5 research outputs found

    A scalable parallel union-find algorithm for distributed memory computers

    Get PDF
    Abstract The Union-Find algorithm is used for maintaining a number of nonoverlapping sets from a finite universe of elements. The algorithm has applications in a number of areas including the computation of spanning trees and in image processing. Although the algorithm is inherently sequential there has been some previous efforts at constructing parallel implementations. These have mainly focused on shared memory computers. In this paper we present the first scalable parallel implementation of the Union-Find algorithm suitable for distributed memory computers. Our new parallel algorithm is based on an observation of how the Find part of the sequential algorithm can be executed more efficiently. We show the efficiency of our implementation through a series of tests to compute spanning forests of very large graphs

    A parallel edge orientation algorithm for quadrilateral meshes

    Get PDF
    One approach to achieving correct finite element assembly is to ensure that the local orientation of facets relative to each cell in the mesh is consistent with the global orientation of that facet. Rognes et al. have shown how to achieve this for any mesh composed of simplex elements, and deal.II contains a serial algorithm to construct a consistent orientation of any quadrilateral mesh of an orientable manifold. The core contribution of this paper is the extension of this algorithm for distributed memory parallel computers, which facilitates its seamless application as part of a parallel simulation system. Furthermore, our analysis establishes a link between the well-known Union-Find algorithm and the construction of a consistent orientation of a quadrilateral mesh. As a result, existing work on the parallelisation of the Union-Find algorithm can be easily adapted to construct further parallel algorithms for mesh orientations.Comment: Second revision: minor change

    Work‐Efficient Parallel Union‐Find

    Get PDF
    The incremental graph connectivity (IGC) problem is to maintain a data structure that can quickly answer whether two given vertices in a graph are connected, while allowing more edges to be added to the graph. IGC is a fundamental problem and can be solved efficiently in the sequential setting using a solution to the classical union‐find problem. However, sequential solutions are not sufficient to handle modern‐day large, rapidly‐changing graphs where edge updates arrive at a very high rate. We present the first shared‐memory parallel data structure for union‐find (equivalently, IGC) that is both provably work‐efficient (ie, performs no more work than the best sequential counterpart) and has polylogarithmic parallel depth. We also present a simpler algorithm with slightly worse theoretical properties, but which is easier to implement and has good practical performance. Our experiments on large graph streams with various degree distributions show that it has good practical performance, capable of processing hundreds of millions of edges per second using a 20‐core machine
    corecore