550 research outputs found

    A Scalable Method for Solving High-Dimensional Continuous POMDPs Using Local Approximation

    Get PDF
    Partially-Observable Markov Decision Processes (POMDPs) are typically solved by finding an approximate global solution to a corresponding belief-MDP. In this paper, we offer a new planning algorithm for POMDPs with continuous state, action and observation spaces. Since such domains have an inherent notion of locality, we can find an approximate solution using local optimization methods. We parameterize the belief distribution as a Gaussian mixture, and use the Extended Kalman Filter (EKF) to approximate the belief update. Since the EKF is a first-order filter, we can marginalize over the observations analytically. By using feedback control and state estimation during policy execution, we recover a behavior that is effectively conditioned on incoming observations despite the unconditioned planning. Local optimization provides no guarantees of global optimality, but it allows us to tackle domains that are at least an order of magnitude larger than the current state-of-the-art. We demonstrate the scalability of our algorithm by considering a simulated hand-eye coordination domain with 16 continuous state dimensions and 6 continuous action dimensions

    Perseus: Randomized Point-based Value Iteration for POMDPs

    Full text link
    Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agents belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems

    Hardware-Efficient Scalable Reinforcement Learning Systems

    Get PDF
    Reinforcement Learning (RL) is a machine learning discipline in which an agent learns by interacting with its environment. In this paradigm, the agent is required to perceive its state and take actions accordingly. Upon taking each action, a numerical reward is provided by the environment. The goal of the agent is thus to maximize the aggregate rewards it receives over time. Over the past two decades, a large variety of algorithms have been proposed to select actions in order to explore the environment and gradually construct an e¤ective strategy that maximizes the rewards. These RL techniques have been successfully applied to numerous real-world, complex applications including board games and motor control tasks. Almost all RL algorithms involve the estimation of a value function, which indicates how good it is for the agent to be in a given state, in terms of the total expected reward in the long run. Alternatively, the value function may re‡ect on the impact of taking a particular action at a given state. The most fundamental approach for constructing such a value function consists of updating a table that contains a value for each state (or each state-action pair). However, this approach is impractical for large scale problems, in which the state and/or action spaces are large. In order to deal with such problems, it is necessary to exploit the generalization capabilities of non-linear function approximators, such as arti…cial neural networks. This dissertation focuses on practical methodologies for solving reinforcement learning problems with large state and/or action spaces. In particular, the work addresses scenarios in which an agent does not have full knowledge of its state, but rather receives partial information about its environment via sensory-based observations. In order to address such intricate problems, novel solutions for both tabular and function-approximation based RL frameworks are proposed. A resource-efficient recurrent neural network algorithm is presented, which exploits adaptive step-size techniques to improve learning characteristics. Moreover, a consolidated actor-critic network is introduced, which omits the modeling redundancy found in typical actor-critic systems. Pivotal concerns are the scalability and speed of the learning algorithms, for which we devise architectures that map efficiently to hardware. As a result, a high degree of parallelism can be achieved. Simulation results that correspond to relevant testbench problems clearly demonstrate the solid performance attributes of the proposed solutions

    Anytime Point-Based Approximations for Large POMDPs

    Full text link
    The Partially Observable Markov Decision Process has long been recognized as a rich framework for real-world planning and control problems, especially in robotics. However exact solutions in this framework are typically computationally intractable for all but the smallest problems. A well-known technique for speeding up POMDP solving involves performing value backups at specific belief points, rather than over the entire belief simplex. The efficiency of this approach, however, depends greatly on the selection of points. This paper presents a set of novel techniques for selecting informative belief points which work well in practice. The point selection procedure is combined with point-based value backups to form an effective anytime POMDP algorithm called Point-Based Value Iteration (PBVI). The first aim of this paper is to introduce this algorithm and present a theoretical analysis justifying the choice of belief selection technique. The second aim of this paper is to provide a thorough empirical comparison between PBVI and other state-of-the-art POMDP methods, in particular the Perseus algorithm, in an effort to highlight their similarities and differences. Evaluation is performed using both standard POMDP domains and realistic robotic tasks
    • …
    corecore