416 research outputs found

    On Defining SPARQL with Boolean Tensor Algebra

    Full text link
    The Resource Description Framework (RDF) represents information as subject-predicate-object triples. These triples are commonly interpreted as a directed labelled graph. We propose an alternative approach, interpreting the data as a 3-way Boolean tensor. We show how SPARQL queries - the standard queries for RDF - can be expressed as elementary operations in Boolean algebra, giving us a complete re-interpretation of RDF and SPARQL. We show how the Boolean tensor interpretation allows for new optimizations and analyses of the complexity of SPARQL queries. For example, estimating the size of the results for different join queries becomes much simpler

    Compressed k2-Triples for Full-In-Memory RDF Engines

    Get PDF
    Current "data deluge" has flooded the Web of Data with very large RDF datasets. They are hosted and queried through SPARQL endpoints which act as nodes of a semantic net built on the principles of the Linked Data project. Although this is a realistic philosophy for global data publishing, its query performance is diminished when the RDF engines (behind the endpoints) manage these huge datasets. Their indexes cannot be fully loaded in main memory, hence these systems need to perform slow disk accesses to solve SPARQL queries. This paper addresses this problem by a compact indexed RDF structure (called k2-triples) applying compact k2-tree structures to the well-known vertical-partitioning technique. It obtains an ultra-compressed representation of large RDF graphs and allows SPARQL queries to be full-in-memory performed without decompression. We show that k2-triples clearly outperforms state-of-the-art compressibility and traditional vertical-partitioning query resolution, remaining very competitive with multi-index solutions.Comment: In Proc. of AMCIS'201

    A Distributed Graph Approach for Pre-processing Linked RDF Data Using Supercomputers

    Get PDF
    Efficient RDF, graph based queries are becoming more pertinent based on the increased interest in data analytics and its intersection with large, unstructured but connected data. Many commercial systems have adopted distributed RDF graph systems in order to handle increasing dataset sizes and complex queries. This paper introduces a distribute graph approach to pre-processing linked data. Instead of traversing the memory graph, our system indexes pre-processed join elements that are organized in a graph structure. We analyze the Dbpedia data-set (derived from the Wikipedia corpus) and compare our access method to the graph traversal access approach which we also devise. Results show from our experiments that the distributed, pre-processed graph approach to accessing linked data is faster than the traversal approach over a specific range of linked queries
    corecore