our proposed research questions through the creation and

evaluation of a fusion of techniques we coin “Divide-and-Conquer Learning” (DCL) [11].

Using DCL, a user can divide the training computation of NN into neuron-sized compu-

tation tasks and distribute them to distributed devices based on their available resources.

The computation results are returned to the user and aggregated in an iterative process

to obtain the final NN model. A method was designed for dividing the training computa-

tion including data and model into small tasks based on stochastic gradient descent (SGD).

Weights are grouped by their associated input neuron and their positions shuffled, thus be-

ing “decoupled” from their previous spatial indexing. Likewise, the input data is grouped

by features and their positions shuffled. While input and model parameters are known, the

knowledge of how partitions are reordered, distributed, and aggregated is not disclosed to

untrusted nodes/devices. Since the number of possible shuffling operations depends on the

dimensionality of the input and layer size, it is computationally hard for an attacker to re-

verse the shuffling and recover the original data and model structure. The difficulty of such

reversing attack is further increased due to the errors introduced by the non-associativity of

floating-point operations. In this way, privacy of the data and model is protected against

those distributed nodes/devices. Moreover, DCL explores determinism and redundancy to

verify the computation results of edge nodes and detects faulty nodes and data manipulation

3

attacks. We also perform a robust evaluation of this approach.

The contributions of this thesis are summarized as follows.

1. We propose DCL, a framework of offloading neural network training to distributed

parties that achieves privacy for input, model parameters, and model output in un-

trusted environments. Our work achieves this by spatially decoupling computations by

performing a multi-dimensional shuffle that does not affect the value space of compu-

tation. To our knowledge, this is the first work to explore this novel shuffling approach

and its application in a distributed machine learning setting.

2. We show that our approach enables exact replication of training convergence through

the strict and repeatable adherence to the order of operations. We find that doing

so eliminates the error in outputted calculations, which is a key to our computation

replication and verification schemes. We demonstrate that this deterministic setting

allows for the detection of adversarial nodes through redundancy-based verification.

3. We present three possible schemes for enforcing deterministic aggregation: “hash

sourced entropy”, “seed sourced entropy”, and “static”. Each having their own pros

and cons, but all being methods that ensure repeatable results.

4. We implement the partitioning scheme used in DCL, show our results are reproducible

in both the distributed and centralized settings, and create a simulator for calculating

possible computational throughput and memory requirements. To source values for

this simulator, a benchmarking script was created to evaluate performance across a

range of memory sizes and operations types.

5. We quantitatively evaluate the communication overhead of DCL. In addition, we evalu-

ate DCL in various adversarial settings and quantify the difficulty of reverse engineering

the shuffling scheme and breaching privacy.

4

1.4 Thesis Organization

Chapter 2 “Background” overviews foundational knowledge applicable to this thesis

by giving a short primer on machine learning, distributed machine learning, adversarial at-

tacks on machine learning, and highlights related work to this thesis. Chapter 3 “Approach”

further expands on the details the DCL approach more concretely, listing node interactions,

how data propagates a distributed network of nodes, and some of the various use cases DCL

can be applied to achieve privacy. Chapter 4 “Evaluation” presents our results and dis-

cusses adversarial attack vectors. Chapter 5 “Conclusions” wraps up the thesis with closing

thoughts and discusses directions for future work.

5

2 Background

2.1 Machine Learning

Machine Learning (ML), a subfield of Artificial Intelligence (AI), has not only become

an increasingly publicized discipline of research but also become increasingly integrated tech-

nology in our daily lives. The past three decades have witnessed a massive resurgence in

ML. During this time, researchers have surpassed numerous milestones in speed, accuracy,

network size, and helped push the creation of software, libraries, frameworks, and other tools

to enable the easy integration of ML. These advancements have allowed ML to symbiotically

evolve to meet the demands of big data. During this time, it was discovered that to model

the complex patterns within these large-scale datasets, so too would the NNs be needed to

grow in size and complexity [12].

Figure 2.1: Operations for a singular neuron

NNs have not always been the high-performance computing challenges they are today.

6

All NNs trace their lineage back to the simple perceptron. First formally proposed by Frank

Rosenblatt in 1957, the perceptron was created to learn probabilistic patterns from passed

inputs and works in a manner that could be considered comparable to a biological neuron

[13]. The perceptron, more commonly referred to as a neuron in modern literature, is

considered the smallest division of a NN. To illustrate this division and its functionality,

Fig. 2.1 visualizes the function of a singular neuron.

The perceptron was a great leap forward towards universal function approximation,

but is unable to learn an embarrassingly simple logic gate, XOR (exclusive-or). This problem

was often noted with the perceptron approach, weakened its adoption by researchers. It

would remain unanswered for many years (this period of time is colloquially referred to

as the first “AI winter” [14]) until later it was discovered that a Multi-Layer Perceptron

(MLP), multiple layers of fully connected perceptrons, could resolve this [15]. Fig. 2.2 and

Fig. 2.3 bridge the neuron visualization presented in Fig. 2.1 to the more commonly used

and simplified directed graph.

This discovery led to many others in the importance of neural network architecture

and lead to a general resurgence of the ML field. These advances would help pave the way

for the creation of deep learning wherein neural networks with multiple hidden layers are

studied as visualized in Fig. 2.4.

To be useful, neural networks often go through many stages of operations to become

trained models. While these stages of operations are not rigidly standardized, Fig. 2.5

showcases a possible workflow which is detailed further.

First and foremost, a data collection phase is performed to amass a dataset that

will be used to train and evaluate the model. Secondly, the collected data is preprocessed.

This preprocessing step can consist of normalization, removal of anomalous items, and other

operations to ensure only representative data is being trained on. Next, the model is ini-

tialized during which its weights are assigned randomly generated values (typically). With

the model initialized, the training phase may begin. The collected input dataset is passed

into the model, the required computations are performed, and output is generated. With

7

Figure 2.2: Context of a layer of neurons feeding into a neuron

the output created, a calculation of error is performed and used to update the weights in an

effort to minimize error. This process continues for a defined number of iterations, epochs.

Some researchers choose to evaluate their trained model every iteration while others defer

this process to post convergence or intermediately over the course of training. After this

process is complete, a trained model is yielded. With this trained model, validation can be

8

Figure 2.3: A layer of neurons feeding into a neuron in directed graph format

Figure 2.4: A fully connected 4 layer NN composed 8, 9, 9, 4 neurons respectively [16]

9

Figure 2.5: An example machine learning operational workflow

performed to ensure it is within compliance to be used within its deployment setting. The

verification is important in catching models that have failed to converge or have converged

into a local minima after the training process prior to deployment. Lastly, we consider model

deployment, wherein the trained model is used for its created purpose. The model deploy-

ment phase is not the last stage for a model, but rather the last stage for a span of time.

Models can reenter the training phase to be retrained with new data, used to create new

input for future models, or retired in favor for a different one.

2.2 Distributed Machine Learning

Distributed machine learning looks to take the problem of centralized machine learn-

ing and efficiently distribute the workload across a network of machines. This can be con-

ducted in many ways through the selection of the various techniques and options available

to distributed machine learning. In this section, we briefly discuss some of the underlying

configuration choices when considering distributed machine learning systems.

A common first consideration for accelerating machine learning computation is the

choice of scaling up or scaling out. Scaling up, or vertical scaling, is the addition of more

resources to a singular device, while scaling out, or horizontal scaling, is the addition of

more devices to the network. This thesis focuses on the scaling out dynamic where privacy

is most concerned. Another option to consider when selecting distributed machine learning

is the choice of parallelism. How is data partitioned and parallelized across nodes to induce

10

speedup? Data parallelism opts to distribute a shared model and partitions the input dataset

among nodes. Conversely, model parallelism chooses to distribute a shared input dataset,

and partitions the model among nodes. Lastly, hybrid parallelism encompasses the dual

usage of both data and model parallelism. Hybrid parallelism comes in many forms. Some

examples include, but are not limited to, both model and input domains being parallelized,

using model parallelism for a subset of the model and using data parallelism for another

subset of the model, and so on. The distribution of data is also a factor to distributed

machine learning approaches. In some cases, the distribution of data may be known (aware)

or not (unaware). Some approaches like federated learning are especially sensitive to the

distribution of data as computation power is often not equal across nodes. This mismatch

in distribution and computing power can lead to class imbalance and is a highly researched

topic. Additionally, the distribution of data can be further described by considering the

disjointedness of subsets. Nodes who have disjoint subsets do not share elements and vice

versa. Another consideration of distributed machine learning approaches is the scheduling

of computations. There are many ways to accomplish this, but there are two distinct types

of scheduling: synchronous or asynchronous. In this section, we will cover the big two:

total asynchronous and bulk synchronous. Total asynchronous allows nodes to communi-

cate without waiting for a response. The benefit of this approach is its speedup potential

but comes at the expense of convergence and error being associated with the imbalance in

peer latency and computation speed. Bulk synchronous contrasts this by enforces synchro-

nization between each computing and communication phase similar to that utilized by the

mapReduce paradigm [17]. While this approach comes with a reduction in speedup poten-

tial, it is guaranteed to produce correct output. We consider bulk synchronous scheduling

in this thesis and synchronization must occur every layer. The last option we consider is the

various additive approaches to achieving privacy. Homomorphic encryption (HE) seeks to

enable computation on encrypted values, but significantly increases the computation cost of

operations [18]. Differentially private updates seek to enforce differential privacy to gradient

updates but doing so introduces noise that affects model convergence and accuracy [19].

11

Secure aggregation schemes seek to aggregate values in a privacy preserving manner while

also providing a precise and accurate summation of inputs. Federated learning was improved

upon with the addition of a secure aggregation protocol [20], but the obliviousness to the

underlying data being summated leaves it open to a variety of active attacks.

2.3 Adversarial Attacks on Machine Learning

Machine learning has solidified its use in our modern-day information era. The utility

of these models come with their possible attack surfaces. The last decade has seen many

works exploring adversarial attacks on machine learning [21]. Both the centralized and

distributed settings are vulnerable to attacks, but the distributed setting adds additional

vectors for information leakage. In this section we explore the various classifications, settings,

and types of attacks.

When evaluating adversarial attacks, we must first consider the adversarial agents;

the subjects that actually perform these sophisticated attacks. Adversarial agents come in

two classifications: insider or outsider. Insider agents are subjects that participate in nor-

mal operations of a given system whereas outsider agents are not. Outsider agents employ

techniques like eavesdropping to gain information from the intercommunication of insiders.

These agents can be further distinguished by their adversary model. We consider honest,

semi-honest (or sometimes called honest-but-curious (HBC)), and malicious participants.

Honest participants perform operations as intended, do not diverge from communication

protocols, and do not seek to learn information from obtained messages. Semi-honest nodes

are similar to honest participants in that they also perform operations as intended and do

not diverge from communication protocols, but contrast in that they attempt to learn addi-

tional information from obtained messages. Semi-honest participants may also collaborate

with other semi-honest and malicious adversaries in efforts to learn more information from

obtained messages than they would otherwise. Lastly, malicious participants completely

diverge from honest and semi-honest participants; they may choose to perform operations

incorrectly, diverge from communication protocols, and employ these aforementioned capa-

12

bilities to learn additional information from obtained messages. The intentions of malicious

adversaries may vary. They may intend to simply disrupt communications or silently accu-

mulate data until a calculated strike can be performed. With a solid understanding of these

adversarial agents and their possible adversary models, we move on to the various settings

and attacks these agents perform.

Attacks on machine learning occur in different settings and are as diverse as the sys-

tems they seek to exploit. Attacks can be categorized by the setting in which the attack

occurs. For instance, a white-box environments describes attacks with direct access to the

model while black-box environments describe attacks with only the ability to supply input

and computed output. In these environments and depending on their honesty rating, ad-

versarial agents can perform active or passive attacks. Active attacks influence the system

due to their direct interaction. Passive attacks are information gathering operations where

communications are stored for later analysis.

To wrap up this section, there are several common attacks: data poisoning, model

poisoning, and intelligence gathering. Data poisoning is performed via the active inclusion

of malicious data. When this data is trained on, it can produce detrimental performance

or functionality akin to a backdoor [22]. These carefully crafted data items are commonly

referred to as adversarial examples [23]. In short, adversarial examples are created with

the sole purpose of “duping” the neural network. These inputs are purposely created to

negatively affect convergence, accuracy, and overall utility of the trained model. The next

attack is model poisoning. Model poisoning and data poisoning achieve similar results, but

rather than injecting malicious input data, the adversarial agent submits malicious gradient

or network updates in a malicious manner. This could be to prevent convergence, corrupt the

learning system, or subtly introduce unexpected functionality. The last attack is intelligence

gathering. This attack is characterized by the collection of data for later analysis. This data

can take many forms, can be collected through active or inactive (passive) methods, and may

or may not be in a form that provides immediate utility without further analysis. Because

of the existence of passive methods, honest-but-curious nodes can utilize this attack in an

13

undetectable manner.

2.4 Related work

2.4.1 Federated Machine Learning

Our work takes great inspiration from federated learning (FL) [24, 25, 26]. FL is a

highly researched and commonly utilized distributed machine learning approach. FL differs

from typical distributed machine learning methods in that no raw input data is transmitted

between parties but instead transmit gradient updates created from locally stored data.

FL leverages data parallelism which allows all parties to disjointly train a shared global

model with very few synchronizations operations required. FL promises low communication

overhead with a focus on high speedup in comparison to centralized training, but it natively

suffers from leakage of data via gradients and the global model itself [19]. To remediate

this, differentially private gradient updates can be used, but come at the cost of reduced

model accuracy/performance due to the induction of noise [27]. Additionally, homomorphic

encryption, or secure multiparty computing, can be used to protect both the gradients and

global model but comes at the expense of much higher computation cost which results in a

lower convergence speed [28]. A primary fixation of our DCL approach is the utilization of

untrusted devices while still providing the data and neural network parameters in a manner

that enables any computational device to participate in training. Federated learning falls

short due to the requirement of the complete model context needing to be stored by any

node participating in the training process and the possibility of a singular node preventing

convergence [29] as well as data and model poisoning attacks [30].

2.4.2 DistBelief

DistBelief [33] is a framework for training large scale neural networks on distributed

networks of commodity machines. It explores the use of Central Processing Unit (CPU)

performed computation but does so with an asynchronous communication approach. It

14

uses both data and model parallelism (hybrid parallelism), and explores speedup gains from

partitioning by layer and allows direct communication among nodes. In contrast to our

approach, raw data is distributed from one node to another and knowledge of both input

and model domains are known. Most other distributed training methods (e.g., [31]) in the

traditional distributed computing context also suffer from this problem. Their work does

not consider the privacy implications of training and communication of raw inputs, model

parameters, outputs. However, it does show there is a place for CPU specific training in a

field dominated by GPU powered training.

2.4.3 Distributed Learning in Edge Computing

In recent years, much work has been done to train NN models and run NN-based infer-

ences in the edge computing context, by optimizing the use of resources from the cloud, edge,

and devices [34, 35, 36, 37, 38, 39]. They include data parallelism, model parallelism, and

hybrid strategies; however, they usually involve use of local data generated at edge devices,

which is a key difference from our considered scenario where a user offloads the computation

of their own data and model training to distributed devices. We are inspired by the research

presented by Xing et al [31] wherein large scale compute clusters are leveraged in both data-

parallel and model-parallel contexts. Their work highlights the important considerations for

applying distributed machine learning, but differs from our work as it does not explore the

privacy considerations of the data transmitted and assumes a controlled, clustered network of

devices. Additionally, the work presented by Chen et al [40] demonstrates the use of backup

workers is a viable strategy for synchronous optimization approaches, which is comparable to

our rescheduling of tasks to many nodes. Lastly, the work shown by Kang et al [41] applies a

layer resolution partitioning approach in the context of an edge computing environment by

showcasing many different network and hardware variations and their effect on throughput.

Their work focuses on conditionally offloading a fraction or majority of a model to a cloud

for external processing while showing that there are cases where local computation is more

efficient. In addition, energy consumption and speedup are the primary measurements for

15

their work and privacy of the transferred data or model parameters is not discussed.

16

3 Approach

3.1 System Model

DCL’s system model uses a hierarchical form of roles to identify and organize nodes

on a network. To better describe the responsibilities and capabilities of nodes on the network,

the role nomenclature in Table 3.1 was created.

Table 3.1: All node types and a brief description of their operation.
Node types Description

Analyst Initiator of the NN offloading tasks responsible for task partitioning, shuffling, and aggregation.
Scheduler Advertises and manages a executor pool to facilitate task assignment and result collection.
Executor Executes offloaded computations and returns computed result.

An analyst is the initiator of a learning process and the owner of training data. It

determines the NN model structure and parameters, partitions the model an data into small

computation tasks, assigns the tasks to schedulers, and aggregates the results returned from

schedulers. It can also handle some computation tasks based on its available resources. A

DCL system could have many analysts that offload their NN training independently. Without

loss of generality, we describe our solution considering only one analyst.

Schedulers function as an in-between for the analyst and executors. Each scheduler

manages a pool of executors (including itself, since a scheduler has computing resources

too and can perform some computation tasks). After receiving computation tasks from an

analyst, a scheduler assigns the tasks to its executors, collects the results from the executors,

and returns the results to the analyst. Each scheduler is responsible for evaluating and

advertising its constituent executors’ total computing power, managing said pool of executors

to ensure that they leave the network gracefully or are handled in the event of dropout/failure,

and being the primary point of contact between analysts and executors. Schedulers are

typically high availability, high uptime devices that sometimes take the form of dedicated

servers. Having a high-speed networking device for a scheduler allows for analysts to maintain

fewer connections and allows executors to contribute from a comparatively slower network

17

speed, say a consumer home network. Schedulers are also responsible for estimating the

combined computing capabilities like FLOP performance and latency of their constituent

executors to better advertise their available resources to analysts. In the edge computing

architecture, edge nodes are good candidates to serve as schedulers.

Executor nodes perform computations that are passed to them by schedulers. Ex-

ecutors perform operations for a singular scheduler. Executors nodes can take many forms,

from limited capability edge devices to high performance devices. They are expected to have

a network connection that enables them to receive computation tasks from schedulers and

transmit the results in a timely manner.

With DCL’s role nomencalture described, we provide a quick naming convention for

describing networks by their node composition. Networks are described by the number of

analysts, schedulers and executors per scheduler. For instance, Fig. 3.1 showcases a 1-2-3

network. This network is composed of one analyst, two schedulers, and 3 executors for each

scheduler. In the case that the number of executors differ across schedulers, the number

of executors is specified in array notation. For example, a network composed of a single

analyst, three schedulers with each having four, five, and six executors respectively would

be described as a 1-3-(4,5,6) network.

Nodes that cannot simultaneously load input and model context into RAM are unable

to reasonably contribute to FL training. DCL comparatively relaxes memory requirements

of training. A node only needs to be able to store the largest layer of a model and its

input, a fraction of the complete model and input context that FL training would require

each participate to store. This opens the door to the utilization of very limited performance

devices. Networking communication speeds remain paramount to determining if a given

node is performant.

Communication is a central to DCL achieving operational performance when com-

paring to other distributed learning techniques. The communication cost of synchronization

every layer is high, and the amount of data that must be transferred to and from nodes can

be burdensome. A high bandwidth network is required to achieve adequate performance, but

18

Figure 3.1: A visualization of a 1-2-3 network.

the computational requirements to distribute values is far less than performing the compu-

tations themselves. This requirement can be alleviated by the utilization of high-bandwidth

links between particular nodes during training and using commodity bandwidth networks

between others where the amount of data to transfer is comparably less. Fig. 3.2 visualizes

the bandwidth requirements between nodes. As high-bandwidth 5G and even 6G networks

emerge, the communication cost might not be a big issue.

3.2 Security Model

DCL was heavily influenced by and follows an antipattern approach to FL by seeking

to provide a solution to the reverse trust environment assumed in FL which, we argue, is a

more applicable setting. In the case of FL, seemingly honest parties jointly train a shared,

global model. These parties are weary of an honest but curious (HBC) central server reverse

engineering the provided gradient updates into the locally stored inputs used to create them.

To prevent the central server from determining a specific node’s updates, a secure aggregation

scheme is used. DCL contrasts FL by presenting a trusted analyst that wishes to leverage

the computation power of untrusted devices. The analyst is weary of untrusted distributed

19

Figure 3.2: A general visualization of a network detailing network link requirements be-
tween nodes.

devices attempting to reverse engineer the provided computations to discover the input,

model, and outputs.

FL suffers from many forms of active attacks simply due to its allowance of nodes

using undisclosed local data for training; a perfect setting to quietly employ an adversarial

example or other active attacks. DCL avoids this by placing the burden of providing data

to the central facilitator of training (i.e., the analyst). Doing so allows the party whom is

responsible for the correctness of the model to ensure that the model is being trained on

legitimate data, avoid the data and computation distribution heterogeneity problems that

are applicable to FL, and perform distribution-aware normalization and other pre-processing

operations to inputs prior to training.

DCL offers semantic security in that only negligible information can be feasibly ex-

tracted from these shuffled computations. We consider that all pixel values are known in a

20

fully adversarial and collaborative environment. In this environment, the image’s histogram

can easily be inferred, but the parties lack the undisclosed knowledge as to “where each pixel

goes”. Consider Fig. 3.3 below which displays a possible reconstruction of a provided input

image.

Figure 3.3: A source image and a possible reconstruction from shuffled values.

3.3 Process Overview

An analyst first formulates a training problem, including a training dataset, the NN

structure, weights, hyperparameters like learning rate, and so on. Then it inquires a number

of schedulers to see the amount of computing resources they and their pool of executors have.

It might adjust the training problem based on the available resources. Next, it partitions

the training into neuron-sized small tasks. In this process, random shuffling is done for each

partition for data and model privacy protection. The shuffling on the input and parameter

domains is done in a manner that does not affect the value space of computation results but

only their spatial positions. Then it assigns the partitioned tasks to selected schedulers. Each

scheduler assigns its portion of the tasks to its executors. Executors with more computation

resources can take more tasks; vice versa.

21

After an executor completes the tasks assigned to it, it reports the results back to its

scheduler, which will forward the results to the analyst. The confidentiality and integrity of

the result report communication can be easily protected with standard secure communication

methods, assuming the analyst’s public key is known to the executors (e.g., the public key

certificate can be included in the task and sent to executors). The analyst manipulates

the results to the unshuffled ordering, and aggregates the results. These aggregated results

form the input for the following NN layer and the process repeats for each layer. Then the

backward calculation of the NN is done layer by layer similarly. That complets one epoch of

training. This workflow continues until the defined number of epochs is met. After which,

the desired model is produced.

An analyst can replicate a task multiple times and allocate them to multiple executors.

It can then use majority vote to select the correct computation result and detect misbehaving

executors that generate wrong results.

When an executor is recruited or joins the executor pool by connecting with the

scheduler, the scheduler provides the executor with a benchmark to evaluate the node’s

available computational performance. The scheduler makes note of the connection speed

and the demonstrated compute capability, and they may additionally perform this test over

time, regularly or as needed, to maintain a good estimate of the available resources at the

node. This may be desired if the executor node is not purely dedicated to training and

handles other workloads in addition to handling and executing computation requests. With

this information, the scheduler can better divide the computations composing a job request

to its pool of executors and advertise this number to the analyst node.

Executor node dropout is a concern for uninterrupted operation. To combat node

dropout, a staleness time is set for every computation task that, when met, allows for a

configured fallback executor to be allocated and perform the computation. The scheduler

handles these cases of node dropout and reissues the computation task to another executor,

making notes and rebalancing the distribution of computation tasks for the next training

job request.

22

3.4 Partitioning, Shuffling, and Assignment

Prior to partitioning, DCL requires knowledge of the input and neural network

weights, which we refer to as the factor space. With this knowledge, the analyst parti-

tions the input and weights into tasks. A task covers all computations for a given neuron.

We consider the context of an image dataset and visualize the data partitioning scheme

where values are grouped by image feature in Fig. 3.4. We extend it in Fig. 3.5 to give

context to the original/source orderings prior to the shuffling operation. Next, we apply the

shuffling operation to both the input and weight matrix in Fig. 3.6. Relative to their origi-

nal source orderings, the input vectors are column-wise shuffled whereas the weight vectors

are row-wise shuffled. This shuffling operation does not effect the value space but only the

spatial position of these values and can be thought of as a permutation of elements that

can be later reversed on the produced computation results. With these shuffled tasks, the

analyst can assign them to nodes. Assigning of tasks to schedulers and executors can adopt

different strategies. For example, the number of tasks assigned to a scheduler or executor

can be proportional to its computation performance, network uptime, throughput, and so

on. An executor receives a task in the format of Fig. 3.7 and produces the outer product

shown in Fig. 3.8. Schedulers receive and re-transmit these produced outer products values

back to the analyst where the results are unshuffled and then aggregated, which we detail

in the next section.

Lastly, we discuss possible shuffling techniques devised for DCL. We coin “static layer

shuffling” (SLS) the use of shuffled sequences for both input and model that is generated by

layer and repeatedly used for future recomputations of that layer. And contrasting, we coin

“dynamic layer shuffle” (DLS) the repeated generation of a random shuffle sequence every

layer computation from a source of seeded/reproducible entropy. This can be accomplished

by using a seeded random number generator or a hash chain to generate reproducible entropy.

We note that for small neuron count layers benefit from the use of SLS where only one

shuffling is generated, as DLS exposes a set of shufflings that are not the source ordering.

23

Figure 3.4: A visualization describing the element association between an input and weight
matrix.

Figure 3.5: A visualization describing the the source ordering for a input and weight matrix
prior to shuffling.

This effectively reduces the set of possible shuffling orders, making deploying attacks to

discover the original source ordering easier. Conversely, while SLS allows the analyst to

avoid the cost of generating new shuffling orders for each future layer of computation, DLS

ensures that attackers who discover the shuffling pattern for all or a subset of calculations

24

Figure 3.6: A visualization describing the the shuffling process for a input and weight
matrix.

Figure 3.7: The context of a single shuffled input and weight vector.

for a given epoch will not be able to apply the learned knowledge to other epochs.

3.5 Aggregation

Determinism of operations for later recomputation is one major goal of this work.

Through this, the analyst may discover faulty or adversarial nodes wishing to disrupt the

25

Figure 3.8: The computed outer product from the single shuffled input and weight vectors
in Fig. 3.7 in shuffled order.

training process. We note that the order in which weighted sums are aggregated and the

order in which input and weights are multiplied as crucial factors in achieving determin-

ism. We visualize the unshuffling and aggregation of the received outer products in Fig. 3.9.

While addition and multiplication are associative in the context of mathematics, floating

point addition and multiplication are not associative. Performing operations out of sequence

introduces error and in most contexts this error is negligible. In pursuit of determinism,

however, this error is a source of entropy if the order of operations is not strict and repro-

ducible. Luckily, strict order of operations can be enforced as the very minute amount of

error introduced by differing orders is detectable. Similar to our shuffling approaches, static

and dynamic approaches for aggregation were considered. We propose “static layer aggre-

gation” (SLA) and “dynamic layer aggregation” (DLA) as possible aggregation schemes for

DCL. SLA is the consistent use of an ordering for the aggregation of computations results,

whereas DLA uses a source of reproducible entropy like the seeded random number genera-

tion or a hash chain to generate the aggregation orders. We note the use of DLA increases

the difficulty of reversal engineering the global model and dataset, as the attacker cannot use

26

successful reverse engineering attempts of previous layers to discover the aggregation order

for later layers and will be forced to recalculate possible aggregation orders. DLA addition-

ally alleviates the problem of a less performant node holding up the aggregation process as

the order of aggregation will differ across layer calculations thus enabling faster aggregation

speeds.

Figure 3.9: A visualization overviewing the unshuffling and aggregation to produce the
desired dot product result.

27

4 Evaluation

4.1 Communication Cost Analysis

We analyze the communication cost during the issuing of tasks and the receiving

of the results as a function of the dimension of the input matrix I with dimension (a, b)

and weight matrix W with dimension (b, c), where a is the number of data samples, b is the

number of input features, and c is the number of connections to the following layer. We define

D to be the number of bytes per element. The selected data type to store the values of input

and weights makes a considerable impact on the amount of bandwidth used transmitting

tasks to executors and receiving their results. The bandwidth used by the analyst during

the issuing of tasks, T is given by:

T = D ∗ (a ∗ c ∗ b) (4.1)

This value is further used to calculate the bandwidth used by each scheduler, U , by taking

the result above and dividing it by the number of schedulers in this training, s:

U = O/s (4.2)

And this process is repeated for calculating the bandwidth used by each executor, V , by

dividing by the number of executors in the scheduler’s pool, e:

V = U/e (4.3)

To simplify calculations, we assume every scheduler has the same number of executors. Next,

we calculate the bandwidth used by each executor, X, when transmitting the result to its

scheduler:

X = D ∗ (a ∗ c) (4.4)

28

X is the size of a single outer product task result. With this value, we may calculate the

bandwidth used by each scheduler, Y , when transmitting results to the analyst where e is

the number of executors for that given scheduler:

Y = X ∗ e (4.5)

And lastly, we calculate the total bandwidth used by the analyst, Z receiving all results, s:

Z = Y ∗ s (4.6)

We use the above equations to calculate the communication cost when passing the complete

MNIST dataset and connecting weights to a 128 neuron layer using values a = 60000,

b = 784, c = 128. Table 4.1 shows the results assuming use of floats D = 4.

Table 4.1: Bandwidth used per node by type during calculation of MNIST input layer to
128 neuron layer using floats to a 10 scheduler, 100 executor DCL network

Issuing tasks Receiving results
Analyst 0.1886 GB 24.58 GB
Scheduler 0.0189 GB 2.458 GB
Executor 0.0019 GB 0.2458 GB

4.2 Computation Cost of Attacks against Privacy

The privacy of our approach hinges on scheduler and executor nodes being unable to

spatially reconstruct the shuffled data and model weights they receive back into their original

orderings. Our first considered attack is the attempt to determine the output neuron weights

based on the updates that are applied to them during backpropagation. Since the weights

that connect to the same neuron are not equally updated, this attack fails.

Next, we analyze the possibility of inferring the full data and model via exhaustive

search. Exhaustive search to discover the original orderings of data is possible only if all

29

computation results are obtained by the attacker. That means all involved executors need

to collude for such attack to succeed. In practice, the chance of such strong collusion is very

low so long as the number of executors for a training is not too small. As we analyze next,

even if all executors collude, it is still computationally infeasible to do exhaustive search.

We analyze the computation cost of determining the correct reorderings of the input

and weights provided in tasks. Specifically, we evaluate the worst-case-scenario for an ana-

lyst: a group of colluding executors have managed to obtain complete context of tasks from

the preceding two rounds of communication. Through this, they have complete knowledge of

the input and weight values that compose the computations but lack the knowledge of their

source orderings to produce the inputs for the proceeding round of computation. Determin-

ing this information exposes the given layer’s interconnectedness of neurons. Repeating this

process for all layers allows for the inference of the ordering of the input dataset, thus violat-

ing the privacy offered by DCL for both the model and input dataset. To demonstrate the

scale of difficulty to do this, we quantify the difficulty of breaking a singular layer’s ordering

by quantifying the space of possible orderings, use a max theoretical speeds at which this

space could realistically be searched, and determine the amount of time required to perform

this search in the worst case scenarios. We omit the addition of a bias vector, a common

layer operation, to the computed computations to reduce the difficulty of the attack. With

all these factors, this represents the best-case scenario for a malicious group of colluding

executors and a conversely worst-case scenario for the responsible analyst.

Continuing, we define the variables and their dimension that are used to generate the

partitioned tasks:

• input matrix I with dimension (a, b)

• weight matrix W with dimension (b, c)

• weighted input matrix Z with dimension (a, c)

30

Weighted input matrix Z is produced by:

Z = I ·W (4.7)

The weighted input matrix is used to produce the activated matrix A with dimension (a, c)

and where f is the differentiable activation function:

A = f(Z) (4.8)

I and W are partitioned into tasks and distributed to e executors. These tasks are computed

to produce the outer products that, when unshuffled and aggregated, produce Z. We par-

tition I column-wise and W row-wise and these partitions are permuted from their original

orderings. For simplicity, we consider that all executors are assigned an equal number of

tasks, and assume that the dimension b is evenly divisible by e, the number of executors. The

number of possible aggregation orderings, P , provided that each task is uniquely shuffled, is

calculated by:

P = b! (4.9)

The number of possible shufflings for a computed outer product, S, is given by:

S = (a!− 1) ∗ (c!− 1) (4.10)

We define d to be the non-zero minimum difference between values in the set of all outer

product calculation results, and we compare this value to k, the accumulated error during the

aggregation of the computed outer-product results. This value is produced by multiplying

the number of aggregation operations, b, by the largest possible amount of error from unit

roundoff, r which is defined to be half the smallest representable value. In the case of floats:

r = 2−24, and doubles: r = 2−53. When the amount of accumulated error during aggregation,

k = b ∗ r, does not exceed d, exhaustive search will produce a singular result, and the first

31

attempted reordering of computations could yield the result. The time complexity of this

search is O(S). When k exceeds d, however, exhaustive search will produce a set of possible

orderings instead of a single “correct” result, thus requiring complete traversal of the set

of possible shufflings and aggregations. In this case, the time complexity is increased to

O(S ∗ P).

We use the above equations and consider tasks that compose the complete MNIST

dataset and connecting weights to a 128 neuron layer using values a = 60000, b = 784, c =

128. We compute the runtime using the above calculations with the largest grouping of

computation power to date set by the Folding@Home project [7] in 2020 at 2.3 exaFLOPS,

and we use this figure to calculate the expected computing time in Age of Universe (AU)

units. We find that the computing time when k > d is 4.6 ∗ 10260980 AU and when k < d is

4.6 ∗ 10260832 AU. The computing requirement for breaking a permutation solution like ours

with brute force search is currently impossible for even highly organized adversaries.

4.3 Correctness Validation

To verify our approach, we created a dynamically sizeable fully connected multi-layer

neural network and employed the commonly used MNIST dataset as input. We chose a very

simple neuron network with layer sizes 784, 128, and 10 neurons for the input layer, hidden

layer, and output layer respectively. We verified the correctness of DCL by comparing its

trained model with a centralized training scheme that use the same dataset and NN model

configurations. The centralized training served as a control, where no partitioning or shuf-

fling is involved. The other one, DCL training, performed computation on the partitioned

and shuffled format. Each partition was executed sequentially and then the results were de-

terministically aggregated. We found that the two obtained models were identical, validating

that the partitioning and shuffling approach of DCL does not affect the value space.

32

4.4 Exploring Possible Implementations

We created an implementation wherein a series of web servers would receive and

transmit obtained data to other defined clients. These web servers were virtualized on

Server A in container environments and communicated over an internal network bridge to

evaluate the best case transmission times between processes. Many of our efforts were

originally limited to the utilization of python due to its high utilization and hardware and

software support. Many networking libraries were queried and our produced results for this

experiment highlight the extreme need for a high-performance networking library to achieve

reasonable speedup in comparison to centralized training. According to our experiments

and the libraries we queried, the fastest transfer speed maxed out around 3.5gb/s, which

prompted exploration into other languages like c++ and Go which demonstrate the ability

to reach 16gb/s during our initial tests. We argue that an efficient implementation should

spend a majority time computing rather than transmitting data and that throughput of

floating-point operations should be maximized. In addition to overhead introduced from

transmission, the serialization of data before and after transmission was a sizeable component

for some implementations. We additionally explored the transmission of raw bytes between

nodes, but note that, while there are performance gains in avoiding en/deserialization, there

are major security concerns for this approach. Doing so allows for attacks ranging from simple

ones, like buffer overflows and denial of service (DoS) attacks, to advanced and unexpected

vulnerabilities arising from unintended functionality in how the data is processed.

4.5 Operation Benchmarks

To evaluate the performance of used devices, a python benchmarking script was cre-

ated and ran from each device. These tests were conducted with ranging input sizes for the

add, subtract, multiply, divide, and dot product operations. Each operation was performed

one hundred times and the average of was taken and used as the data point. Figures 4.1, 4.2,

4.3, 4.4, 4.5, 4.6 display these results in graph format. These results are specific to aliased

33

devices: laptop, desktop, and server A listed in table 4.2.

Table 4.2: Utilized devices for operation benchmark

Used Devices Alias
PowerEdge R620 server, Dual Intel Xeon E5-2670 2.60GHz, 256GB RAM Server A
Desktop, FX6300 4.1GHz, 16GB RAM Desktop
Laptop, Intel i5 5200 2.20GHz, 8GB RAM Laptop

Figure 4.1: Server A Dockerized FLOPS Performance by Operation at Various Memory
Sizes

Several observations can be made from these gathered results. Most notably, the

overhead of containerization is nonnegliable when considering operational performance. Con-

tainerization universally reduced operational throughout across all tests and devices. We ad-

ditionally note that many operations experience reduced performance when constrained by

memory availability when comparing across the laptop, desktop, and server devices. These

results showcase that operational throughput differs by the type of operation. We note that

the tested CPUs used for these tests were highly optimized for quick calculation of the dot

product. Next came the subtract and multiply operations with addition and division being

34

Figure 4.2: Server A Native FLOPS Performance by Operation at Various Memory Sizes

Figure 4.3: Desktop Dockerized FLOPS Performance by Operation at Various Memory
Sizes

35

Figure 4.4: Desktop Native FLOPS Performance by Operation at Various Memory Sizes

Figure 4.5: Laptop Dockerized FLOPS Performance by Operation at Various Memory Sizes

the most expensive. The benchmarking data can help schedulers to estimate the computation

power of executors.

36

Figure 4.6: Laptop Native FLOPS Performance by Operation at Various Memory Sizes

Using these results, we justify our distribution of operations. SGD training is over-

whelmingly composed of multiplication operations. This allows our analyst to be responsible

for a small fraction of the operations. To verify this, we created a python script that cal-

culates the expected number of computations for each node type. Utilizing this and a 128

neuron layer using the MNIST dataset as input, we find that the analyst, which only aggre-

gates the returned outer products, is responsible for 0.02% of the total computations for the

layer under our offloading approach.

4.6 Example Use Cases

4.6.1 Distrusting Party Using a Cloud Provider

In this scenario, we present the case of a distrusting party using a cloud provider. This

distrusting party can take many forms. It could be a researcher, business, or organization

that does not have the capacity to train a model. Additionally, they do not have any guar-

antees as to the trustworthiness or security of the hardware provided by the cloud provider.

37

While privacy of the data and model is an issue, the distrusting party still wishes to leverage

the computation power of an external entity in a distrusting manner. This issue is further

exacerbated by the additional computation coming at a cost in cloud computing environ-

ments which disincentivizes approaches like homomorphic encryption. An implementation of

DCL for the above presented setting could look like the configuration illustrated in Fig. 4.7.

A web server handles a request that provides data that will be passed to the model. The

web server performs basic sanitization and checks the data prior to forwarding it to cloud

provider. Within the cloud provider, the distrusting party has provisioned many devices.

These devices make up the analyst, schedulers, and executor nodes of a DCL network. The

most important device to consider is the analyst node. The analyst node takes the form of

a hardened, software enclave, as only the analyst node requires security considerations. It

stores the model which is combined with the received data to create computations. These

computations are passed to a determined number of schedulers nodes whom provide task

scheduling services to their constituent executor nodes. Executors receive the computations

from their scheduler node, perform the operations, and return the response. Schedulers sim-

ilarly gather the responses from their executors and issue a joint response to the analyst.

Lastly, the analyst gathers all responses from all schedulers, unshuffles the responses, aggre-

gates them, and utilizes the result as input to the next layer, repeating this process until a

defined number of epochs and a trained model is yielded.

4.6.2 Edge Computing

In our recent work [11], we explore DCL applied to an edge computing environment.

With the increasing rise of 5G networks, high bandwidth connections at the edge will allow

distribution of large quantities of data to edge devices quickly. This bridges the gap to

enable limited performance devices on the edge to convert idle cycles to meaningful work. In

addition, the hierarchical organization of DCL networks lessens the link requirement between

edge nodes and edge devices. Fig. 4.8 shows how DCL may be applied to an edge computing

setting.

38

Figure 4.7: A possible web server to cloud computing configuration of DCL.

Figure 4.8: DCL applied to an existing edge computing service.

39

4.6.3 Public Crowdsourcing

In this scenario, we present a similar use case of a distrusting party wishing to leverage

crowdsourced computing power. We consider the folding@home project a great source of

inspiration of the possibilities presented by donated computation. When exposing data

publicly, the privacy of the input and model is an issue and external computing power must

be used in a distrusting way. The DCL approach is ideal for this scenario as computations

are scaled down to neuron resolution, thus allowing even connected devices with limited

system capabilities to contribute. Because load balancing is deferred to schedulers, users can

chose to donate some percentage of their CPU time running an executor instance.

40

5 Conclusion and Future Work

5.1 Conclusion

This thesis presented a DCL framework for the offloading of neural network training

in a privacy-preserving manner. The framework explores privacy of data in a novel value-

aware manner and additionally explores determinism as a means to provide computation

verification and detection of faulty and misbehaving nodes through the issuance of compu-

tations to multiple executors. The shuffling scheme provides a novel solution to privacy that

is computationally hard to reverse. We proposed a partitioning scheme that acknowledges

and groups data by the data dependencies of operations. We additionally presented three

different methods for the tasks of shuffling and aggregating values. We showed that the

privacy guarantees are quantifiable and are backed by the computational difficulty to reverse

the multidimensional shuffling operation applied prior to offloading of tasks. Lastly, while

the communication cost of this approach is high, the division of operations and network-

ing structure of nodes enables devices with limited computational performance and network

bandwidth to meaningfully to contribute to a DCL network where other approaches cannot.

5.2 Future Work

Our work makes us wonder if the nondeterministic aggregation scheme commonly

present in GPU powered training leads to a significant source of entropy in calculations for

sufficiently dense layers. It is well established that GPU calculations are indeterministic

due to floating point addition and multiplication not being associative combined with GPU

thread scheduling being indeterministic. Indeterministic aggregation leads to variance in

results. Although admittedly small in magnitude, it is a source of entropy in calculation. Its

magnitude directly scales with number of values to be aggregated, thus becoming more of a

problem for layers with sufficiently high dimension. These differences in the produced neuron

output cascade with each layer, where a small change in the weighted sum prior to activation

41

can create an avalanche effect across layers. Some activation functions are more sensitive

to this noise than others. This presents the possibility of incorrect classification due to

nonadherence of strict order of operation. In cases where a network is reaching convergence

and error values are low, this entropy poses the most danger for a mostly if not fully trained

model. Perhaps the use of a deterministic solution for the last 5-10% of training could lead

to better convergence than the sole utilization of an indeterministic solution? This question

is left as a possible direction for future work.

In its present state, DCL’s scope is limited to feed forward models. The data depen-

dencies of more complex neural network architectures should be considered in future work.

Our work does not consider convolutional neural networks, which utilize a data dependency

that would require an alternative partitioning scheme due to the kernel values being spread

across all input features.

42

Bibliography

[1] Cybenko, George V.. “Approximation by superpositions of a sigmoidal function.”
Mathematics of Control, Signals and Systems 5 (1992): 455.

[2] Mehdy, M. M., et al. ”Artificial neural networks in image processing for early detection
of breast cancer.” Computational and mathematical methods in medicine 2017 (2017).

[3] Kebria, Parham M., et al. ”Deep imitation learning for autonomous vehicles based on
convolutional neural networks.” IEEE/CAA Journal of Automatica Sinica 7.1 (2019):
82-95.

[4] Afoudi, Yassine, Mohamed Lazaar, and Mohammed Al Achhab. ”Hybrid recommen-
dation system combined content-based filtering and collaborative prediction using arti-
ficial neural network.” Simulation Modelling Practice and Theory 113 (2021): 102375.

[5] Qi, Wen, et al. ”Multi-sensor guided hand gesture recognition for a teleoperated robot
using a recurrent neural network.” IEEE Robotics and Automation Letters 6.3 (2021):
6039-6045.

[6] Nguyen, Thao, Maithra Raghu, and Simon Kornblith. ”Do wide and deep networks
learn the same things? uncovering how neural network representations vary with width
and depth.” arXiv preprint arXiv:2010.15327 (2020).

[7] Larson, Stefan M., et al. ”Folding@ Home and Genome@ Home: Using distributed
computing to tackle previously intractable problems in computational biology.” arXiv
preprint arXiv:0901.0866 (2009).

[8] Hutson, Matthew. ”Artificial intelligence faces reproducibility crisis.” (2018): 725-726.

[9] Faria, José M. ”Non-determinism and failure modes in machine learning.” 2017 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW).
IEEE, 2017.

[10] Cooper, A. Feder, Jonathan Frankle, and Christopher De Sa. ”Non-Determinism and
the Lawlessness of Machine Learning Code.” Proceedings of the 2022 Symposium on
Computer Science and Law. 2022.

[11] Lewis Brown and Qinghua Li. ”Privacy-Preserving and Secure Divide-and-Conquer
Learning” IEEE/ACM Symposium on Edge Computing (SEC), Workshop on Edge
Computing and Communications (EdgeComm) (2022).

[12] Hunter, D. et al. ”Selection of Proper Neural Network Sizes and Architectures—A
Comparative Study,” in IEEE Transactions on Industrial Informatics, vol. 8, no. 2, pp.
228-240, May 2012, doi: 10.1109/TII.2012.2187914.

43

[13] Rosenblatt, Frank. ”The perceptron: a probabilistic model for information storage and
organization in the brain.” Psychological review 65.6 (1958): 386.

[14] Mitchell, Melanie. ”Why AI is harder than we think.” arXiv preprint arXiv:2104.12871
(2021).

[15] Wang, Haohan, and Bhiksha Raj. ”On the origin of deep learning.” arXiv preprint
arXiv:1702.07800 (2017).

[16] Lenail, Alexander. “NN-Svg.” NN SVG, https://alexlenail.me/NN-SVG/.

[17] Dean, Jeffrey, and Sanjay Ghemawat. ”MapReduce: Simplified data processing on
large clusters.” (2004).

[18] Naehrig, Michael, Kristin Lauter, and Vinod Vaikuntanathan. ”Can homomorphic
encryption be practical?.” Proceedings of the 3rd ACM workshop on Cloud computing
security workshop. 2011.

[19] Geyer, Robin C., Tassilo Klein, and Moin Nabi. ”Differentially private federated learn-
ing: A client level perspective.” arXiv preprint arXiv:1712.07557 (2017).

[20] Bonawitz, Keith, et al. ”Practical secure aggregation for federated learning on user-held
data.” arXiv preprint arXiv:1611.04482 (2016).

[21] Akhtar, Naveed, and Ajmal Mian. ”Threat of adversarial attacks on deep learning in
computer vision: A survey.” Ieee Access 6 (2018): 14410-14430.

[22] Chen, Xinyun, et al. ”Targeted backdoor attacks on deep learning systems using data
poisoning.” arXiv preprint arXiv:1712.05526 (2017).

[23] Kurakin, Alexey, Ian J. Goodfellow, and Samy Bengio. ”Adversarial examples in the
physical world.” Artificial intelligence safety and security. Chapman and Hall/CRC,
2018. 99-112.

[24] Li, Li, et al. ”A review of applications in federated learning.” Computers & Industrial
Engineering 149 (2020): 106854.

[25] Kairouz, Peter, et al. ”Advances and open problems in federated learning.” Founda-
tions and Trends® in Machine Learning 14.1–2 (2021): 1-210.

[26] Zhao, Yue, et al. ”Federated learning with non-iid data.” arXiv preprint
arXiv:1806.00582 (2018).

[27] Geiping, Jonas, et al. ”Inverting gradients-how easy is it to break privacy in federated
learning?.” Advances in Neural Information Processing Systems 33 (2020): 16937-
16947.

[28] Ma, Chuan, et al. ”On safeguarding privacy and security in the framework of federated
learning.” IEEE network 34.4 (2020): 242-248.

44

[29] Bagdasaryan, Eugene, et al. ”How to backdoor federated learning.” International Con-
ference on Artificial Intelligence and Statistics. PMLR, 2020.

[30] Tolpegin, Vale, et al. ”Data poisoning attacks against federated learning systems.”
European Symposium on Research in Computer Security. Springer, Cham, 2020.

[31] E. P. Xing et al., ”Petuum: A New Platform for Distributed Machine Learning on Big
Data,” in IEEE Transactions on Big Data, vol. 1, no. 2, pp. 49-67, 1 June 2015, doi:
10.1109/TBDATA.2015.2472014.

[32] Quiring, Erwin, et al. ”Adversarial preprocessing: Understanding and preventing
Image-Scaling attacks in machine learning.” 29th USENIX Security Symposium
(USENIX Security 20). 2020.

[33] Dean, Jeffrey, et al. ”Large scale distributed deep networks.” Advances in neural in-
formation processing systems 25 (2012).

[34] Kang, Yiping, et al. ”Neurosurgeon: Collaborative intelligence between the cloud and
mobile edge.” ACM SIGARCH Computer Architecture News 45.1 (2017): 615-629.

[35] Hao, Pengzhan, and Yifan Zhang. ”EDDL: A Distributed Deep Learning System for
Resource-limited Edge Computing Environment.” 2021 IEEE/ACM Symposium on
Edge Computing (SEC). IEEE, 2021.

[36] Chakrabarti, Ayan, et al. ”Real-time edge classification: Optimal offloading under
token bucket constraints.” 2021 IEEE/ACM Symposium on Edge Computing (SEC).
IEEE, 2021.

[37] Qian, Jia, and Mohammadreza Barzegaran. ”A Decomposed Deep Training Solution
for Fog Computing Platforms.” 2021 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE, 2021.

[38] Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. ”Distributed deep
neural networks over the cloud, the edge and end devices.” 2017 IEEE 37th interna-
tional conference on distributed computing systems (ICDCS). IEEE, 2017.

[39] Zhou, Li, et al. ”Distributing deep neural networks with containerized partitions at
the edge.” 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19).
2019.

[40] Chen, Jianmin, et al. ”Revisiting distributed synchronous SGD.” arXiv preprint
arXiv:1604.00981 (2016).

[41] Kang, Yiping, et al. ”Neurosurgeon: Collaborative intelligence between the cloud and
mobile edge.” ACM SIGARCH Computer Architecture News 45.1 (2017): 615-629.

45

VITAE

2016-2018 Full Stack Developer
CTTP - University of Arkansas Research Center
Fayetteville, AR USA

2016-2018 Full Stack Developer
Thrive GmbH
Bietigheim-Bissingen, Germany

2018 Software Developer Intern
Walmart
Bentonville, AR USA

2018-2020 Full Stack Developer
CTTP - University of Arkansas Research Center
Fayetteville, AR USA

2019 B. S. in Computer Science
University of Arkansas
Fayetteville, AR USA

2020-2022 Graduate Research Assistant
University of Arkansas
Fayetteville, AR USA

2022 Graduate Teaching Assistant
University of Arkansas
Fayetteville, AR USA

2022 Graduate Certificate in Cybersecurity
University of Arkansas
Fayetteville, AR USA

2022 M. S. in Computer Science
University of Arkansas
Fayetteville, AR USA

46

	Divide-and-Conquer Distributed Learning: Privacy-Preserving Offloading of Neural Network Computations
	Citation

	tmp.1677872523.pdf.HkQnd

