8 research outputs found

    A secure localization approach against wormhole attacks using distance consistency

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Wireless Sensor Network Security: Approaches to Detecting and Avoiding Wormhole Attacks

    Get PDF
    This paper explores Wireless Sensor Networks (WSNs) and the related security issues and complications arising from a specific type of security breach, the wormhole attack. Wormhole attacks against WSNs are classified as passive, external laptop-class threats. Because malicious wormhole attacks are increasing, these attacks pose a serious security threat and increase the costs to maintain a Wireless Sensor Network. Research into preventing wormhole attacks yields two distinct model approach types: Administrator-Viewpoint models and User-Viewpoint models. While the modalities vary, the four Administrator-Viewpoint models reviewed were designed in the early 2000s and suggest defending against wormhole attacks through the use of expensive hardware, packet leashes, or topology visualization systems. On the other hand, the four proposed User-Viewpoint models have become the current theoretical models of choice.  While existing as simulation approaches to defend against wormhole attacks, the User-Viewpoint models use internally calculated routing algorithms to suggest routes to avoid or evade, not defend against, established wormhole routes. This paper confirms the efficacies of the User-Viewpoint models in the lab simulations are viewed as the most promising cost-effective, future security solutions to wormhole attacks

    Detection of Hidden Wormhole Attack in Wireless Sensor Networks using Neighborhood and Connectivity Information

    Get PDF
    Wireless sensor networks (WSNs) have inspired many applications such as military applications, environmental monitoring and other fields. WSN has emergence in various fields, so security is very important issue for sensor networks. Security comes from attacks. Due to the wireless and distributed nature anyone can connect with the network. Among all possible attacks, wormholes are very hard to detect because they can cause damage to the network without knowing the protocols used in the network. It is a powerful attack that can be conducted without requiring any cryptographic breaks. Wormholes are hard to detect because they use a private, out-of-band channel invisible to the underlying sensor network. In this paper we have proposed a wormhole detection protocol based on neighborhood and connectivity information. Performance analysis shows that our proposed approach can effectively detect wormhole attack with less storage cost. Keywords: Wireless sensor network, wormhole, out-of-band, security, neighborhood

    A Survey: Detection and Prevention of Wormhole Attack in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks refers to a multi-hop packet based network that contains a set of mobile sensor nodes. Every node is free to travel separately on any route and can modify its links to other nodes. Therefore, the network is self organizing and adaptive networks which repeatedly changes its topology. The relations among nodes are restricted to their communication range, and teamwork with intermediate nodes is necessary for nodes to forward the packets to other sensor nodes beyond their communication range. The network2019;s broadcasting character and transmission medium help the attacker to interrupt network. An attacker can transform the routing protocol and interrupt the network operations through mechanisms such as selective forwarding, packet drops, and data fabrication. One of the serious routingdisruption attacks is Wormhole Attack. The main emphasis of this paper is to study wormhole attack, its detection method and the different techniques to prevent the network from these attack

    A Secure Localization Approach against Wormhole Attacks Using Distance Consistency

    Get PDF
    Wormhole attacks can negatively affect the localization in wireless sensor networks. A typical wormhole attack can be launched by two colluding attackers, one of which sniffs packets at one point in the network and tunnels them through a wired or wireless link to another point, and the other relays them within its vicinity. In this paper, we investigate the impact of the wormhole attack on the localization and propose a novel distance-consistency-based secure localization scheme against wormhole attacks, which includes three phases of wormhole attack detection, valid locators identification and self-localization. The theoretical model is further formulated to analyze the proposed secure localization scheme. The simulation results validate the theoretical results and also demonstrate the effectiveness of our proposed scheme

    A Secure Localization Approach against Wormhole Attacks Using Distance Consistency

    Get PDF
    Wormhole attacks can negatively affect the localization in wireless sensor networks. A typical wormhole attack can be launched by two colluding attackers, one of which sniffs packets at one point in the network and tunnels them through a wired or wireless link to another point, and the other relays them within its vicinity. In this paper, we investigate the impact of the wormhole attack on the localization and propose a novel distance-consistency-based secure localization scheme against wormhole attacks, which includes three phases of wormhole attack detection, valid locators identification and self-localization. The theoretical model is further formulated to analyze the proposed secure localization scheme. The simulation results validate the theoretical results and also demonstrate the effectiveness of our proposed scheme

    Localization and security algorithms for wireless sensor networks and the usage of signals of opportunity

    Get PDF
    In this dissertation we consider the problem of localization of wireless devices in environments and applications where GPS (Global Positioning System) is not a viable option. The _x000C_rst part of the dissertation studies a novel positioning system based on narrowband radio frequency (RF) signals of opportunity, and develops near optimum estimation algorithms for localization of a mobile receiver. It is assumed that a reference receiver (RR) with known position is available to aid with the positioning of the mobile receiver (MR). The new positioning system is reminiscent of GPS and involves two similar estimation problems. The _x000C_rst is localization using estimates of time-di_x000B_erence of arrival (TDOA). The second is TDOA estimation based on the received narrowband signals at the RR and the MR. In both cases near optimum estimation algorithms are developed in the sense of maximum likelihood estimation (MLE) under some mild assumptions, and both algorithms compute approximate MLEs in the form of a weighted least-squares (WLS) solution. The proposed positioning system is illustrated with simulation studies based on FM radio signals. The numerical results show that the position errors are comparable to those of other positioning systems, including GPS. Next, we present a novel algorithm for localization of wireless sensor networks (WSNs) called distributed randomized gradient descent (DRGD), and prove that in the case of noise-free distance measurements, the algorithm converges and provides the true location of the nodes. For noisy distance measurements, the convergence properties of DRGD are discussed and an error bound on the location estimation error is obtained. In contrast to several recently proposed methods, DRGD does not require that blind nodes be contained in the convex hull of the anchor nodes, and can accurately localize the network with only a few anchors. Performance of DRGD is evaluated through extensive simulations and compared with three other algorithms, namely the relaxation-based second order cone programming (SOCP), the simulated annealing (SA), and the semi-de_x000C_nite programing (SDP) procedures. Similar to DRGD, SOCP and SA are distributed algorithms, whereas SDP is centralized. The results show that DRGD successfully localizes the nodes in all the cases, whereas in many cases SOCP and SA fail. We also present a modi_x000C_cation of DRGD for mobile WSNs and demonstrate the e_x000E_cacy of DRGD for localization of mobile networks with several simulation results. We then extend this method for secure localization in the presence of outlier distance measurements or distance spoo_x000C_ng attacks. In this case we present a centralized algorithm to estimate the position of the nodes in WSNs, where outlier distance measurements may be present
    corecore