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Abstract

The Union-Find algorithm is used for maintaining a number of non-

overlapping sets from a finite universe of elements. The algorithm has

applications in a number of areas including the computation of spanning

trees and in image processing.

Although the algorithm is inherently sequential there has been some

previous efforts at constructing parallel implementations. These have

mainly focused on shared memory computers. In this paper we present the

first scalable parallel implementation of the Union-Find algorithm suitable

for distributed memory computers. Our new parallel algorithm is based

on an observation of how the Find part of the sequential algorithm can

be executed more efficiently.

We show the efficiency of our implementation through a series of tests

to compute spanning forests of very large graphs.

1 Introduction

The disjoint-set data structure is used for maintaining a number of non-
overlapping sets consisting of elements from a finite universe. Its uses include
among other, image decompositions, the computation of connected components
and minimum spanning trees in graphs, and is also taught in most algorithm
courses. The algorithm for implementing this data structure is often referred to
as the Union-Find algorithm.

More formally, let U be a collection of n distinct elements and let Si denote a
set of elements from U . Two sets {S1, S2} are disjoint if S1 ∩S2 = ∅. A disjoint
set data structure maintains a collection {S1, S2, . . . , Sk} of disjoint dynamic
sets selected from U . Each set is identified by a representative x, which is
usually some member of the set. The two main operations are then to find
which set a given element belongs to by locating its representative element and
also to create a new set from the union of two existing sets.

The underlying data structure of each set is typically a rooted tree where
the element in the root vertex is the representative of the set. Using the two
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techniques Union-by-rank and path compression the running time of any com-
bination of m Union and Find operations is O(nα(m, n)) where α is the very
slowly growing inverse Ackerman function [4].

From a theoretical point of view using the Union-Find algorithm is close to
optimal. However, for very large problem instances such as those that appear
in scientific computing this might still be too slow or it might even be that
the problem is too large to fit in the memory of one processor. One recent
application that makes use of the Union-Find algorithm is a new algorithm for
computing Hessian matrices using substitution methods [7]. Hence, designing
parallel algorithms is necessary to keep up with the very large problem instances
that appear in scientific computing.

The first such effort was by Cybenko et al. [5] who presented an algorithm
using the Union-Find algorithm for computing the connected components of
a graph and gave implementations both for shared memory and distributed
memory computers. The distributed memory algorithm duplicates the vertex
set and then partitions the edge set among the processors. Each processor then
computes a spanning forest using its local edges. In log p steps, where p is the
number of processors, these forests are then merged until one processor has
the complete solution. However, the experimental results from this algorithm
were not promising and showed that for a fixed size problem the running time
increased with the number of processors used.

Anderson and Woll also presented a parallel Union-Find algorithm using
wait-free objects suitable for shared memory computers [1]. They also showed
that parallel algorithms using concurrent Union-operations risk creating unbal-
anced trees. However, they did not produce any experimental results for their
algorithm.

We note that there exists an extensive literature on designing parallel al-
gorithms for computing a spanning forest or the connected components of a
graph. However, up until the recent paper by Bader and Cong [3] such efforts
had failed to give speedup on arbitrary graphs. In [3] the authors present a novel
scalable parallel algorithm for computing spanning forests on a shared memory
computer.

Focusing on distributed memory computers is of importance since these have
better scalability than shared memory computers and thus the largest systems
tend to be of this type. However, their higher latency makes distributed mem-
ory computers more dependent on aggregating sequential work through the
exploitation of locality.

The current work presents a new parallel Union-Find algorithm for dis-
tributed memory computers. The algorithm operates in two stages. In the
first stage each processor performs local computations in order to reduce the
number of edges that need to be considered for inclusion in the final spanning
tree. This is similar to the approach used in [5], however, we use a sequential
Union-Find algorithm for this stage instead of BFS. Thus when we start the
second parallel stage each processor has a Union-Find type forest structure that
spans each local component.

In the second stage we merge these structures across processors to obtain a

2



global solution. In both the sequential and the parallel stage we make use of a
novel observation on how the Union-Find algorithm can be implemented. This
allows both for a faster sequential algorithm and also to reduce the amount of
communication in the second stage.

To show the feasibility and efficiency of our algorithm we have implemented
several variations of it on a parallel computer using C++ and MPI and per-
formed tests to compute spanning trees of very large graphs using up to 40
processors. Our results show that the algorithm scales well both for real world
graphs and also for small-world graphs.

The rest of the paper is organized as follows. In Section 2 we briefly explain
the sequential algorithm and also how this can be optimized. In Section 3
we describe our new parallel algorithm, before giving experimental results in
Section 4.

2 The Sequential Algorithm

In the following we first outline the standard sequential Union-Find algorithm.
We then point out how it is possible to speed up the algorithm by paying
attention to the rank values. This is something that we will make use of when
designing our parallel algorithm.

The standard data structure for implementing the Union-Find algorithm is
a forest where each tree represents a connected set. To implement the forest
each element x has a pointer p(x) initially set to x. Thus each x starts as a set
by itself. The two operations used on the sets are then Find(x) and Union(x, y)
where x and y are distinct elements. Find(x) returns the root of the tree that
x belongs to. This is done by following pointers starting from x. Union(x, y)
merges the two trees that x and y belong to. This is achieved by making one of
the roots of x and y point to the other. With these operations the connected
components of a graph G(V, E) can be computed as shown in Algorithm 1.

Algorithm 1 The sequential Union-Find algorithm

1: S = ∅
2: for each x ∈ V do

3: p(x) = x

4: for each (x, y) ∈ E do

5: if Find(x) 6= Find(y) then

6: Union(x, y)
7: S = S ∪ {(x, y)}

When the algorithm terminates the vertices of each tree will consist of a
connected component and the set of edges in S define a spanning forest on G.

There are two standard techniques for speeding up the Union-Find algo-
rithm. The first is Union-by-rank. Here each vertex is initially given a rank of
0. If two sets are to be merged where the root elements are of equal rank then
the rank of the root element of the combined set will be increased by one. In
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all other Union operations the root with the lowest rank will be set to point
to the root with the higher rank while all ranks remain unchanged. Note that
this ensures that the parent of a vertex x will always have higher rank than the
vertex x itself.

The second technique is path compression. In its simplest form, following
any Find operation, all traversed vertices will be set to point to the root. This
has the effect of compressing the path and making subsequent Find operations
using any of these vertices faster. Note that even when using path compression
the rank values will still be strictly increasing when moving upwards in a tree.

Using the techniques of Union-by-rank and path compression the running
time of any combination of m Union and Find operations is O(nα(m, n)) where
α is the very slowly growing inverse Ackerman function [4].

We now consider how it is possible to implement the Union-Find algorithm
in a more efficient way. It is straight forward to see that one can speed up
Algorithm 1 by storing the results of the two Find operations and use these as
input to the ensuing Union operation which then only has to determine which
of the two root vertices should point to the other.

Our observation is that in certain cases one can use the rank values to
terminate the Find operation before reaching the root. Let the rank of a vertex
z be denoted by rank(z). Consider two vertices x and y belonging to different
sets with roots rx and ry respectively where rank(rx) < rank(ry). If we find
rx before ry then it is possible to terminate the search for ry as soon as we
reach an ancestor z of y where rank(z) = rank(rx). This follows since the rank
function is strictly increasing and we must therefor have rank(ry) > rank(rx)
implying that ry 6= rx. At this point it is possible to join the two sets by
setting p(rx) = p(z). Note that this will neither violate the rank property nor
will it increase the asymptotic time bound of the algorithm. However, if we
perform Find(y) before Find(x) we will not be able to terminate early. We
therefore suggest that instead of doing the two Find operations separately, that
one instead performs them in an interleaved fashion by always continuing the
search from the vertex with the lowest current rank. In this way the Find
operation can terminate as soon as one reaches the root with the smallest rank.
We label this as the zigzag Find operation as opposed to the classical Find
operation.

The zigzag Find operation can also be used to terminate the search early
when the vertices x and y belong to the same set. Let z be their lowest common
ancestor. Then at some stage of the zigzag Find operation the current ancestors
of x and y will both be equal to z. At this point it is clear that x and y belong
to the same set and the search can stop.

3 The Parallel Algorithm

In the following we outline our new parallel Union-Find algorithm. We as-
sume a partitioning of both the vertices and the edges of G into p sets each,
V = {V0, V1, . . . , Vp−1} and E = {E0, E1, . . . , Ep−1} with the pair (Vi, Ei) being
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allocated to processor i, 0 ≤ i < p. If v ∈ Vi (or e ∈ Ei) processor i owns v (or
e) and v (or e) is local to processor i.

Any processor i that has a local edge (v, w) ∈ Ei such that it does not own
vertex v will create a ghost vertex v′ as a substitution for v. We denote the set
of ghost vertices of processor i by V ′

i . Thus an edge allocated to processor i can
either be between two vertices in Vi, between a vertex in Vi and a vertex in V ′

i ,
or between two vertices in V ′

i . We denote the set of edges adjacent to at least
one ghost vertex by E′

i.
The algorithm operates in two stages. In the first stage each processor

performs local computations without any communication in order to reduce the
number of edges that need to be considered for the second final parallel stage.
Due to space considerations we only outline the steps of the algorithm and
neither give pseudo-code nor a formal proof that the algorithm is correct.

Stage 1. Reducing the input size

Initially in Stage 1 each processor i computes a spanning forest Ti for its
local vertices Vi using the local edges Ei − E′

i. This is done using a sequential
Find-Union algorithm. It is then clear that Ti can be extended to a global
spanning forest for G.

Next, we compute a subset T ′

i of E′

i such that Ti ∪T ′

i form a spanning forest
for Vi ∪ V ′

i . Due to space considerations we omit the details of how T ′

i can
be computed efficiently but note that this can be done without destroying the
structure of Ti. The remaining problem is now to select a subset of the edges
in T ′

i so as to compute a global spanning forest for G.
Stage 2. Calculating the final spanning forest

The underlying data structure for this part of the algorithm is the same as
for the sequential Union-Find algorithm, only that we now allow trees to span
across several processors. Thus a vertex v can set p(v) to point to a vertex on a
different processors other than its own. The pointer p(v) will in this case contain
information about which processor owns the vertex being pointed to, its local
index on that processor, and also have a lower bound on its rank. Each ghost
vertex v′ will initially set rank(v′) = 0 and p(v′) = v. Thus the connectivity of
v′ is initially handled through the processor that owns v. For the local vertices
the initial p() values are as given from the computation of Ti.

We define the local root l(v) as the last vertex on the Find-path of v that is
stored on the same processor as v. If in addition l(v) has p(l(v)) = l(v) then
l(v) is also a global root.

In the second stage of the algorithm processor i iterates through each edge
(v, w) ∈ T ′

i to determine if this edge should be part of the final spanning forest
or not. This is done by issuing a Find-Union query (FU) for each edge. A FU-
query can either be resolved internally by the processor or it might have to be
sent to other processors before an answer is returned. To avoid a large number
of small messages a processor will process several of its edges before sending and
receiving queries. A computation phase will then consist of first generating new
FU-queries for a predefined number of edges in T ′

i and then to handle incoming
queries. Any new messages to be sent will be put in a queue and transmitted in
the ensuing communication phase. Note that a processor might have to continue
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processing incoming queries after it has finished processing all edges in T ′

i .
In the following we describe how the FU-queries are handled. A FU-query

contains information about the edge (v, w) in question and also to which pro-
cessor it belongs. In addition the FU-query contains two vertices a and b such
that a and b are on the Find-paths of v and w respectively. The query also
contains information about the rank of a and b and if either a or b is a global
root. Initially a = v and b = w.

When a processor receives (or initiates) a FU-query it is always the case that
it owns at least one of a and b. Assume that this is a, we then label a as the
current vertex. Then a is first replaced by p(l(a)). There are now three different
ways to determine if (v, w) should be part of the spanning forest or not: i) If
a = b then v and w have a common ancestor and the edge should be discarded.
ii) If a 6= b, p(a) = a, and rank(a) < rank(b) then p(a) can be set to b and
thus including (v, w) in the spanning forest. iii) If a 6= b, rank(a) = rank(b),
p(a) = a, while b is marked as also being a global root then p(a) can be set to
b while a message is sent to b to increase its rank by one.

To avoid that a and b concurrently sets each other as parents in Case iii)
we associate a unique random number r() with each vertex. Thus we must also
have r(a) < r(b) before we set p(a) = b.

If a processor i reaches a decision on the current edge (v, w), it will send a
message to the owner of the edge about the outcome. Otherwise processor i will
forward the updated FU-query to a processor j (where j 6= i) such that j owns
at least one of a and b.

In the following we outline two different ways in which the FU-queries can be
handled. The difference lies mainly in the associated communication pattern and
reflects the classical as opposed to the zigzag Union-Find operation as outlined
in Section 2.

In the classical parallel Union-Find algorithm a is initially set as the current
vertex. Then while a 6= p(a) the query is forwarded to p(a). When the query
reaches a global root, in this case a, then if b is marked as also being a global
root, rules i) through iii) are applied. If these result in a decision such that the
edge is either discarded or p(a) is set to b then the query is terminated and a
message is sent back to the processor owning the edge in question. Otherwise,
the query is forwarded to b where the process is repeated (but now with b as
the current vertex).

In the parallel zigzag algorithm a processor that initiates or receives a FU-
query will always check all three cases after first updating the current vertex z

with l(z). If none of these apply the query is forwarded to the processor j which
owns the one of a and b marked with the lowest rank and if rank(a) = rank(b)
the one with lowest r value. Note that if v and w are initially in the same
set then a query will always be answered as soon as it reaches the processor
that owns the lowest common ancestor of v and w. Similarly, if v and w are in
different sets the query will be answered as soon as the query reaches the global
root with lowest rank.

Since FU-queries are handled concurrently it is conceivable that a vertex
z ∈ {a, b} has seized to be a global root when it receives a message to increase
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its rank (if Case iii) has been applied). To ensure the monotonicity of ranks z

then checks, starting with w = p(z), that rank(w) is strictly greater than the
updated rank of z. If not we increase rank(w) by one and repeat this for p(w).
Note that this process can lead to extra communication.

Similarly as for the algorithm in [1] it is possible that unbalanced trees are
created with both parallel communication schemes. This can happen if trees
with the same rank are merged concurrently such that one hangs of the other.

When a processor i receives a message that one of its edges (v, w) is to be
part of the spanning forest it is possible to initiate a path compression operation
between processors. On processor i this would entail to set l(v) (and l(w)) to
point to the new root which would then also have to be included in the return
message. Since there could be several such incoming messages for l(v) and these
could arrive in an arbitrary order we must first check that the rank of the new
root is larger than the rank that i has stored for p(l(v)) before performing the
compression. If this is the case then it is possible to continue the compression
by sending a message to p(l(v)) about the new root. We label these schemes as
either 1-level or full path compression.

4 Experiments

For our experiments we have used a Cray XT4 distributed memory parallel
machine with AMD Opteron quad-core 2.3 GHz processors where each group
of four cores share 4 GB of memory. The algorithms have been implemented in
C++ using the MPI message-passing library. We have performed experiments
using both graphs taken from real application as well as on different types of
synthetic graphs. In particular we have used application graphs from areas such
as linear programming, medical science, structural engineering, civil engineering,
and automotive industry [6, 8]. We have also used small-world graphs as well
as random graphs generated by the GTGraph package [2].

Table 1 give properties of the graphs. The first nine rows contains infor-
mation about the application graphs while the final two rows give information
about the small-world graphs. The first 5 columns gives structural properties
about the graphs while the last two columns show the time in seconds for com-
puting a spanning forest using Depth First Search (DFS) and the sequential
zigzag algorithm (ZZ). We have also used two random graphs both containing
one million vertices and respectively, 50 and 100 million edges. Note that all
of these graphs only contains one component. Thus the spanning forest will
always be a tree.

Our first results concern the different sequential algorithms for computing a
spanning forest. As is evident from Table 1 the zigzag algorithm outperformed
the DFS algorithm. A comparison of the different sequential Union-Find algo-
rithms on the real world graphs is shown in the upper left quadrant of Figure
1. All timings have been normalized relative to the slowest algorithm, the clas-
sical algorithm (CL) using path compression (W). As can be seen, removing
the path compression (O) decreases the running time. Also, switching to the
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Name |V | |E| Max Deg Avg Deg DFS ZZ
m t1 97578 4827996 236 98.95 0.12 0.06
cranksg2 63838 7042510 3422 220.64 0.15 0.03
inline 1 503712 18156315 842 72.09 0.57 0.26
ldoor 952203 22785136 76 47.86 0.71 0.47
af shell10 1508065 25582130 34 33.93 1.04 0.37
boneS10 914898 27276762 80 59.63 0.86 0.38
bone010 986703 35339811 80 71.63 1.05 0.47
audi 943695 38354076 344 81.28 1.20 0.33
spal 004 321696 45429789 6140 282.44 1.33 0.66
rmat1 377823 30696982 8109 162.49 2.07 1.34
rmat2 504817 40870608 10468 161.92 2.71 1.81

Table 1: Properties of the application graphs

zigzag algorithm (ZZ) improves the running time further, giving approximately
a 50% decrease in the running time compared to the classical algorithm with
path compression. To help explain these results we have tabulated the number
of “parent chasing” operations on the form z = p(z). These show that the zigzag
algorithm only executes about 10% as many such operations as the classical al-
gorithm. However, this does not translate to an equivalent speed up due to the
added complexity of the zigzag algorithm.

The performance results for the synthetic graphs give an even more pro-
nounced improvement when using the zigzag algorithms. For these graphs both
zigzag algorithms outperforms both classical algorithms and the zigzag algo-
rithm without path compression gives an improvement in running time of close
to 60% compared to the classical algorithm with path compression.

Next, we present the results for the parallel algorithms. For these exper-
iments we have used the Mondrian hypergraph partitioning tool [9] for parti-
tioning vertices and edges to processors. For most graphs this has the effect of
increasing locality and thus enabling to reduce the size of T ′

i in Stage 1. In our
experiments T ′ = ∪iT

′

i contained between 0.1% and 0.5 % of the total number
of edges for the application graphs, between 1 % and 6 % for the small-world
graphs, and between 2 % and 36 % for the random graphs. As one would expect
these numbers increase with the number of processors.

In our experiments we have compared using either the classical or the zigzag
algorithm, both for the sequential computation in Stage 1 and also for the par-
allel computation in Stage 2. We note that in all experiments we have only used
level-1 path compression in the parallel algorithms as using full compression,
without exception, slowed down the algorithms.

How the improvements from the sequential zigzag algorithm are carried into
the parallel algorithm can be seen in the upper right and lower left quadrant of
Figure 1. Here we show the result of combining different parallel algorithms with
different sequential ones when using 4 and 8 processors. All timings have again
been normalized to the slowest algorithm, the parallel classical algorithm (P-
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CL) with the sequential classical algorithm (S-CL), and using path compression
(W). Replacing the parallel classical algorithm with the parallel zigzag algorithm
while keeping the sequential algorithm fixed gives an improvement of about 5%
when using 4 processors. This increases to 14% when using 8 processors, and
to about 30% when using 40 processors. This reflects how the running time of
Stage 2 of the algorithms becomes more important for the total running time
as the number of processors are increased.

The total number of sent and forwarded FU-queries is reduced by between
50% and 60% when switching from the parallel classical to the parallel zigzag
algorithm. Thus this gives an upper limit on the possible gain that one can
obtain from the parallel zigzag algorithm over the parallel classical algorithm.

When keeping the parallel zigzag algorithm fixed and replacing the sequen-
tial algorithm in Step 1 we get a similar effect as we did when comparing the
sequential algorithms, although this effect is dampened as the number of pro-
cessors is increased and Step 1 takes less of the overall running time.

The figure in the lower right corner shows the speedup on three large matri-
ces when using the best combination of algorithms, the sequential and parallel
zigzag algorithm. As can be seen the algorithm scales well up to 32 processors at
which point the communication in Stage 2 dominates the algorithm and causes
a slowdown. Similar experiments for the small-world graphs showed a more
moderate speedup peaking at about a factor of four when using 16 processors.
The random graphs did not obtain speedup beyond 8 processors and even for
this configuration the running time was still slightly slower than for the best
sequential algorithm.

To conclude we note that the zigzag Union-Find algorithm achieves consid-
erable savings compared to the classical algorithm both for the sequential and
the parallel case. However, our parallel implementation did not achieve speedup
for the random graphs, as was the case for the shared memory implementation
in [3]. This is mainly due to the poor locality of such graphs.
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