
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

12-2007

Hardware-Efficient Scalable Reinforcement
Learning Systems
Zhenzhen Liu
University of Tennesse - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Liu, Zhenzhen, "Hardware-Efficient Scalable Reinforcement Learning Systems. " PhD diss., University of Tennessee, 2007.
https://trace.tennessee.edu/utk_graddiss/233

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268771101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Zhenzhen Liu entitled "Hardware-Efficient Scalable
Reinforcement Learning Systems." I have examined the final electronic copy of this dissertation for form
and content and recommend that it be accepted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy, with a major in Computer Engineering.

Itamar Elhanany, Major Professor

We have read this dissertation and recommend its acceptance:

Ethan Farquhar, Hairong Qi, J. Wesley Hines

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:
I am submitting herewith a dissertation written by Zhenzhen Liu entitled �Hardware-E¢ cient
Scalable Reinforcement Learning Systems�. I have examined the �nal electronic copy of this
dissertation for form and content and recommend that it be accepted in partial ful�llment of the
requirements for the degree of Doctor of Philosophy, with a major in Computer Engineering.

Itamar Elhanany
Major Professor

We have read this dissertation
and recommend its acceptance:

Ethan Farquhar

Hairong Qi

J. Wesley Hines

Accepted for the Council:

Carolyn R. Hodges
Vice Provost and
Dean of the Graduate School

(Original signatures are on �le with o¢ cial student records.)

Hardware-E¢ cient Scalable Reinforcement Learning Systems

A Dissertation

Presented for the Doctor of Philosophy Degree

Department of Electrical Engineering and Computer Science

The University of Tennessee, Knoxville

Zhenzhen Liu

December 2007

Copyright c
 2007 by Zhenzhen Liu.

All rights reserved.

ii

Dedication

This dissertation is dedicated to my parents for their love and support. Thank you.

iii

Acknowledgments

I would like to thank my advisor, Dr. Itamar Elhanany, who brought me into this research area

and supported me throughout my studies. I am especially grateful for his perseverance and

insightful instruction throughput my time in the program. Thank you.

I would further like to thank Dr. Ethan Farquhar, Dr. Hairong Qi and Dr. J. Wesley Hines,

who served on my Ph.D. committee, for their time and input to this dissertation.

Finally and de�nitely most, I would like to thank my family. I am extremly grateful to my

parents, for your love. I dedicate this dissertation to you. Thank you.

iv

Abstract

Reinforcement Learning (RL) is a machine learning discipline in which an agent learns by

interacting with its environment. In this paradigm, the agent is required to perceive its state

and take actions accordingly. Upon taking each action, a numerical reward is provided by

the environment. The goal of the agent is thus to maximize the aggregate rewards it receives

over time. Over the past two decades, a large variety of algorithms have been proposed to

select actions in order to explore the environment and gradually construct an e¤ective strategy

that maximizes the rewards. These RL techniques have been successfully applied to numerous

real-world, complex applications including board games and motor control tasks.

Almost all RL algorithms involve the estimation of a value function, which indicates how

good it is for the agent to be in a given state, in terms of the total expected reward in the long

run. Alternatively, the value function may re�ect on the impact of taking a particular action at

a given state. The most fundamental approach for constructing such a value function consists

of updating a table that contains a value for each state (or each state-action pair). However,

this approach is impractical for large scale problems, in which the state and/or action spaces

are large. In order to deal with such problems, it is necessary to exploit the generalization

capabilities of non-linear function approximators, such as arti�cial neural networks.

This dissertation focuses on practical methodologies for solving reinforcement learning prob-

lems with large state and/or action spaces. In particular, the work addresses scenarios in which

an agent does not have full knowledge of its state, but rather receives partial information about

its environment via sensory-based observations. In order to address such intricate problems,

novel solutions for both tabular and function-approximation based RL frameworks are proposed.

A resource-e¢ cient recurrent neural network algorithm is presented, which exploits adaptive

step-size techniques to improve learning characteristics. Moreover, a consolidated actor-critic

network is introduced, which omits the modeling redundancy found in typical actor-critic sys-

tems. Pivotal concerns are the scalability and speed of the learning algorithms, for which we

devise architectures that map e¢ ciently to hardware. As a result, a high degree of parallelism

can be achieved. Simulation results that correspond to relevant testbench problems clearly

demonstrate the solid performance attributes of the proposed solutions.

v

Contents

1 Introduction 1

1.1 The Reinforcement Learning Problem . 1

1.1.1 Markov Decision Processes . 2

1.1.2 Partially Observable Markov Decision Process (POMDP) 3

1.1.3 Value Functions . 4

1.2 Reinforcement Learning Methods . 5

1.2.1 Dynamic Programming . 5

1.2.2 Temporal-Di¤erence Learning . 8

1.2.3 Generalization and Function Approximation 9

1.3 Motivation . 10

1.4 Dissertation Outline . 10

2 Literature Review 12

2.1 Recurrent Neural Networks . 12

2.1.1 Elman Neural Networks . 13

2.1.2 Backpropagation Through Time . 15

2.1.3 Real Time Recurrent Learning . 16

2.2 Neuro-Dynamic Programming . 18

2.2.1 Approximation Architecture: Neural Networks 18

2.2.2 Direct NDP: The Actor-critic Architecture 19

2.3 Solving POMDPs . 20

vi

3 Large-scale Tabular-form Reinforcement Learning Architectures 22

3.1 Q-Learning Hardware Architecture . 22

3.2 Convergence of Q-Learning with Delays . 23

3.3 Constant Delays . 24

3.3.1 Observation Delays . 25

3.3.2 Action Delays . 30

3.4 Random Delays . 32

3.4.1 No Action Delays . 32

3.4.2 Action Delays . 35

3.5 Algorithm Outline for Q-Learning with Delays 36

4 Scalable, Real-time NeuroDynamic Programming (NDP) 37

4.1 Truncated Real-Time Recurrent Learning (TRTRL) 37

4.1.1 SMD for TRTRL . 40

4.1.2 Discussion on Storage and Computational Complexity 44

4.1.3 Performance Analysis . 45

4.2 Clustered TRTRL . 47

4.2.1 Performance Comparison of Clustered and Nonclustered TRTRL 48

4.3 Applying TRTRL RNNs in Solving POMDP . 49

4.3.1 Direct-Policy Approximate DP with RTRL-RNN 49

5 Consolidated Actor-Critic Model 55

5.1 Actor-Critic Models for Solving POMDPs . 55

5.2 Related Work . 56

5.3 Motivation for the Consolidation of Actor and Critic Networks 58

5.4 The Consolidated Actor-Critic Model (CACM) 58

5.5 CACM training with TRTRL . 59

5.5.1 The On-line Learning Algorithm . 61

5.6 Performance Evaluation . 64

5.6.1 Cart-pole Balancing . 64

vii

6 Summary of Contributions 68

6.1 Convergence Proof of Q-Learning with Delays . 68

6.2 Truncated Real Time Recurrent Learning with Stochastic Meta-Descent 69

6.3 NeuroDynamic Programming with TRTRL . 69

6.4 The Consolidated Actor-Critic Model . 69

6.5 Relevant Publications . 70

Bibliography 71

Vita 76

viii

List of Figures

1-1 Agent-environment interaction diagram . 2

2-1 A simple feedforward network and a recurrent network with an input layer, one

hidden layer containing one processing element, and an output layer. 13

2-2 A full connected recurrent neural network . 14

2-3 The Elman simple recurrent network where activations are copied from the hid-

den layer to the context layer and then fed back into the hidden layer after a one

time step delay. The dotted lines represent trainable connections. 15

2-4 Direct neural dynamic programming diagram. The solid lines denote system

�ow, while the dashed lines represent error backpropagation paths for critic and

actor networks. 19

3-1 Pipelined structure for maximal action selection 23

4-1 The sensitive weights of the ith node. 39

4-2 Average learning curves for the frequency doubler testbench, comparing a 15-

neuron fully-recurrent network running RTRL, TRTRL and TRTRL/SMD. . . . 46

4-3 Learning curves for the chaotic time series prediction task, applied to a 25-neuron

network running TRTRL-SMD, RTRL and TRTRL 47

4-4 A diagram of 4 TRTRL clusters with 8 neurons in each. The shared neuron at

the center is the output neuron. 48

4-5 Comparison of clustered and nonclustered TRTRL 49

ix

4-6 Baxter et al�s simple 3-state POMDP. States are labelled with their observable

feature vectors and instantaneous reward r; arrows indicate the 80% likely tran-

sition for the �rst (solid) resp: second (dashed) action. 51

4-7 Comparison of regular SMD and TRTRL-SMD applied in simple 3-state POMDP 52

4-8 Schraudolph et al�s modi�ed 3-state POMDP . 52

4-9 Comparison of regular SMD and RNN-SMD applied in modi�ed 3-state POMDP 53

4-10 4-state POMDP with identical observations for di¤erent states. 53

4-11 RNN-SMD applied in 4-state POMDP . 54

5-1 An actor-critic Elman network. 58

5-2 Consolidated Actor Critic Model . 59

5-3 Consolidated Actor Critic with TRTRL . 60

5-4 Neural Network Implementation of Consolidated Actor Critic Model 62

5-5 The cart-pole balancing system used [1]. 66

5-6 Comparison of learning performance between CACM (with Elman and with

TRTRL-SMD) and the classical actor-critic method. 66

x

List of Tables

1.1 Dynamic programming algorithm. 7

2.1 A Generic NeuroDynamic Programming algorithm. 20

3.1 Q-Learning with delays. 36

4.1 Q-function approximation based POMDP learning using the TRTRL-SMD algo-

rithm. 50

5.1 Pseudocode implementing CACM method. 64

5.2 Parameters used in cart-pole system. 65

xi

Chapter 1

Introduction

1.1 The Reinforcement Learning Problem

The reinforcement learning problem [2] is a straightforward framing of the problem of learning

from interaction (trial-and-error) to achieve a goal. The learner and decision-maker in this

context is called the agent. The entity it interacts with, comprising everything outside the

agent, is considered its environment. These interact continually, the agent selecting actions and

the environment responding to those actions and presenting new situations to the agent. The

environment also provides rewards, special numerical values that the agent tries to maximize

over time.

In most reinforcement learning systems, time is discretized into a sequence of time steps

t = 0; 1; 2; ::::: The interaction between the agent and the environment consists of a sequence of

discrete time steps t = 0; 1; 2; 3:::: At each time step, the agent receives some representation of

the environment�state, st 2 S; where S is the set of possible states, and on that basis selects

an action at 2 A(st), where A(st) is the set of possible actions in state st: In the next time

step, the environment switches to another state as a sequence of the action and gives the agent

an evaluative feedback (reward) rt+1; indicating how good or how bad the immediate e¤ect of

the action is. The goal of the agent, generally speaking, is to maximize the total amount of

rewards over the long run, which is called return Rt. In this dissertation, the return is de�ned

1

Agent Environmentaction ta

reward 1+tr

state 1+ts

ts
Agent Environmentaction taaction ta

reward 1+tr

state 1+ts

ts

Figure 1-1: Agent-environment interaction diagram

by a discounted sum of the rewards,

Rt = rt+1 +
rt+2 +

2rt+3 + ::: =

1P
k=0

krt+k+1 (1.1)

where
(0 �
 < 1) is the discount factor. The agent-environment interaction diagram is

depicted in �gure 1-1.

At each time step, the agent implements a mapping from states to probabilities of selecting

each possible action. This mapping is called the agent�s policy and is denoted by �; where

�(st; at) is the probability action at is selected given that s = st under the policy �: Rein-

forcement learning methods focus on determining how the agent obtains an optimal policy ��,

a policy that maximizes the long term reward, based on its experience. The reinforcement

learning framework is a considerable abstraction of the problem of goal-directed learning from

experience. It also characterizes the decision making process in a stochastic environment, as

will be discussed in more detail throughout this work.

1.1.1 Markov Decision Processes

This thesis focuses on �nite-state, discrete-time stochastic dynamic systems. A common as-

sumption in reinforcement learning is that for the environment and task at hand, particularly

the state and reward signals, the Markov property holds, that is, the next state and next re-

ward only depend on current state and action [2]. Mathematically expressed, the following is

2

assumed

Prfst+1 = s0; rt+1 = rjst; at; rt; st�1; at�1; :::; r1; s0;a0g (1.2)

= Prfst+1 = s0; rt+1 = r
�� st; atg:

This assumption can be well justi�ed over a broad range of applications including robotics,

automated control, economics and manufacturing, all of which have been shown to exhibit the

Markov (memoryless) property.

A reinforcement learning task that satis�es the Markov property is called a (�nite) Markov

decision process (MDP). MDPs provide a mathematical framework for the study of reinforce-

ment learning algorithms. More formally, an MDP is de�ned as a (S;A; P;R)-tuple, where S

denotes the state space, A contains all the possible actions at each state, P is a probability

transition function S �A�S ! [0; 1] and R is the reward function S �A�S ! R. Moreover,

the policy � is a mapping from the state set to the action set: � : S ! A: The probability

transition function P is given by

P ass0 = Prfst+1 = s0jst = s; at = ag (1.3)

for any s; s0 2 S; a 2 A: Likewise, the reward function is

Rass0 = E
�
rt+1jst = s; at = a; st+1 = s0

	
(1.4)

where E f�g denotes the expected value of the next reward. The functions P and R entirely

characterize the dynamics of a �nite MDP. They are also assumed constant if the environment

is stationary.

1.1.2 Partially Observable Markov Decision Process (POMDP)

Fully observable MDPs assume that the state information is accessible to the decision maker in

the decision making process, in other words, the decision maker knows exactly which state it is in

when interacting with its environment. However, there is a broad range of real-world problems

in which an agent interacts with its environment without being provided with an explicit state

3

representation, or the state space is not directly or fully observable. A typical example would

be the path planning problems for mobile robots, sometimes called the "Kidnapped Robot

Problem", by imagining a robot was moved to an unknown location in a known environment

and now must �gure out where it is and �nd its way home. In this case, the agent only has

observations of its position in its vicinity in stead of where it is in the whole map [3].

An exact solution to the POMDP will generate the series of actions that is most likely

to get it home with the least cost. An POMDP is de�ned as a (O;A; P;R)-tuple, where O

denotes the observation space, and A; P; R represent action space, transition probabilities,

and rewards, respectively, all corresponding to an MDP. The policy in a POMDP maps the

observation set to the action set � : O ! A:Deriving the optimal policy is achieved through

state inference, in other words, by considering the distribution of states for a given observation.

Let the observation at time step t be ot; then the reward for action at at ot is expressed by the

average reward for all possible states of ot[3]; such that

rt+1(ot; at) =
P
s
Prfsjotgrt+1(s; at): (1.5)

A broad range of POMDPs are related to state inference from a series of past observations

and actions. A typical example of this is the robot navigation, where the agent may receive

identical observations for several di¤erent positions (or states). In these cases, the agent must

recall recent steps in order to infer its precise position. Therefore, the agent should maintain

internal representation of the past history during its execution of a sequential task. This

dissertation serves as an attempt to devise e¢ cient solutions to these type of problems.

1.1.3 Value Functions

Almost all reinforcement learning methods are based on estimating value functions �functions

of state (or of state-action pairs) that evaluate how good it is for the agent to be in a given

state (or how good it is to perform a given action in a given state) [2]. The notion of "how

good" here is de�ned in terms of future rewards that can be expected, or, to be precise, in

terms of expected return. Recall that a policy maps the state space to the action space through

the probability �(s; a), denoting the probability of choosing action a in state s: To evaluate a

4

policy, we compute the value of the state s under the policy �;denoted by V �(s); which is the

expected return when starting in s and following � thereafter. For an MDP, we have

V �(s) = E� fRtjst = sg = E�

(1X
k=0

krt+k+1

����� st = s
)
: (1.6)

Similarly, the value of taking action a in state s under a policy �, denoted by Q�(s; a), is de�ned

as the expected return starting from s; taking the action a; and following policy � thereafter:

Q�(s; a) = E� fRtjst = s; at = ag = E�

(1X
k=0

krt+k+1

����� st = s; at = a
)
: (1.7)

V � and Q� are called the state-value function for policy � and action-value function for policy

�, respectively. The solution of an MDP is an optimal policy �� that maximizes the action-value

functions,

��(s) = arg max
a2A(s)

(Q�(s; a)): (1.8)

1.2 Reinforcement Learning Methods

Reinforcement learning categorize a range of tractable approximation algorithms for solving

MDPs. Reinforcement learning algorithms attempt to �nd a policy that maps states of the

world to the actions the agent ought to take in those states. The environment is formulated

as a �nite-state MDP, and reinforcement learning algorithms of this context are highly related

to dynamic programming techniques. State transition probabilities and reward probabilities

in MDPs are typically stochastic but stationary over the course of the problems. However, in

many practical scenarios, the transition probability Pss0(a) and the reward function R(s; �(s))

are unknown, which makes it hard to evaluate the policy �.

1.2.1 Dynamic Programming

The term dynamic programming (DP) [4] refers to a collection of algorithms that can be used

to compute optimal policies given a perfect model of the environment as a MDP. Classical DP

algorithms are of limited utility in reinforcement learning both because of their assumption of

a perfect model and because of their great computational expense, but they are still important

5

theoretically. In fact, the reinforcement learning algorithms listed in this thesis can be viewed

as attempt to achieve much the same e¤ect as DP, only with less computation and without

assuming a perfect model of the environment. The key idea behind DP, and reinforcement

learning in general, is the use of value functions to organize and structure the search for good

policies. From the de�nition of V �(s); we have:

V �(s) = E� fRtjst = sg (1.9)

= E�

(1X
k=0

krt+k+1

����� st = s
)

= E�

(
rt+1 +

1X
k=0

krt+k+2

����� st = s
)

= E� frt+1 +
V �(st+1)j st = sg

DP has two phases: policy evaluation and policy improvement. The state value function V0

is initialized arbitrarily, and each successive approximation is obtained by using the Bellman

equation for V � above as an update rule:

V �k+1(s) = E� frt+1 +
V �(st+1)j st = sg (1.10)

=
P
a
�(s; a)

P
s0
P ass0

�
Rass0 +
Vk(s

0)
�

for all s 2 S: The �xed point of this equation is V �: the actual state value function for policy

�: Also, it has been shown that, generally, as k ! 1 the serial fVkg converges to V �: This

algorithm is called iterative policy evaluation. The next phase is policy improvement, in which

we determine the best action at each state based on V �: Now that we have the value function

V � for an arbitrary deterministic policy �; we want to know if it is better to switch to another

policy, in other words, to choose an action a 6= �(s) in state s: To do this, we consider selecting

a in s and thereafter following the existing policy �;the action value function becomes:

Q�(s; a) = E� frt+1 +
Q�(st+1; at+1)j st = s; at = ag (1.11)

=
P
s0
P ass0

�
Rass0 +
Vk(s

0)
�

To improve the policy, at each state s; we compute the action value for each possible action

6

The Dynamic Programming Algorithm
1. Initialization
V (s) 2 R and �(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Repeat
� 0
For each s 2 S :
v 2 V (s)
V (s)

P
s0
P
�(s)
ss0

h
R
�(s)
ss0 +
V (s

0)
i

� max(�; jv � V (s)j)
until � < � (a small positive number)

3. Policy Improvement
policy-stable true
For each s 2 S

b �(s)

�(s) argmaxa
P
s0
P
�(s)
ss0

h
R
�(s)
ss0 +
V (s

0)
i

if b 6= �(s); then policy-stable false
if policy-stable, then stops; else go to 2

Table 1.1: Dynamic programming algorithm.

and choose the one with the best Q�(s; a). In other words, the new greedy policy is selected:

�0(s) = argmax
a
Q�(s; a) (1.12)

= argmax
a

P
s0
P ass0

�
Rass0 +
Vk(s

0)
�

DP consists of a serial of interweaved policy evaluation and policy improvement: once a

policy �; has been improved using V � to yield a better policy �0; we then compute V �
0
and im-

prove it again to yield an even better �00: Each policy is guaranteed to be a strict improvement

over the previous one (unless it is already optimal). A complete algorithm is given in table 1.1

[2].

The disadvantages of DP is that it assumes full knowledge of system dynamics including the

reward function R and transition probability function P , and also the computational complexity

involved is overwhelming.

7

1.2.2 Temporal-Di¤erence Learning

Temporal Di¤erence (TD) learning [2] has been mostly used for solving the reinforcement

learning problems. TD methods require only experience�sample sequences of states, actions and

reward from on-line or simulated interaction with an environment. TD is related to dynamic

programming techniques since it approximates its current value estimate based on previously

learned estimates (a process known as bootstrapping). Another way of looking at TD is of

learning from guess to guess. As a prediction method, TD learning takes into account the

fact that subsequent predictions are often correlated in some sense. In standard supervised

predictive learning, one only learns from actually observed values, a prediction is made, and

when the observation is available, the prediction is adjusted to better match the observation.

The core idea behind TD learning is that we adjust predictions to match other, more accurate

predictions, about the feature.

TD learning bases its update process in part on an existing estimate and can thus be used

to estimate value functions. This can be expressed formally as

V (st) V (st) + �[rt+1 +
V (st+1)� V (st)] (1.13)

where rt+1 is the observed reward at time t + 1; �(0 < � < 1) is the learning rate parameter,

and [rt+1 +
V (st+1) � V (st)] is called the temporal di¤erence. The TD method is called a

"bootstrapping" method, because the value is updated partly using an existing estimate and

not a �nal reward.

These methods use sample backups, which are di¤erent from backups of DP methods in

that they are based on a single sample successor rather than on a complete distribution of all

possible successors. In the context of a control problem, TD methods can be used to evaluate

and to predict the action-value function under a given current policy. For the action value

function, we have

Q�(s; a) = E� frt+1 +
Q�(st+1; at+1)j st = s; at = ag : (1.14)

8

Substituting state-action variables for state variables, the updating rule becomes

Q(st; at) Q(st; at) + �[rt+1 +
Q(st+1; at+1)�Q(st; at)]: (1.15)

This algorithm is called Sarsa, for which the update is done after every transition from a

non-terminal state st: If st+1 is terminal, then Q(st+1; at+1) is de�ned as zero.

Q�Learning

Q-Learning [5] is one of the most e¤ective and popular algorithms for learning from delayed

reinforcement to determine an optimal policy, in the absence of the transition probability and

reward function. The update rule for one-step Q�learning is de�ned by

Q(st; at) Q(st; at) + �[rt+1 +
max
a
Q(st+1; a)�Q(st; at)]: (1.16)

The di¤erence between Q�learning and Sarsa is that Q�learning is an o¤-policy method, in

which the learned action-value function Q; directly approximates Q�; the optimal action-value

function, independent of the policy being followed. The policy still has an e¤ect in that it

determines which action to take in each state. It has been proven that Q�learning converges

faster than Sarsa [2].

1.2.3 Generalization and Function Approximation

Tabular form reinforcement learning cannot handle applications with large scale state and action

spaces, in particular when the states and actions are continuous. When the state and/or action

spaces are large, estimates of the value function cannot be represented in a table with one

entry for each state or each state-action pair. An exponential growth in the size of the state

or action sets is observed as their dimensions increase. This is often referred to as the curse

of dimensionality, a well-known phenomenon in many �elds, including pattern-recognition and

machine learning. The problem is not just the memory needed for large tables, but the time

and data needed to accurately �ll them. In other words, the key issue is that of generalization.

How can experience with a limited subset of the state space be usefully generalized to produce

a good approximation over a much larger subset?

9

This is, indeed, a complicated and intricate problem. In many tasks, to which we would

like to apply reinforcement learning, most states encountered will never have been experienced

exactly before. This will almost always be the case when the state or action spaces include

continuous variables or large number of sensors, such as a visual image. The only way to learn

anything at all on these tasks is to generalize from previously experienced states to ones that

have never been seen.

Fortunately, generalization from examples has already been extensively studied, and we do

not need to invent totally new methods for use in reinforcement learning. To a large extent

we need only combine reinforcement learning methods with existing generalization methods.

The kind of generalization we require is often called function approximation because it takes

examples from a desired function (e.g., a value function) and attempts to generalize from them

to construct an approximation of the entire function. Function approximation is an instance

of supervised learning, a primary topic studied in machine learning, arti�cial neural networks,

pattern recognition, and statistical curve �tting.

1.3 Motivation

In view of the above, this dissertation aims to focus on solving MDPs which are characterized

by large state space and action space. Moreover, in an e¤ort to address realistic machine

learning scenarios, this work will also study ways in which POMDPs can be solved. In order

to achieve these goals, we will consider both tabular as well as function-approximation based

reinforcement learning frameworks. A pivotal theme of this work is the hardware consideration

perspective, which sets as a goal to derive architectures which map to hardware so as to yield

highly scalable reinforcement learning solutions.

1.4 Dissertation Outline

In the following four chapters we will describe previous works targeting solutions for rein-

forcement learning problems with large state and action space and then introduce our novel

techniques for addressing such large scale problems. Chapter 2 provides an overview of Neuro-

Dynamic programming - a framework for solving POMDPs using recurrent neural networks as

10

function approximators. We will outline the core limitations of such methods, in particular in

the context of resource requirements.

In chapter 3, we describe a pipelined Q-learning architecture as an attempt to scale Q-

learning with �nite state space and large action spaces, which also induces delays. To com-

plement the design, convergence proofs are provided for the proposed scheme. Chapter 4

introduces a novel variation of real-time recurrent learning (RTRL), a learning algorithm for

recurrent neural networks, called Truncated-RTRL. The latter aims to reduce the computa-

tional complexity and storage requirement of RTRL and to increase the learning rate, based

on stochastic gradient descent methodologies. Further, for hardware realization purposes, we

localize TRTRL by clustering neurons as a trade-o¤ between connectivity and performance.

Chapter 5 introduces a consolidated actor-critic model (CACM) for a simpli�ed model-free

temporal di¤erence learning. Chapter 6 provides a summary of the contributions made.

11

Chapter 2

Literature Review

2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs), �rst described in [6], are fundamentally di¤erent from

feedforward architectures in the sense that they operate not just on an input space but also

on an internal state space. Figure 2-1 illustrates the block diagram of the state-space generic

recurrent network. RNNs are widely acknowledged as an e¤ective tool that can be used by a wide

range of applications that store and process temporal sequences. The ability of RNNs to capture

complex, nonlinear system dynamics has served as a driving motivation for their study. RNNs

have the potential to be e¤ectively used in a wide range of modeling, system identi�cation and

control applications, where other techniques may fall short. Consequently, a variety of learning

algorithms have been proposed, the majority of which rely on the calculation of error gradients

with respect to the network weights. What distinguishes recurrent neural networks from static,

or feedforward networks, is the fact that the gradients are time-dependent or dynamic. This

implies that the current error gradient does not only depend on the current input, output

and targets, but rather on its possibly in�nite past. How to e¤ectively train RNNs remains a

challenge and an active research topic.

RNNs are neural networks which utilize recurrent links in order to provide dynamic memory.

The recurrent connections allow the network�s hidden units to see its own previous output, so

that future behavior can be shaped by previous responses. There are many types of RNNs but

they all have two common features. All RNNs make use of some part of the static multilayer

12

Figure 2-1: A simple feedforward network and a recurrent network with an input layer, one
hidden layer containing one processing element, and an output layer.

perceptron feedforward network and exploit the nonlinear mapping capability of the multilayer

feedforward model. The basic distinction between feedforward static networks and RNNs is

shown in Figure 2-1. Recurrent neural networks have a feedforward connection for all neurons

which allow the network to show dynamic behavior. A network with a fully connected hidden

layer, between the input layer and the output layer is depicted in �gure 2-2

Practical constraints often guide the selection of one RNN learning algorithm over another.

The learning problem consists of adjusting the parameters (or weights) of the network, so that

the trajectories have certain speci�ed properties. A common learning algorithm is known as

backpropagation. In backpropagation, the weights of the neural network can be adjusted so

as to produce an output on the appropriate unit when a particular pattern at the input is

observed. The algorithm works by running the training instance through the neural network,

and calculating the error between the desired (target) and actual outputs. These di¤erences

are then �propagated back�from the output layer to the hidden and input layers in the form

of modi�cations to the weights of each of the component neurons. We next review the primary

RNN architectures, and associated learning rules.

2.1.1 Elman Neural Networks

The simple recurrent network (SRN) described in [7] and depicted in Figure 2-3, has an archi-

tecture similar to that of Figure 2-2, with the exception that the output layer may be nonlinear

and the bank of unit delays at the output is omitted. The Elman approach calls the bank of

13

1−z 1−z 1−z 1−z

bias input

output

states

1−z 1−z 1−z 1−z

bias input

output

states

Figure 2-2: A full connected recurrent neural network

unit delays context units, which are also "hidden" because they interact solely with other nodes

in the network and not with the outside world. Network processing consists of the following

sequence of events. At time t, the input units receive the �rst input in the sequence. The

hidden units feed forward to the output units and at the same time, feed back to the context

units. The context units then store the output of the hidden units for one time step, and then

feed them back to the input layer. Based on this description, there is only a feedforward cycle,

but a learning phase using backpropagation [8] may be used.

By utilizing hidden units and a learning algorithm, the hidden units develop internal rep-

resentations for the input patterns. These neurons continue to recycle information through the

network over multiple time steps, and thereby discover abstract representations of time. There-

fore, we say that the context units provide the network with dynamic memory so as to encode

the information contained in the input pattern and remember the previous internal state. In

the following section, we will brie�y review the primary backpropagation-based algorithms used

to update the weights in RNNs.

14

Figure 2-3: The Elman simple recurrent network where activations are copied from the hidden
layer to the context layer and then fed back into the hidden layer after a one time step delay.
The dotted lines represent trainable connections.

2.1.2 Backpropagation Through Time

The backpropagation through time (BPTT) algorithm can be viewed as an extension to the

classical Elman network described in section 2.1.1 and is a generalization of backpropagation

for static networks. Various batch-training forms of the algorithm have been derived by [9].

Other versions were derived and discussed in [8].

Let N denote a recurrent neural network required to learn a temporal task, starting at time

t0 and ending at time t. Next, let us denote N � as the feedforward network that results from

unrolling the temporal operation of the recurrent network N , where N � has a layer for each

time step in the time interval [t0; t] and n units in each layer. For each neuron in network N ,

there is a copy of a layer in N �. Every connection from unit i to unit j in N has a corresponding

connecting unit j in layer l to unit i in layer l + 1, for each time step l 2 [t0; t].

During the �rst phase, a copy of the entire RNN is added to the top of a growing feedforward

network on each update cycle, which updates the internal states of the network. Thus, if the

network is to process a signal that is t time steps long, then copies of the network are created

and the feedback connections are modi�ed such that there are feedforward connections from one

network to the subsequent network. Second, backpropagation is used to update the weights

with respect to the performance error. In a subsequent phase, the network is trained using

backpropagation to update the weights with respect to the performance error. It becomes one

large feedforward network with the updated weights being treated as shared weights.

15

The key advantage of BPTT is that the training algorithm, backpropagation, is identical to

those that are used for feedforward networks and therefore it can be applied to a wide variety

of problems. However, the epochwise BPTT algorithm [10] has several fundamental drawbacks:

�rst, it is not a real-time algorithm in the sense that batch data must be applied and second, the

algorithm has extensive memory requirements that are dictated by the need to store growing

amounts of state information. The procedure works well for relatively simple recurrent networks

consisting of a few neurons as it has a computational complexity of O(N2), however the memory

requirements of the underlying formulas become too large when the procedure is applied to more

general architectures that are typical of those encountered in practice. Other, continuous time

approaches to training recurrent networks to handle time-varying input or output have been

investigated by [11]. Unfortunately, these approaches use a restrictive architecture that is not

suitable for more complex problems.

2.1.3 Real Time Recurrent Learning

The real-time recurrent learning (RTRL) algorithm [12] is possibly the most popular weight

updating scheme for RNNs, and will be used as basis for some of the core contributions of this

dissertation. Let us assume that a network consists of a set of N fully connected neurons and

a set of M inputs. Let wij(t) denote the weight (i.e. the synaptic strength) associated with the

link originating from neuron j towards neuron i at time t. The net input to neuron k; sk(t); is

de�ned as the weighted sum of all activations in the network, zl(t). Based on standard RTRL

terminology, we de�ne the activation function of node k at time t+ 1 to be

yk(t+ 1) = fk (sk (t)) ; (2.1)

where

sk(t) =
X

l2N[M
wklzl(t); (2.2)

zk(t) =

8<: xk(t) if k 2M

yk(t) if k 2 N
(2.3)

16

and the non-linear activation function, f(�), maps sk(t) to the range [0,1]. The overall network

error at time t is de�ned by

J(t) =
1

2

X
k2outputs

[dk(t)� yk(t)]2 =
1

2

X
k2outputs

[ek(t)]
2 (2.4)

where dk(t) denotes the desired target value for output k at time t. Correspondingly, the

error is minimized along a negative multiple of the performance measure gradient. The online

calculation of the gradients is achieved by exploiting the following relationship:

� @J(t)

@wij(t)
=

X
k2outputs

ek(t)
@yk(t)

@wij
: (2.5)

By identifying the partial derivatives of the activation functions with respect to the weights

as sensitivity elements, and denoting the notation by

pkij(t) =
@yk(t)

@wij
; (2.6)

we obtain the following recursive equation:

pkij(t+ 1) = f
0
k (sk (t))

"X
l2N
wklp

l
ij(t) + �ikzj(t)

#
; (2.7)

where pkij(0) = 0 and �ik is the Kronecker delta. Equations (2.7) and (2.5) allow one to obtain

the performance gradient at any given time. Finally, the updating rule is given by

wij(t+ 1) = wij(t) + �
X

k2outputs
ek(t)p

k
ij(t);

where � is the learning rate parameter.

As can be seen from these equations, each neuron is required to perform O(N3) multi-

plications yielding an overall complexity of O(N4). Moreover, the storage requirements are

dominated by the weights O(N2) and, more importantly, the sensitivity matrices, pkij(t), which

are O(N3): Due to the distributed nature of the network, the calculation can be reduced signif-

icantly by having each neuron compute its sensitivities in parallel. If performed in hardware,

17

these computation processes can be accelerated by exploiting pipelining and module replication.

However, unlike the computational requirements, the storage requirements cannot be reduced

as they constitute a crucial component in the weight update procedure.

Several schemes that have been presented in the literature aim to reduce the storage com-

plexity associated with RTRL. A unifying theme of these methods comprises of subgrouping

the neurons into multiple, non-overlapping subnetworks. Although the computational gain is

signi�cant, the storage requirements remain high, in particular when a small set of subgroups

is employed.

2.2 Neuro-Dynamic Programming

Neuro-dynamic programming (NDP), also called Approximate Dynamic Programming, is a

new class of dynamic programming methods for control and sequential decision making under

uncertainty. These methods have the potential of solving the problems that for a long time were

thought to be intractable due to either a large state or action space, or the lack of an accurate

model. NDP methods are suboptimal methods that center around the approximate evaluation

of optimal cost function through the use of neural network and/or simulation. They aim at

developing a methodological foundation for combining dynamic and compact representation in

order to derive an optimal or suboptimal solution for MDPs.

2.2.1 Approximation Architecture: Neural Networks

Many researchers have proposed the use of neural networks as function approximating architec-

ture in the context of NDP. Neural networks here are not restricted to the classical multilayer

perceptron structure with sigmoidal nonlinearities, but rather any type of universal perceptron

structure of nonlinear mappings could be used in this context. Recurrent neural networks are

convenient in that they are able to model dynamic systems with memory. They are used to ap-

proximately evaluate the value function in NDP. The states, or state-action pairs, are mapped

into a feature vector, which is then fed into a neural network as inputs to produce a score of

the state or state-action. The generalization ability of neural networks allows classi�cation of

high-dimensional state-action inputs into value functions.

18

Actor
Network

Critic
Network

Environment

α

r(t)

J(t­1) +

_

_
+

+

_

R*

J(t)
x(t) a(t)

x(t)

Actor
Network
Actor

Network

Critic
Network
Critic

Network

Environment

αα

r(t)

J(t­1) +

_

_
+

+

_

R*

J(t)
x(t) a(t)

x(t)

Figure 2-4: Direct neural dynamic programming diagram. The solid lines denote system �ow,
while the dashed lines represent error backpropagation paths for critic and actor networks.

2.2.2 Direct NDP: The Actor-critic Architecture

By using neural networks as value function approximators in the RL framework, an actor-critic

learning architecture has been proposed in [13] to implement direct NDP. Fig 2-4 shows the

schematic diagram for implementation of direct NDP. The objective of this on-line learning

control scheme is to optimize a desired performance measure by learning to choose appropriate

control actions through interaction with the environment. The direct NDP structure includes

two networks, actor and critic as building blocks. The critic uses an approximation architecture

to learn a value function, which is then used to update the actor�s policy parameters in the

direction of performance improvement. Both of the actor and critic networks are initialized

with random parameters (weights). Once a system state s(t) is observed, the state information

x(t) is fed into the actor network to generate an action a(t). The action value function, J(t),

will then be computed based on the parameters of the critic network. Finally, the Bellman

error ([r(t) + �J(t)] � J(t � 1))2 is utilized in order to tune the weights of the critic network.

Adaptation of the actor network is done by back-propagating the error between the desired

ultimate performance objective R� and the approximate function J from the critic network.

The learning algorithm is implemented by the pseudocode below. nna and nnc denote the

actor network and critic network, respectively, while e is the error, w the weights/parameters

and l the learning rate. Updating of the weights in the actor network is achieved by back-

propagating the error via the critic network and the action signal.

19

NeuroDynamic Programming Algorithm
Initialize wa, wc arbitrarily
Repeat (for each time step t)
Observe state s(t); extract feature vector x(t)
Choose action a(t) �nna(x(t))
Take action a(t); observe r(t), s(t+ 1)
Update wc

ec(t) � �J(t)� [J(t� 1)� r(t)]
Ec(t) 1

2e
2
c(t)

�wc(t) lc(t)
h
�@Ec(t)@wc(t)

i
wc(t+ 1) wc(t) + �wc(t)

Update wa
ea(t) J(t)�R�
Ea(t) 1

2e
2
a(t)

�wa(t) lc(t)
h
�@Ec(t)@a(t)

@a(t)
@wa(t)

i
wa(t+ 1) wa(t) + �wa(t)

s(t) s(t+ 1); J(t� 1) J(t)
Until the performance objective is met

Table 2.1: A Generic NeuroDynamic Programming algorithm.

2.3 Solving POMDPs

Many problems of interest can be formulated as POMDPs, yet the lack of e¢ cient algorithms

results in the limited use of POMDPs in practice. In MDPs the agent�s observation is equivalent

to the environment�s state. Therefore, the solution for MDPs is simply a mapping between

observed states to actions. However, in a POMDP, such a memoryless or perception-based

policy will not su¢ ce, and the agent must learn an internal state-based policy. In [14] [8]

recurrent neural networks are considered for solving POMDPs, by inferring state information as

means of approximating the value function. Also, [15] investigates an actor-critic architecture,

where both actor and critic are fully recurrent neural networks, both trained with RTRL.

In [16] Elman recurrent neural networks are trained with standard backpropagation, but

only for obtaining a direct reward. Finally, [17] also use Elman networks, which approximate

the Q-learning�s value function and are trained using BPTT.

Generally speaking, the majority of the work done on solving POMDPs with RNNs has

been limited in capacity and scale. This is primarily due to the inherent scalability limitations

of existing RNN technologies. Moreover, convergence to optimal policy is not guaranteed when

20

using RNNs for value approximation. This dissertation aims to address these key issues by

proposing an RNN framework for solving complex POMDPs in a manner that scales and delivers

adequate performance characteristics.

21

Chapter 3

Large-scale Tabular-form

Reinforcement Learning

Architectures

3.1 Q-Learning Hardware Architecture

In many applications the action set is rather large. This is particularly true for robotics, where

high-dimensional output signals may exist. For example, a robot may have an action vector

of 12 elements with each having 8 possible values, resulting in an action set size of 812. To

address such cases, this chapter presents a framework for hardware-oriented tabular form Q-

learning. In particular, the proposed architecture targets applications with a �nite state space

and a high-dimensional action space. Applying Q�Learning in this context would introduce a

signi�cant delay in determining the action for each state according to the policy (either softmax

or " greedy), which we shall refer to as action delay. The latter originates from the operator

a� = argmax
a
Q(s; a); (3.1)

which is common to most Q-learning variants. Thus, for real-time Q�Learning applications,

the bottleneck is the max action selection. Further, the bootstrapping process also su¤ers from

22

Max Selector Max Selector Max Selector Max Selector

Max Selector Max Selector

Max Selector

Max Selector Max Selector Max Selector

),(max asQa),(maxarg asQa

),(1asQ),(kasQ),(1+kasQ),(MasQ

Max SelectorMax Selector Max SelectorMax Selector Max SelectorMax Selector Max SelectorMax Selector

Max SelectorMax Selector Max SelectorMax Selector

Max SelectorMax Selector

Max SelectorMax Selector Max SelectorMax Selector Max SelectorMax Selector

),(max asQa),(maxarg asQa

),(1asQ),(kasQ),(1+kasQ),(MasQ

Figure 3-1: Pipelined structure for maximal action selection

delay in calculating the maximum of a next state action value, as re�ected by

Q(st; at) Q(st; at) + �[rt+1 +
max
a
Q(st+1; a)�Q(st; at)]: (3.2)

Figure 3-1 depicts the pipelined diagram proposed for Q-Learning with large action sets. Sup-

pose the size of the action set for each state isM; and the maximum of k values can be found by

each block, by exploiting the pipelined architecture the delay in action selection is O(logkM).

It becomes apparent that there is a delay between the instant an observation is received and

the time its corresponding action is selected by the agent. In the following section, we provide

proof that Q�Learning with such delays also converges to the optimal policy.

3.2 Convergence of Q-Learning with Delays

The basic MDP formulation introduced in section 1.1.1 is inadequate for some control problems

for the following reasons. First, observation delays may exist, for which information pertaining

to the state of a system arrive with delay rather than being available instantaneously. Second,

23

action delays may exist whereby actions take e¤ect at a later time rather than immediately after

being issued. Finally, the cost induced by an action may be collected after a number of stages.

Hence, MDPs with delays can be used to model dynamic environments in those scenarios [18].

Such models have been applied to a number of control problems, such as communication network

design [19], transportation information network design [20] and decentralized control problems

[21] [22]. It has been shown that MDPs with delays can be reduced to equivalent MDPs without

delay [19] [18] for which the optimal policies are attained through the equivalent MDPs using

dynamic programming techniques [23]. Our motivation in this work is to solve MDPs with

delays when the reward function g and transition probabilities PA are unknown. As such we

focus our attention on Q-learning[24] - the prevailing o¤-policy algorithm for addressing such

scenarios.

Q-Learning was proposed as a method for solving MDPs with unknown costs and transition

probabilities. It utilizes simulation or real-time experience to iteratively approximate the state-

action value function. Q�learning has been widely applied in market control[25], fuzzy logic

control[26], robot soccer systems[27], to name a few. The convergence of Q-Learning to optimal

policies has been proven in [28], however, the proof relies on the fundamental assumption that

the underlying MDPs have no delays. In particular, the following two assumptions are made:

(1) the current system state is available to the decision making agent without any delay, and

(2) the actions issued by the agent take e¤ect instantaneously while the rewards are collected

at the succeeding stages. However, in MDPs with delays, both assumptions are violated.

We consider MDPs with �nite state and action spaces having bounded delays. We then

formulate the Q-Learning algorithm for MDPs with delays and identify its optimal values so as

to obtain respective convergence properties. The rest of this chapter is structured as follows.

In Section 3.3 we present analysis pertaining to the case of constant delays for observations and

actions. Section 3.4 extends these results to address the case of random delays.

3.3 Constant Delays

An underlying embedded MDP with constant observation delay, o; constant action delay, ac,

and constant cost delay, c; can be denoted as a seven-tuple < S;A; PA; g; o; ac; c >, referred

24

to as a deterministic delayed MDP (DDMDP) [19]. We utilize this de�nition in formulating

Q-Learning for DDMDPs by augmenting the state space and identifying its optimal values.

Based on the latter, a convergence proof is derived.

3.3.1 Observation Delays

It has been shown in [19] that DDMDP with no action delays < S;A; PA; g; o; 0; c > is reducible

to an MDP without delays, < Io; A; PA; g
0 >, with Io = S � Ao; where Ao is the Cartesian

product of A with itself for o times. Let the state information at the tth time step be contained

in it = (st�o; at�o; :::; at�1), where st�o is the most recently observed state and at�o;:::; at�1 are

the actions taken since. it is the expanded system state at time t: Accordingly, the new cost

function can be expressed as g0(it; at) = E[g(st; at)jit]: In the equivalent MDP without delays,

policies are de�ned by mappings � : S � Ao ! A. It is also assumed that cost delay is greater

than observation delay (o � c); thus the costs induced after (k � o)� stages have not been

collected by the decision maker[19]. Under this assumption, cost delays can be excluded from

the de�nition of it: Following this idea, we will show that Q-Learning de�ned in the expanded

space i can be used to attain the optimal policies for DDMDP.

Let us begin with the assumption that the system is at state s, for which an action a is

taken. From the agent�s perspective, information regarding the current state is to be extracted

from the most recently observed state, s�o, and the actions taken since, a�o; :::; a�1. Thus, the

objective of the revised Q-Learning algorithm is to maximize the expected rewards given that

the state s is unknown but can be derived in probability via the sequence i = (s�o; a�o; :::; a�1).

In other words, an optimal policy is the one that achieves the highest expected return under

uncertainty in state s given all the information enclosed in i. Q(s; aji) denote the value function

of state-action pairs (s; a) under the condition that i is observed by the agent (note that s is

unknown and random). Formally stated,

� (i) = max
a
Es (Q

� (s; aji)) ; (3.3)

where Es denotes the expectation over all possible states given that i is available to the agent.

In a MDP with unknown rewards and transition probabilities, the randomness of the equation

25

above is interpreted two folds. First, the current system state s is stochastic and second, given

a �xed state s and action a, the optimal state-action value is approximated iteratively using

a stochastic approximation process, such as Q-Learning. Let Vo and Qo denote the state and

action value function with observation delay o:Consequently, in [19], the total (discounted)

return under policy � is de�ned as:

V �o (i) = E�

�1P
l=0

lg(sl�o; al�o)ji
�
: (3.4)

Likewise, the action value under policy � is given by

Q�o (i; a) = g (s; aji) + E�
�1P
l=1

lg(sl�o; al�o)ji
�
; (3.5)

where g(s; aji) is the expected cost induced by the state-action pair (s; a) given that i is available

to the agent (note state s is unknown and random). It has further been shown that the optimal

policy is argmax� V �o (i). Utilizing the Bellman equation for a given i, an optimal policy may

be expressed as

� (i) = argmax
a
Q�o (i; a); (3.6)

allowing for the following formulation of the Q-Learning algorithm in the expanded state space

i:

Qt+1(i; a) = (1� �ia(t))Qt(i; a) + �ia(t)[rt(i; a) +
max
a0
Qt(i

0; a0)]; (3.7)

where rt(i; a) is the instantaneous reward for action a at time step t given that the system

is in state s, which is random from the perspective of the agent. The subsequent state is

i0 = (s�o+1; a�o+1; :::; a) ; with �ia(t);denoting the learning rate. Thus,

rt(i; a) = rt(s; aji)

= rt (s; ajs�o;a�o; :::; a�1) : (3.8)

Let (Pa)ss0 = P ass0 be the transition probability from state s to state s0 upon taking action

a: From the Markovian property, the probability of the current state being s given that i is

26

available to the agent is

Prfsjig = Prfsjs�o; a�o; a�o+1; :::a�1g

=
�
Pa�oPa�o+1 :::Pa�1

�
s�os

: (3.9)

The latter represents the o�step transition probability from state s�o to state s under a series

of actions fa�o; a�o+1; :::a�1g: Therefore, the expected reward for rt(i; a) is

E (rt (i; a)) = g(i; a)

= Es (g(s; aji))

=
X
s

Pr(sji) � g (s; a)

=
X
s

�
Pa�oPa�o+1 :::Pa�1

�
s�os
� g (s; a) ; (3.10)

where g(s; a) is the reward function for the corresponding MDP without delays, < S;A; PA; g > :

Next, consider the bootstrapping process. The subsequent state i0 given i = (s�o; a�o; :::; a�1)

and a is i0 = (s�o+1; a�o+1; :::; a) : Hence, the only new component in i0 is the observed state

s�o+1 at the next step, which is unknown to the agent: Moreover,

Prfi0jig = Prfs�o+1js�o; a�og = P a�os�os�o+1 : (3.11)

The expected value of
 max
a0
Qt(i

0; a0) is thus:

E

�

max

a0
Qt(i

0; a0)

�
=

(X
i0

Prfi0jig �max
a0
Qt
�
i0; a0

�)

=

8<:X
s�o+1

Prfs�o+1js�o; a�og �max
a0
Qt(i

0; a0)

9=;
=

8<:X
s�o+1

P a�os�os�o+1 �maxa0 Qt(s�o+1; a�o+1; :::; a
0)

9=; : (3.12)

27

Let T (�) be de�ned as the �xed-point of Q�learning process,

Ti;a (Q) = g (i; a) +

8<:X
s�o+1

Prfs�o+1js�o; a�og �max
a0
Q�(s�o+1; a�o+1; :::; a

0)

9=;
=

X
s

�
Pa�oPa�o+1 :::Pa�1

�
s�os
� g (s; a)

+

8<:X
s�o+1

Prfs�o+1js�o; a�og �max
a0
Q�(s�o+1; a�o+1; :::; a

0)

9=; : (3.13)

Before describing the details of our results, we brie�y reiterate the main convergence result

for Q-Learning provided in [28].

Theorem 1 Let F (t) denote all the previous history up to time t and � ia(t) the total number

of times (i; a) has been visited until t: Q-Learning in the form

Qt+1(i; a) = (1� �ia(t))Qt(i; a) + �ia(t)[wia(t) + Tia(Qt)]

is convergent given the following assumptions:

1. For all i and a; limt!1 � ia(t) =1 w.p.1;

2. (a) Q(0) is F (0)- measurable;

(b) For every i and t, wia(t) is F (t+ 1)�measurable;

(c) For every i ,a and t; �ia(t) and � ia(t)are F (t)�measurable;

(d) For every i; a and t; we have E (wia(t)jF (t)) = 0;

(e) There exist constants A and B s.t

E
�
w2ia(t)jF (t)

�
� A+B max

j;v;��t
jQjv(�)j2 ; for all i; a; t:

3. (a) For every i; a;
1X
t=0

�ia(t) =1; w:p:1 for all i; a:

28

(b) There exist a constant C such that for every i; a;

1X
t=0

�2ia(t) � C; w:p:1 for all i; a:

4. There exists a vector x�, a positive vector v, and a scalar � 2 [0; 1] such that

kT (x)� x�kv � � kx� x
�kv :

Using the above assertions, we state the following:

Theorem 2 For a Q-Learning algorithm with constant observation delay o; Qt(i; a) converges

to Tia(Q) as de�ned in (3.13) with probability 1, for every i and a, if the following assumptions

are satis�ed:

1.
 < 1;

2.
P
t
�t =1;

P
t
�2t <1

Proof. From stochastic approximation theory, Ti;a(Q) is the optimal value of Q(i; a) if

Qt(i; a) converges as t!1. To that end, we next prove the convergence of Qt(i; a). Given that

Ti;a (Qt) = g (i; a)+

(P
s�o+1

Prfs�o+1js�o; a�og �max
a0
Qt(i

0; a0)

)
; theQ-Learning algorithm can

be restated as:

Qt+1(i; a) = (1� �ia(t))Qt(i; a) + �ia(t)[wia(t) + Tia(Qt)]; (3.14)

where

wia(t) = rt(i; a) +
max
a0
Qt(i

0; a0)� Tia(Qt): (3.15)

In the following sections, we select proper values for the discounting factor
 and learning

rate � so that the two assumptions in Theorem 2 are inherently satis�ed. From Theorem

1, the assumptions 1, 2(a),(b),(c) and 3 are guaranteed in Q-Learning with delays as in the

case without delay. In order to assert convergence, we need to show that E (wia(t)) = 0,

E
�
w2ia(t)jF (t)

�
� A + B max

j;v;��t
jQjv(�)j2 and Tid(Q) is a contraction mapping with respect

29

to some norm. From the de�nition of Tia(Qt), it directly follows that E(wia(t)) = 0 and

E
�
w2ia(t)jF (t)

�
� V ar (ria)+max

j;v
Q2t (j; v) as in all the following cases [28]. Next, we show that

Tid(�) is a contraction mapping with respect to the some norm of Q(i; a), using the following

derivation

kTia(Qt)� Tia(Q�)k =

g(i; a) +
E �
maxa0 Qt(i0; a0)
�
� g(i; a)�

E

�

max

a0
Q�(i0; a0)

�

=

X
s�o+1

P a�os�os�o+1maxa0
Qt(i

0; a0)�

X
s�o+1

P a�os�os�o+1maxa0
Q�(i0; a0)

�

X
s�o+1

P a�os�os�o+1

maxa0 Qt(i0; a0)�maxa0 Q�(i0; a0)

�

X
s�o+1

P a�os�os�o+1maxa0

Qt(i0; a0)�Q�(i0; a0)

�
max

i0

�
max
a0

Qt(i0; a0)�Q�(i0; a0)

�
�
max

j;v
kQt(j; v)�Q�(j; v)k : (3.16)

Given the above, Tia(�) is a contraction mapping with respect to the sup norm, which concludes

the proof.

3.3.2 Action Delays

In [18], it has been shown that the e¤ects of observation and action delays on the structure of the

equivalent MDP without delays are additive, such that the DDMDP < S;A; PA; g; o; ac; c > is

reducible to the MDP < Io+ac; A; PA; go+ac >. Given the system state and the action issued by

the agent, the additional information relevant for the subsequent decision making comprises of

the actions issued since the time of the most recently observed state. Utilizing such information,

the distribution of system states sac, at which action a will take e¤ect, can be evaluated. Thus,

the state is given by i = (a�o�ac; :::; a�o�1; s�o; a�o; :::; a�1) : Following similar rationale to that

30

which has led to (3.14), the Q-Learning algorithm can be formulated as:

Qt+1(i; a) = (1� �ia(t))Qt(i; a) + �ia(t)[rt(i; a) +
max
a0
Qt(i

0; a0)]: (3.17)

The di¤erence between the two cases lies in the reward signal rt(i; a). In the case of action

delays, the action a takes e¤ect not at state s, but rather at state sac, since it is delayed by ac

stages. Consequently, we may write

rt(i; a) = rt (sac; aji)

= rt (sac; aja�o�ac; :::; a�o�1; s�o; a�o; :::; a�1) : (3.18)

Notice that a�o�ac takes e¤ect at state s�o, and so forth. The distribution of state sac is

Prfsacjig =
�
Pa�o�acPa�o�ac+1 :::Pa�1

�
s�osac

; (3.19)

re�ecting on the ac+o�1 step transition probability from state s�o to state sac. The expected

reward is given by

E (rt (i; a)) = g(i; a)

=
X
sac

�
Pa�o�acPa�o�ac+1 :::Pa�1

�
s�osac

� g (sac; a) : (3.20)

Likewise, the subsequent state is i0 = (a�o�ac+1; :::; a�o�1; s�o+1; a�o; :::; a) ; which leads to the

transition probability

Prfi0jig = Prfs�o+1js�o; a�o�ag = P a�o�acs�os�o+1 : (3.21)

The discounted expected value of the subsequent state is

E

�

max

a0
Qt(i

0; a0)

�
= (3.22)

8<:X
s�o+1

P a�o�acs�os�o+1 �maxQt
a0

�
a�o�ac+1; :::; a�o�1; s�o+1; a�o; :::; a

0�9=; :

31

We formulate Tia(Q) as:

Ti;a (Q) = g (i; a) +

8<:X
s�o+1

Prfs�o+1js�o; a�og �max
a0
Q�(i0; a0)

9=;
=

X
sac

�
Pa�o�acPa�o�ac+1 :::Pa�1

�
s�osac

� g (sac; a)

+

8<:X
s�o+1

P a�o�acs�os�o+1 �maxQt
a0

�
a�o�ac+1; :::; a�o�1; s�o+1; a�o; :::; a

0�9=; :(3.23)
Theorem 3 For a Q-Learning algorithm with constant observation delay o and constant action

delay ac; Qt(i; a) converges to Tia(Q) in (3.23) with probability 1, for every i and a, given that

the two assumptions in Theorem 2 are satis�ed.

Proof. Here Tia(�) is almost identical to that referred to in the case of no action delays,

with the exception of subscript di¤erences for the state and action. Substituting o with o+a, it

can be easily shown that Tia(�) is a contraction mapping with regard to the sup norm, proving

that Q-Learning with observation delays and action delays converge similarly.

3.4 Random Delays

3.4.1 No Action Delays

We next discuss stochastic delayed MDPs (SDMDPs) < S;A; PA; g; O; 0; C;>, with the random

variables O denoting observation delays and C denoting the delay in collecting rewards. Let the

current observation delay be de�ned as o 2 O, where the latter denotes the sample space of O.

Let the observation delay at the subsequent stage be o0 2 O. We assume that for all time steps

t; it is possible to observe state st+1 only after state st has been observed. In another words,

the observation delay at the current stage is always less or equal to that of the following stage,

i.e. Prfo � o0g = 1. We also de�ne an upper bound on the observation delay of omax; such

that PrfO � omaxg = 1. When this upper bound is reached, it is assumed that the decision-

making process freezes in the sense that it takes no actions until the most recent system state

is observed. During this time period no new costs are induced since no actions are taken.

However, although the underlying system does not make any new state transitions during that

32

time period, the agent does continue to observe the previous system state transitions. This is

a plausible assumption in the sense that making decisions with very old state information is

highly undesirable. Moreover, it keeps the state vector dimension from increasing to in�nity

[18].

The state observed by the agent in this case is i = (s�o; a�o; :::a�1): It should be noted

that here o is a possible value of the random variable O: The subsequent state of the agent, i0,

can take two values. If o < o0, no new state is observed, therefore i0o<o0 = (s�o; a�o; :::a).

However, if o = o0, the observation delays at the two stages are identical, which means

that the most recently observed state at the subsequent step will shift to s�o+1, yielding

i0o=o0 = (s�o+1; a�o+1; :::; a) :So, if O is geometrically distributed with parameter p conditioned

on Prfo � o0g = 1, it is easy to show that Prfo < o0g = 1 � p and Prfo = o0g = p. Hence,

for a given state i = (s�o; a�o; :::; a�1) and action a, the Q-Learning algorithm with random

observation delays o 2 O can be formulated, similarly to (3.14), as

Qt+1(i; a) = (1� �ia(t))Qt(i; a) + �ia(t)[rt(i; a) +
max
a0
Qt(i

0; a0)];

where i0 is the subsequent state i0o<o0 = (s�o; a�o; :::a) or i0o=o0 = (s�o+1; a�o+1; :::; a) : The

expected reward for rt(i; a) is

E (rt(i; a)) = g (i; a) =
X
s

�
Pa�oPa�o+1 :::Pa�1

�
s�os
� g(s; a): (3.24)

The expected value of the subsequent state
 max
a0
Qt(i

0; a0) is

E

�

max

a0
Qt
�
i0; a0

��
=

�
P (o < o0)E

�
max
a0
Qt
�
i0o<o0 ; a

0��+
P (o = o0)E

�
max
a0
Qt
�
i0o=o0 ; a

0���
=

�
P (o < o0)max

a0
Qt
�
i0o<o0 ; a

0�

33

+P (o = o0)
P
io=o0

Prfio=o0 jigmax
a0
Qt(i

0
o=o0 ; a

0)

)

=

�
P (o < o0)max

a0
Qt
�
s�o; a�o; :::a

0� (3.25)

+P (o = o0)
P
s�o+1

P a�os�os�o+1maxa0
Qt(s�o+1; a�o+1; :::; a

0)

)
;

and the optimal value is

Ti;a (Q) =
X
s

�
Pa�oPa�o+1 :::Pa�1

�
s�os
� g (s; a)

+
P
�
o < o0

�
max
a0
Q�
�
s�o; a�o; :::a

0�+
P
�
o = o0

� P
s�o+1

P a�os�os�o+1maxa0
Q�(s�o+1; a�o+1; :::; a

0): (3.26)

Theorem 4 For a Q-Learning algorithm with random observation delay O; Qt(i; a) converges

to Tia(Q) in (3.26) with probability 1, for every i and a, and possible observation delay o 2 O,

given that the two assumptions in Theorem 2 are satis�ed.

Proof. Letting

Ti;a(Qt) = g(i; a) +

�
P (o < o0)max

a0
Qt(io<o0 ; a

0)

+P
�
o = o0

� X
s�o+1

P a�os�os�o+1maxa0
Qt(i

0
o=o0 ; a

0)

9=; ; (3.27)

we show that Tia(�) is a contraction mapping,

kTia(Qt)� Tia(Q�)k =

g(i; a) +
E �maxa0 Qt(i0; a0)
�
� g(i; a)�
E

�
max
a0
Q�(i0; a0)

�

=
P (o < o0)

maxa0 Qt(io<o0 ; a0)�maxa0 Q�(io<o0 ; a0)

+
P �o = o0� �

X
s�o+1

P a�os�os�o+1maxa0
Qt(io=o0 ; a

0)�
X
s�o+1

P a�os�os�o+1maxa0
Q�(io=o0 ; a

0)

34

�
P (o < o0)max
a0

Qt �io<o0 ; a0��Q� �io<o0 ; a0�

+
P

�
o = o0

�
max
io=o0 ;a

0

Qt �io=o0 ; a0��Q� �io=o0 ; a0�

�

�
P (o < o0) + P

�
o = o0

�	
max
j;v
kQt(j; v)�Q�(j; v)k

�
max
j;v
kQt(j; v)�Q�(j; v)k : (3.28)

From the above, it follows that Tia(�) is a contraction mapping with regard to the sup-norm,

therefore, Q-Learning with random observation delays converges.

3.4.2 Action Delays

We de�ne the SDMDP with observation and action delays as the seven-tuple < S;A; PA;

g; O;AC;C >. For notation purposes, we let the current observation delay be denoted by

o, and label the action delay at stage �o as ac. That is, the action a�o�ac takes e¤ects when

the system state is s�o. Correspondingly, the observation delay at the subsequent stage is

o0. Likewise, we assume that observations are ordered, such that Pr(o � o0) = 1. Note that

o; o0 2 O and ac 2 AC are samples from the sample spaces of O and AC, respectively. The

objective of Q-Learning is to maximize the expected return for some future state since the

action is delayed. Intuitively, the distribution of possible future states, where a will take e¤ect,

can be inferred by the most recently observed state and all actions taken up to the previous

one. Therefore, the state of the agent is i = (a�o�ac; :::; a�o�1; s�o; a�o; :::; a�1). We denote the

future (uncertain) state by s: For a given action a, the expected instant reward is

E (rt(i; a)) = g (i; a) =
X
s

�
Pa�o�acPa�o�ac+1 :::Pa�1

�
s�os
� g (s; a) : (3.29)

Repeating the arguments stated above, the subsequent state depends on whether the next

observation s�o+1 is available or not. As such, the optimal value is given by

Ti;a (Q) =
X
s

�
Pa�o�acPa�o�ac+1 :::Pa�1

�
s�os
� g (s; a)

+
P
�
o < o0

�
max
a0
Q�
�
a�o�ac; :::; s�o; a�o:::a

0�
+P

�
o = o0

� P
s�o+1

P a�o�acs�os�o+1maxa0
Q�(a�o�ac+1; :::; s�o+1; a�o:::; a

0): (3.30)

35

Q�learning with Delays
1. Given:
(a) an ergodic MDP with state space S;observation delay space O;and bounded reward;
2. For t = 1 to 1 :
(a) Interact with POMDP:
1) given observation of state delayed by o; st�o, and the actions afterward
expanded state is it = fst�o; at�o; at�o; :::; at�1g:
4) take action at: at = �(it):
5) observe the reward rt+1;

(b) Update the Q-value if next delayed state st�o+1 is available
1) derive expand next state as it+1 = fst�o+1; at�o+1; :::; at�1; atg
2) update Q-table, � is the learning rate and
 discounting factor
Qt+1(it; at) = (1� �)Qt(it; at) + �[rt+1 +
max

a0
Qt(it+1; a

0)];

(c) it = it+1

Table 3.1: Q-Learning with delays.

Theorem 5 For a Q-Learning algorithm with random observation delay O and random action

delay AC; Qt(i; a) converges to Tia(Q) in (3.30) with probability 1, for every i and a and possible

observation and action delay pair (o 2 O; ac 2 AC), given that the two assumptions in Theorem

2 are satis�ed.

Proof. The proof can be easily obtained by following the same derivations as in Theorems

2 and 3.

3.5 Algorithm Outline for Q-Learning with Delays

The algorithm for Q�learning with delays is listed in Table 3, assume that the agent records

all its action history. Further, we only consider observation delays here because action delays

and observation delays are interchangeable 3.3.2

Form the algorithm in 3.1, the storage requirement of Q�learning on the augmented state

space i is increased exponentially with the upper bound of observation delay, maxfOg; which

determines the dimension of the state vectors. Further, the augmented space is much sparser,

resulting in a very slow convergence rate. Thus, tabular form Q�learning is not applicable in

the scenario. Next, we will explore function approximation and neurodynamic programming

techniques to solve RL problems with high dimensional or continuous state and action space.

36

Chapter 4

Scalable, Real-time NeuroDynamic

Programming (NDP)

4.1 Truncated Real-Time Recurrent Learning (TRTRL)

In this section, we present TRTRL - a resource-e¢ cient variant of RTRL. The notations used

here are identical to those in section 2.1.3. TRTRL aims to overcome the inherent scalability

limitations of RTRL while retaining its key performance attributes. It accomplishes this goal

by reducing the amount of resources required for each neuron. Let us begin with several key

de�nitions that would guide us through the discussion:

De�nition 6 Let Ij denote the set of nodes that have a direct link (and, hence, a unique

associated weight) to node j. We shall refer to this set as the ingress set of node j.

De�nition 7 Let Ej denote the set of nodes that node j has a link (and, hence, a unique

associated weight) to. We shall refer to this set as the egress set of node j:

It should be observed that a node can reside within both ingress and egress sets of another

node. Given that TRTRL limits the sensitivities of each neuron to the ingress and egress set,

we have the following slightly-revised de�nition for zj(t),

zj(t) =

8<: xj(t) if j 2 I

yj(t) if j 2 Ij
; (4.1)

37

where I denotes the set of external inputs. By the same token as RTRL, we have:

yk(t+ 1) = fk (sk (t)) ; (4.2)

where

sk(t) =
X

l2N[M
wklzl(t); (4.3)

and the error function:

J(t) =
1

2

X
k2outputs

[dk(t)� yk(t)]2 =
1

2

X
k2outputs

[ek(t)]
2 ; (4.4)

where dk(t) denotes the desired target value for output k at time t. Correspondingly, negative

gradient direction is:

� @J(t)

@wij(t)
=

X
k2outputs

ek(t)
@yk(t)

@wij
=

X
k2outputs

ek(t)p
k
ij(t); (4.5)

and the updating is given,

wij(t+ 1) = wij(t) + �
X

k2outputs
ek(t)p

k
ij(t):

However, in RTRL, the sensitivities are calculated as:

pkij(t+ 1) = f
0
k (sk (t))

"X
l2N
wklp

l
ij(t) + �ikzj(t)

#
: (4.6)

By localizing the information required by each neuron, the calculation of equation 4.6 is con-

structed of three main parts. First, for all nodes that are not in the output set, the egress

sensitivity values for node j are calculated such that j = k thereby yielding the following

reduced expression:

pjij(t+ 1) = f
0
j (sj (t))

�
wjip

i
ij(t) + �ijyj(t)

�
: (4.7)

Notice that the summation from equation 4.6 drops out because plik = 0 unless l = i. The

sensitivities pertaining to the ingress set for node j are calculated where i = k and can be

38

ii

Figure 4-1: The sensitive weights of the ith node.

expressed as

piij(t+ 1) = f
0
i (si (t))

h
wijp

j
ij(t) + zj(t)

i
: (4.8)

From the above two expressions it becomes evident that the aggregate computational load

for each neuron is in the order of 2N . Fig 4-1 shows the sensitive weights of the ith node,

the weights between the ith node and its ingress and egress nodes. The full calculation of

equation 4.6 is performed for input, bias and output units. Furthermore, the network remains

fully recurrent in the sense that all neurons are connected (via unique weights) to all other

neurons. The only di¤erence between TRTRL and RTRL, in this context, is that neurons are

limited in the sensitivities. To that end, TRTRL is completely local because neurons are no-

longer required to fetch information that may be located at a remote part of the network. If

the network is implemented in hardware, localizing the memory access is key to guaranteeing

high-speed of execution.

In order to complete the description of TRTRL, we refer to the weight update rule given

in (4.6) and (4.5). For the output neurons, a non-zero sensitivity element must exist in order

to provide the performance gradient required by the weight update rule. To comply with this

requirement, a direct link is added from each output neuron to each of the N neurons in the

network. Therefore, each output neuron, o, computes N2 sensitivity updates (one for each

weight in the network) by performing the following:

poij(t+ 1) = f
0
o (so (t))

h
woip

i
ij(t) + wojp

j
ij(t) + �iozj(t)

i
: (4.9)

39

The recursive calculation of sensitivity elements for output neurons is reduced to the two

left-most terms in the expression above since only two neurons (i and j) are sensitive to wij :

This yields an overall computational complexity of O(KN2), where K denotes the number of

output neurons in the network. Moreover, storage complexity is O(N2).

4.1.1 SMD for TRTRL

In this section, we �rst review the stochastic meta-descent (SMD) algorithm, �rst introduced

in [29]. As an alternative to utilizing small, identical constant learning rates for all network

weight updates, SMD employs an independent learning rate for each weight. Accordingly, the

weight update rule is given by

wij(t+ 1) = wij(t) + �ij(t)�ij(t); (4.10)

where �ij(t) is the learning rate for weight wij at time t: Moreover, the local learning rates are

independently adapted by exponentiated gradient descent. In this way, they can cover a wide

dynamic range while remaining strictly positive [30]. Accordingly, the following learning rate

update rule is used:

ln�ij(t) = ln�ij(t� 1)� �
@J(t)

@ ln�ij
; (4.11)

where � is a global meta-learning rate. Using the chain rule, the above can be rewritten as

ln�ij(t) = ln�ij(t� 1)� �
@J(t)

@wij(t)

@wij(t)

@ ln�ij
(4.12)

= ln�ij(t� 1) + ��ij(t)vij(t)

where

vij(t) =
@wij(t)

@ ln�ij
: (4.13)

This approach rests on the assumption that each element of � a¤ects J only through the

corresponding element of w: To avoid an expensive exponentiation for each weight update, eq.

(4.12) is further simpli�ed by exploiting the linearization e� = 1 + �, valid for small j�j ; to

yield

�ij(t) = �ij(t� 1)max (�; 1 + ��ij(t)vij(t)) ; (4.14)

40

where � (typically around 0.5) is a safeguard factor against unreasonably small, or negative,

values. Meta-level gradient descent remains stable as long as �ij(t)vij(t);8 i; j does not stray

away from unity. Next, vij is expressed as a gradient trace that measures the long-term impact

of a change in a local learning rate to its corresponding weight. Accordingly, the SMD algorithm

de�nes vij as an exponential average of the e¤ect of all past learning rates on the new weight

values, such that

vij(t+ 1) =

1X
k=0

�k
@wij(t+ 1)

@ ln�ij(t� k)
; (4.15)

where the coe¢ cient 0 < � < 1 determines the time scale over which long-term dependencies

are taken into account. Eq. (4.15) can be e¤ectively approximated to yield the following:

vij(t+ 1) = �vij(t) + �ij(t)
�
�ij(t)� � (Htv(t))ij

�
; (4.16)

where vij(0) = 0;8i; j and Ht denotes the instantaneous Hessian (the matrix of second deriv-

atives @2J=@wijwkl of the error J with respect to each pair of weights) at time t: The two

equations (4.14) and (4.16) complete the updating of the learning rates �ij for each wij :

The objective of the TRTRL algorithm, which is essentially an online optimization tech-

nique, is to minimize a global error function, J , such that the network�s future outputs will be

closer to their designated targets. What makes TRTRL and its variants unique is that they are

online schemes, whereby each time step an error is provided, based on which the network para-

meters (i.e. weights) are updated. As such, TRTRL is a stochastic gradient based method that

aims to optimize the network�s performance by utilizing instantaneous gradient information.

Network weights are updated iteratively along the negative gradient direction,

wij(t+ 1) = wij(t) + ��ij(t); (4.17)

where

�ij(t) = �
@J(t)

@wij
; (4.18)

and � is the learning rate parameter. In practice, the learning rate � is set to a small constant

value in order to guarantee convergence of the training algorithm and avoid oscillations in a

direction where the error function is steep. However, this approach considerably slows down

41

training since, in general, a small learning rate may not be appropriate for all portions of the

error surface [31]. To address this issue, stochastic meta-descent (SMD)[29] [32] applies an

adjustable learning rate for every connection (weight) in the network, in an attempt to use not

only the gradient but also the second derivative of the error function as means of accelerating

the learning process.

In applying SMD to TRTRL, the primary task is to derive an e¢ cient algorithm for obtaining

Htvt. At �rst glance, this might suggest a computationally heavy process. Fortunately this

is not the case, since there are very e¢ cient indirect methods for computing the product of

the Hessian with an arbitrary vector [33] [34]. To prevent negative eigenvalues from causing

(4.14) to diverge, SMD uses an extended Gauss-Newton approximation that also admits a fast

matrix-vector product. Pearlmutter [33] presented an exact and numerically stable procedure

to compute Htvt with a computational complexity of O(n) and no need to explicitly calculate or

store the matrix Ht. We begin by reviewing this technique. It has been show that the product

of a Hessian H with any arbitrary vector, v, can be computed as

Hv = Rvfrwg =
@

@r
r(w+rv) jr=0 (4.19)

where Rvf�g is a di¤erential operator and r is a real value. rw is the gradient of the optimized

function with respect to the adjustable parameters w. rv is considered a small perturbation

to rw in the direction of v: In the context of neural networks, rw is the gradient of the error

function to the weights and v is the gradient trace de�ned in eq (4.13). Applying the Rvf�g

operator to TRTRL, we obtain

� (Htv(t))ij = Rv
�
�rwij

	
(4.20)

= Rv f�ij(t)g

= Rv

�
�@J(t)
@wij

�
= Rv

(X
o�output

eo(t)p
o
ij(t)

)

42

=
X

o�output

�
eo(t)Rv

�
poij(t)

	
+

Rv feo(t)g poij(t)
�

=
X

o�output

�
eo(t)Rv

�
poij(t)

	
�

Rv fyo(t)g poij(t)
�

Next, we need to calculate Rv fyo(t)g and Rv
n
poij(t)

o
. From the Eq.(4.3), we note that

Rv fso(t)g =
P
l�U[I

vol(t)zl(t); (4.21)

such that and from Eq.(4.2),

Rv fyo(t)g = f 0(so(t))Rv fso(t)g : (4.22)

By the same token and Eq.(4.9),

Rv
�
poij(t)

	
= f 00 (so(t))Rv fso(t)g

�
h
woip

i
ij(t) + wojp

j
ij(t) + �iozj(t)

i
+f 0(so(t))

h
voip

i
ij(t) + vojp

j
ij(t)

i
(4.23)

Note that the computation of Htvt only incurs calculations in the output neurons thus adds

only a little to the overall computations. It should also be noted that the calculation of Htvt

can be thought of as a concurrent and adjoint process to the gradient calculation, with a

similar computational complexity of O(KN2); where K denotes the number of output neurons.

Moreover, the storage requirements are still O(N2).

Adaptation of the Global Meta-learning Rate �

The original SMD technique does not consider any adaptation of the global meta-learning rate

parameter, �:In fact, the latter is often viewed as the "learning rate of the learning rate", with

typical values in the order of 0.1. To ensure faster convergence and stability of the algorithm as

a whole, we introduce an adaptive global meta-learning rate by the same heuristic techniques

43

of SuperSAB [34] [35]: We increase the value of � if a positive correlation between successive

gradients of the error function with respect to learning rate is observed, otherwise � is decreased.

Let ' be the negative gradient of the error function with respect to the exponentiated learning

rate such that

'ij(t) = �
@J(t)

@ ln�ij
= �ij(t)vij(t): (4.24)

Accordingly, �ij(t) is updated in the following manner:

�ij(t) = �ij(t� 1)
�
1 + �'ij(t)'ij(t� 1)

�
; (4.25)

where � = :05 is a small positive constant. Moreover, �ij is bounded by [�min = 0:01; �max = 5]

in order to ensure stability and smoother learning.

4.1.2 Discussion on Storage and Computational Complexity

Primary bene�ts of TRTRL, from an implementation perspective, are the substantial reductions

in computation complexity and storage requirements. Computation time is dominated by the

calculation of the sensitivity elements. While in the original RTRL scheme, each neuron required

to perform O(N3) �oating-point operations (�ops), TRTRL requires only O(N): Note that SMD

necessitates approximately three times the �ops involved in regular gradient computations. This

results in an overall (network-level) computational complexity of O(N2), instead of O(N4) that

characterizes RTRL.

A similar reduction in resources is observed in the storage requirements of TRTRL. All N3

elements of the sensitivity matrix are required in RTRL, while TRTRL only operates on 2N

sensitivities per neuron. As such, the overall storage requirement drops from O(N3) to O(N2).

It should be noted that, as opposed to RTRL, TRTRL is a highly localized algorithm. This

contributes to the more e¤ective implementation prospect of the scheme in hardware. Moreover,

it is interesting to note that although this chapter addresses the case of fully-connected networks,

the TRTRL formalism is not restricted to such cases. In fact, assuming that each node is only

connected toM other nodes, the computational complexity becomes O(KMN) while storage is

reduced to O(MN). The only constraint imposed in such cases is that each node have a direct

link to the output neurons (as means of propagating error information), as dictated by (4.9).

44

4.1.3 Performance Analysis

We performed a comparison between the RTRL, TRTRL, TRTRL with SMD (TRTRL-SMD)

algorithms for two commonly employed testbenches that require the network to capture tem-

poral dependencies: frequency doubling and chaotic time series prediction. In both cases,

information that arrives at a given time has strong impact on the value of outputs at subse-

quent time steps. In essence, it is a measure of the meaningfulness of neuron activations (which

are the "soft" state of the network) in order to successfully accomplish the tasks.

Frequency Doubler

The �rst task chosen was the frequency doubler system. For this task, the network was required

to produce a sinusoidal signal that has twice the frequency of the signal applied at its input.

The latter is a sinusoid with a 16-sample period while the desired output signal is a sinusoid

with an 8-sample period. This is a suitable basic task for the network as the input to output

mapping is nonlinear and requires memory.

For RTRL, TRTRL and TRTRL-SMD, the network consisted of a single hidden layer with

15 fully recurrent neurons, one bias input neuron whose (constant) value is 1 and a single linear

output neuron. The same set of random initial weights was applied to the three networks each

time they were trained. Moreover, an initial learning rate of �ij(0) = 0:01;8 i; j applied to

all three algorithms, with TRTRL-SMD gradually adapting its learning rate to accelerate the

learning process. The TRTRL-SMD algorithm parameters were con�gured with the following

initial values � = 0:5; � = 0:95; �ij(0) = 0:1, where �ij 2 [0:01; 5]; and � = 0:05.

Figure 4-2 below depicts the average learning curves for the three algorithms over 20 runs.

While TRTRL converges a little slower than RTRL, SMD improves the learning rate of TRTRL

to a level that surpasses the performance of RTRL. It further appears that, as the iteration

count increases, the performance advantage of TRTRL-SMD also increases. This serves as a

basic indication that, despite the partial sensitivities inherent to TRTRL, the gradient-based

information propagated through the weights and activations of the network is su¢ cient to

provide meaningful modeling capabilities.

45

0 200 400 600 800 1000
10­4

10­3

10­2

10­1

100

Iterations

M
ea

n
S

qu
ar

ed
 E

rro
r

TRTRL­SMD
RTRL
TRTRL

Figure 4-2: Average learning curves for the frequency doubler testbench, comparing a 15-neuron
fully-recurrent network running RTRL, TRTRL and TRTRL/SMD.

Chaotic Time Series Prediction

The next task chosen was chaotic time series prediction, whereby the networks are required

to predict future values of the Mackey-Glass (MG) [36] [37] chaotic series, which has been

extensively used as a benchmark. The MG series is based on the time-delayed di¤erential

equations,
@x(t)

@t
= �0:1x(t) + 0:2x(t� �)

1 + x10(t� �) (4.26)

To obtain values at integer time points, the fourth-order Runge-Kutta method was used to �nd

the numerical solution to the above MG equation. Here, we assume that the time step is 1,

x(0) = 0:1; � = 17 and x(t) = 0 for t = 0:

The task is to predict the value of x(t + 30) given the current input and internal state

representation. The chaotic time series prediction task was chosen because it is signi�cantly

more di¢ cult for the networks to solve than the frequency doubler. The network topology was

identical to the one used for the frequency doubler task. The three networks were constructed

using 25 fully recurrent neurons, one bias input neuron whose (constant) value is 1 and a single

linear output neuron. The same set of random initial weights was used for each network during

46

0 500 1000 1500 2000
10­3

10­2

10­1

100

Iterations

M
ea

n
S

qu
ar

ed
 E

rro
r

TRTRL­SMD
RTRL
TRTRL

Figure 4-3: Learning curves for the chaotic time series prediction task, applied to a 25-neuron
network running TRTRL-SMD, RTRL and TRTRL

every training run. The same settings of parameters for the three algorithm are used in this

test as in the frequency doubler testbench.

Figure 4-3 illustrates the average learning curves for the three algorithm over 20 runs. This

simulation task proved di¢ cult for both RTRL and TRTRL as the error did not drop below

10�2, with RTRL demonstrating a slight advantage over TRTRL. In contrast, TRTRL-SMD

has a clearly higher convergence rate, and higher degree of accuracy. It is the tendency of

SMD to e¤ectively adapt the step size in narrow error hyper-surfaces that is attributed the

substantial improvement in performance on this test case.

4.2 Clustered TRTRL

In order to improve the TRTRL algorithm for hardware scalability, the number of connections

between neurons should be further reduced. Following a similar approach to that �rst discussed

in [12], we consider the formation of clusters of neurons, where neurons are connected only to

the neurons in their cluster. As a result, with the exception of border-neurons, sensitivity is

restricted to neurons in the same cluster. This implies that each hidden layer node i only

communicates with N=B other nodes, where B is the number of clusters. The rest of the

47

Input

Output

Input

Output

Figure 4-4: A diagram of 4 TRTRL clusters with 8 neurons in each. The shared neuron at the
center is the output neuron.

architecture in this approach remains the same as before. In particular, all nodes receive input

patterns from the input layer and all nodes have a link to the output layer. It should be noted

that there must be some connectivity between clusters, de�ned as inter-cluster connectivity,

thus some neurons within each cluster are connected to other neurons in other clusters by

means of a direct link. A diagram of a cluster structure is illustrated in Figure 4-4.

4.2.1 Performance Comparison of Clustered and Nonclustered TRTRL

The benchmark used here is an electricity demand prediction task. The data set comprises of

15,240 data point, each of which is a 15 minutes averaged value of power demand in the full

year 1997. The objective is to predict the power demand in 8 hours. The data is normalized

before entering the neural networks. The clustered TRTRL consists of 4 clusters with 8 neurons

in each cluster and a single shared output neuron. The nonclustered TRTRL has 25 neurons.

The initial learning rate is set to 0:01 for both networks and initial weights are random.

Figure 4-5 shows the average results for 50 independent test. As one would expect, the

clustered TRTRL learns slower initially, due to the reduced connectivity, but it eventually

reaches the same accuracy as with nonclustered TRTRL. Note that more neurons are needed

for clustered TRTRL to achieve the same performance as nonclustered TRTRL, however, the

extra neurons are well justi�ed because the algorithm is more localized and the computational

48

2000 4000 6000 8000 10000 12000 14000
10­3

10­2

10­1

100

101

Iteration count

M
S

E
 (t

ar
ge

t­o
ut

pu
t)

clustered TRTRL
nonclustered TRTRL

Figure 4-5: Comparison of clustered and nonclustered TRTRL

load is reduced.

4.3 Applying TRTRL RNNs in Solving POMDP

4.3.1 Direct-Policy Approximate DP with RTRL-RNN

In this section, we introduce RNNPOMDP, an online stochastic gradient learning control framework,

which utilizes a recurrent neural network for Q-function approximation. The controller is

constructed of a fully-connected RNN with one output neuron that predicts the state-action

value, based on which the softmax algorithm [38] is used to determine the actions. The goal is

to learn a stochastic control scheme that yields a near-optimal policy. All the RNN nodes use

sigmoid activation function with the exception of the output node which has a linear activation

function. We apply Q-learning and use the TRTRL-SMD algorithm to train the RNN. To that

end, the RNN is trained with reference to the temporal di¤erence error,

�t = rt +
max
i
fQ(#t; ai)g �Q(#t�1; at�1); (4.27)

49

RNN Q�learning with softmax action selection
1. Given:
(a) an ergodic POMDP with observation space �;
action space A; and bounded reward;

(b) an RNN with initial weights w0 and function
mapping observation-action pair to real value
f : ��A! R

2. For t = 1 to 1 :
(a) Interact with POMDP:
1) observe #t 2 �; evaluate all actions ai 2 A(#t)
via the RNN via Q(#t; ai) = f(�t; ai; wt);

2) calculate the probability of taking each action in #t
using softmax: Prfai in #tg = eQ(#t;ai)=�P

i e
Q(#t;ai)=�

;

3) observe the reward rt+1;
(b) Update the activations (i.e. internal states) and
weights of the RNN:
1) input the current observation-action pair (#t; at) to RNN;
2) update prior time step weights and sensitivities,
based on (#t�1; at�1);and (4.10), with
temporal-di¤erence error de�ned as
�t = rt +maxifQ(#t; ai)g �Q(#t�1; at�1);

Table 4.1: Q-function approximation based POMDP learning using the TRTRL-SMD algo-
rithm.

where #t is the observation, ai are within the set of possible actions, rt denotes the single-step

reward and
 is the discounting factor set to 0.8. For each step, the RNN is used to evaluate

the Q-function for all possible actions, followed by softmax action selection. Since the neural

network has state (by means of activations), previous activations and weights are stored and

updated during the subsequent time step, upon evaluation of the temporal di¤erence error. The

algorithm is given in Table 4.1.

Simple Three-State POMDP

We �rst consider a simple 3-state POMDP, as used by Baxter et al. and Schraudolph et al. [38].

The RNN consisted of 5 internal neurons and one output neuron. The observation for each state

is a vector like (6=18; 12=18): Of the two possible transitions from each state, the preferred one

occurs with 80% probability, the other with 20% as show in Fig (4-6). The preferred transition

is determined by the action of a simple probabilistic adaptive controller that receives two state-

50

6/18
12/18

5/18
5/18

12/18
6/18

r = 0 r = 0 r = 1

6/18
12/18

5/18
5/18

12/18
6/18

r = 0 r = 0 r = 1

Figure 4-6: Baxter et al�s simple 3-state POMDP. States are labelled with their observable
feature vectors and instantaneous reward r; arrows indicate the 80% likely transition for the
�rst (solid) resp: second (dashed) action.

dependent feature values as input, and is trained to maximize the expected average reward.

In this test, the free parameter for softmax algorithm was set to � = 0:5; for TRTRL-SMD,

the parameters were con�gured to the following initial values: �ij(0) = 0:01;8 i; j, � = 0:5; � =

0:95; �ij(0) = 0:1, �ij 2 [0:01; 0:5]; and � = 0:05. We collected data from 500 independent

runs with random seeds and initial conditions, and compared the convergence rates with the

ones obtained for SMDPOMDP [38], which is a feed-forward neural network based approach. The

comparison is shown in Fig 4-7. Both algorithms converge asymptotically to the optimal average

reward (R = 0:8), with the RNNPOMDP algorithm converging faster in terms of process steps.

This is consistent with the fact that RNNs have stronger approximation capabilities and faster

convergence rate when compared to feed-forward networks.

Modi�ed Three-State POMDP

The �rst test was a simple three-state POMDP with the property that greedy maximization

of instantaneous reward leads to the optimal policy. Schraudolph et al. [38] introduced a

more challenging problem which assigns to each state deceptive instantaneous reward. In the

modi�ed POMDP 4-8 , the highest reward state can only be reached through an intermediate

state with a negative reward. The state features (observations) were also modi�ed to create

an ill-conditioned input to the controller. For this test, we used a 10-neuron RNN with the

same setting as stated above, and train the network according to the algorithm described

in table 4. Fig 4-9 illustrates that while SMDPOMDP reaches the optimal performance after

approximately 106 iterations, RNNPOMDP converged to the optimal average reward almost 10

51

Figure 4-7: Comparison of regular SMD and TRTRL-SMD applied in simple 3-state POMDP

6
12/18

5
5/18

12
6/18

r = 1 r = ­1 r = 8

6
12/18

5
5/18

12
6/18

r = 1 r = ­1 r = 8

Figure 4-8: Schraudolph et al�s modi�ed 3-state POMDP

times faster. Moreover, the RNN trained with SMD also yielded considerable performance

improvement prior to converging to the optimal average reward.. This further supports the

notion that utilizing RNNs in this context results in better approximation of long-term rewards.

Four-State POMDP

While the translation of features to inferred states was indirect in the above test cases, it did

not constitute a true POMDP in the sense that observation-to-state is ambiguous. We therefore

studied a four-state POMDP, as depicted in Fig 4-10 . The two states on the left-hand side

have the same observable features but di¤erent preferred actions. When the agent visits any

of the two states on the right-hand side, it transitions to the states on the left-hand side (as

depicted in the �gure), regardless of the action taken. The observation is memory-dependent

52

Figure 4-9: Comparison of regular SMD and RNN-SMD applied in modi�ed 3-state POMDP

6
12/18

6
12/18

5
12/18

­5
­12/18

r = 0

r = 0 r = 8

r = 8

6
12/18

6
12/18

5
12/18

­5
­12/18

r = 0

r = 0 r = 8

r = 8

Figure 4-10: 4-state POMDP with identical observations for di¤erent states.

53

Figure 4-11: RNN-SMD applied in 4-state POMDP

in the sense that each state has a distinct preceding observations. The controller needs to

memorize preceding observations in order to determine the optimal action for each of the two

states. Hence, stateful function approximation, such that achieved by RNN, is mandatory. The

RNN in this case consisted of 15-neurons with the same initial setup as stated above. Fig

4-11 demonstrates the asymptotic convergence to the policy. It is worth mentioning that a

near-optimal policy is obtained after only 104 iterations.

54

Chapter 5

Consolidated Actor-Critic Model

Partially Observable Markov Decision Processes (POMDPs) characterize a broad range of real-

world problems in which an agent interacts with its environment without being provided with an

explicit state representation. In many practical scenarios identical observations may be provided

for di¤erent states, thereby requiring the agent to rely on memory to infer its state. An agent

in a path-searching problem (e.g. maze maneuvering) may receive identical observations for

several di¤erent positions (or states). In such cases, the agent must recall recent steps in order

to infer its precise position. Many problems of interest can be formulated as POMDPs, yet

the lack of e¢ cient algorithms results in the limited use of POMDPs in practice. In MDPs

the agent�s observation is equivalent to the environment�s state. Therefore, the solution for

MDPs is simply a mapping between observed states to actions. However, in a POMDP, such

a memoryless or perception-based policy will not su¢ ce, and thus the agent must construct an

internal state-based policy.

5.1 Actor-Critic Models for Solving POMDPs

By using recurrent neural networks as value function approximators in the RL framework,

an actor-critic learning architecture has been proposed in [39] to solve MDPs by means of

Neural Dynamic Programming (NDP). The objective of this on-line learning control scheme is

to optimize a desired performance measure by learning to choose appropriate control actions

through interaction with the environment. This structure includes two networks, actor and

55

critic as fundamental building blocks. The critic uses an approximation architecture to learn a

value function, which is then used to update the actor�s policy parameters in the direction of

performance improvement. In the case of solving POMDPs, the actor-critic model enables the

agent to e¤ectively address non-Markovian situations by relying on the agent�s internal memory

(state).

An agent with internal state can distinguish between di¤erent events in its past, and there-

fore can become sensitive to the non-Markovian dependencies that yield hidden states. When

we focus on neural network (NN) function approximators, this requirement may be realized by

networks with embedded context units, such as an Elman network or a Jordan network [14] [8].

These network use recurrent connections to infer state information as means of approximating

the value function. To address this need, studies such as [15] investigated an actor-critic archi-

tecture where both actor and critic are fully recurrent neural networks, and both trained with

RTRL. Moreover, in [40] another architecture is considered where the actor and critic modules

share hidden and context layer neurons. While the weights for the critic network are updated

using the Bellman error, updating the actor network is achieved via heuristic schemes based on

the reinforcement signal generated from the critic network.

Here we propose a consolidated actor-critic model (CACM) for solving POMDPs in continu-

ous state and continuous, multi-dimensional action spaces. The proposed design is biologically-

inspired in that the consolidated architecture may be closer to how the mammal cortex is built,

i.e. a single coherent module rather than two separate architectures, as in classical actor-critic

methods. Also, observing that both the actor and critic perform some form of modeling the

environment dynamics, consolidating them into one network e¢ ciently reduces the resource

requirements and computational complexity while retaining performance.

5.2 Related Work

In [40], actor-critic learning is implemented using a two-output single-hidden-layer Elman net-

work with a subset of hidden nodes used as the context units. This architecture shares the

hidden and context layers between "actor" and "critic" modules. Figure 5-1 depicts such an

architecture, in which there are two di¤erent output neurons. One output neuron is the so-

56

called "critic" node, producing the current estimated total reward-to-go, which re�ects on the

expected quality of performance. The second neuron is the "actor" node, generating the current

probability of choosing one of the actions, assuming that only two actions are allowed in each

state.

The critic receives external (primary) reinforcement from the environment and transforms

it into internal (heuristic) reinforcement for the actor. The weight update rule follows the usual

error minimization scheme used in supervised learning. Speci�cally, the critic is updated using

TD methods, while the actor is updated with the heuristic reinforcement signal translated by

the critic. In other words, for a given action a; if the Bellman error is r(t+1)+
J(t+1) > J(t)

(where
 is the discounting factor), this action is perceived as being good, and therefore that

action should be reinforced by having the probability of choosing it increased. Conversely, if

the reverse inequality holds, the action is undesired and thus should be inhibited.

This architecture is evolutionary in two aspects: �rst, it combines the actor network and

critic network, which may be closer to biological neural networks in the mammal brain than

the two separate network architecture as in classical actor-critic methods [40]. Second, in the

ordinary Elman-network, all hidden activations are fed back to the context layer. As the number

of hidden nodes increases, so does the number of context nodes. However, to capture historical

features, it may not be necessary to use the entire hidden layer as the context layer; only some

portion of the hidden layer can be used as the context layer, as illustrated in Figure 5-1.

However, the limitations of this method are: (1) it requires that an action must be a scalar

taking only two possible values, rendering it unpractical in the context of many real world

scenarios where the action set is much larger. Given that the output of the actor node is the

probability of choosing an action Pr(a), it is implied that the probability of choosing another

action is 1� Pr(a): Thus the output from the actor node would be confusing if more than two

actions are presented for each state; (2) because the actor is updated heuristically using the

internal reinforcement signal translated by the critic, the predictive error for the actor node is

not accurate and optimal in the backpropagation process, leading to slow convergence rate.

57

memory)(tJ

)(ts

memory

)Pr(a

)(tJ

Critic Node

Actor Node

memory)(tJ

)(ts

memory

)Pr(a

)(tJ

Critic Node

Actor Node

Figure 5-1: An actor-critic Elman network.

5.3 Motivation for the Consolidation of Actor and Critic Net-

works

To solve POMDPs, both the actor and critic networks must infer the actual system state from a

sequence of observations, resulting in duplicated e¤ort for the two networks. Hence, a primary

motivation for the CACM approach is to consolidate the two networks into one in order to

conserve the resources and computational load involved. As such, we extend the work of [40]

in several ways: �rst, the action space for each state can be high-dimensional and continuous.

Second, the embedded actor is updated in a strict backpropagation fashion, leading to faster

convergence toward the optimal policy.

5.4 The Consolidated Actor-Critic Model (CACM)

The CACM design attempts to simplify the architecture and computations involved in classical

actor-critic models, while retaining their convergence properties. At the core of the CACM is

an RNN, the functionality of which is two fold: �rst, it generates the policy (the action for

each individual state); second, it estimates the action value function (value of each state-action

pair). The inputs to the CACM are the state feature vector s(t) and the action a(t) generated

during the prior step (i.e. delayed by one time step); the outputs are the estimated cost-to-go

58

)(tJ

Consolidated
Actor Critic

Network

)(ta

)(ts

)1(+ta

1−z

)(tJ

Consolidated
Actor Critic

Network

Consolidated
Actor Critic

Network

)(ta

)(ts

)1(+ta

1−z 1−z

Figure 5-2: Consolidated Actor Critic Model

value J(t) for the state-action pair (s(t); a(t)), and the action selected for the subsequent state,

a(t+ 1), as illustrated in 5-2.

It should be noted that a(t + 1) is fed back to the network for evaluation during the next

time step. An obvious di¤erence between the CACM and classical actor-critic approaches is

that instead of generating the action a(t+1) using the state s(t+1), a(t+1) is generated based

on information regarding state and action at the proceeding step (s(t); a(t)). In this manner,

CACM abbreviates the policy generation process: it �rst predicts the next state based on the

current state and action, and then it maps the predicted state to an action.

5.5 CACM training with TRTRL

In this section, we study the application of TRTRL to the CACM framework employing a

fully-connected recurrent neural network. The learning algorithm we use here is TRTRL with

stochastic meta-descent, as described in the previous chapter. Figure 5-3 depicts the proposed

network structure.

At time t; the state action pairs (s(t); a(t)� �), (s(t); a(t)); (s(t); a(t)+ �) are evaluated and

compared, where � is a small positive value. The reinforcement signal is derived from �nding

the maximal of the three output values, J��(t); J(t) and J+�(t): For example, if J��(t) > J(t) >

J+�(t), a negative reinforcement signal is applied as update to the network. This leads to a

simpler yet e¢ cient updating scheme when incorporating TRTRL. The consolidated actor-critic

network provides two outputs: J(t) and a(t+1). J(t) is an approximation for R(t), the weighted

59

)(tJ ε−

ε+)(ta

)(tJ ε+

Consolidated
Actor Critic

Network
ε−)(ta

)(ts _

)1(+ta

1−z

)(ta

)(tJ

)(tJ ε−

ε+)(ta

)(tJ ε+

Consolidated
Actor Critic

Network
ε−)(ta

)(ts _

)1(+ta

1−z

)(ta

)(tJ

Figure 5-3: Consolidated Actor Critic with TRTRL

total future reward-to-go, which is given by

R(t) = r(t+ 1) +
r(t+ 2) + :::

=

1X
k=1

k�1r(t+ k);

where r(t+1) is the reward for the state action pair (s(t); a(t)) and
 is the discounting factor.

a(t+ 1) is the output control for the next state s(t+ 1).

The prediction error (i.e. Bellman error) is de�ned as

ec(t) = [r(t) + �J(t)]� J(t� 1);

and the objective function to be minimized is

Ec(t) =
1

2
e2c(t):

The action error is de�ned as

ea(t) = J(t)�R�:

Thus, we wish to minimize the following performance error measure:

Ea(t) =
1

2
e2a(t):

60

Let w denote the weight parameters in the CACM network. The CACM model can be

represented by [J; a] = nn(s; a; w), where nn denotes the consolidated actor-critic network. The

gradient trace for the action error is given by @Ea(t)
@a(t) : The update algorithm for the consolidated

network is a gradient-based adaptation given by

E(t) = Ec(t) +
@Ea(t)

@a(t)

w(t+ 1) = w(t) + �w(t);

�w(t) = l(t)

�
�@E(t)
@w(t)

�
;

where l(t) > 0 is the learning rate of the critic network at time t: It is noted here that the error

for the CACM network consists of the error from the critic node and gradient of the error from

the actor node.

5.5.1 The On-line Learning Algorithm

We next describe concrete implementation details of the CACM. A nonlinear multi-layer feed-

forward network is the basic network used for the CACM investigated. In this design, a single

hidden layer is utilized by the network. The general system diagram and relevant notations are

provided in �gure 5-4. As in the classic actor-critic method, the analysis has two components:

a forward path which generates the estimated action values and selected next action, and

a backward path that updates the parameters (weights) of the neural network. Consider a

CACM with one input layer, one hidden layer and one output layer. The activation function

of the neurons in input layer is linear, for the hidden layer is nonlinear 5.1 and for the �rst

output (J value estimation) it is linear while for the second output (next action) it is linear too.

Let the state, action and reward all be scalars. The network is illustrated in �gure 5-4. We

next de�ne the input to the consolidated network as u(t) = [a(t); s(t); y(t� 1)], where y(t�1)

is the output of the hidden layer during the previous time step. In the CACM network, the

output J(t) is of the form

J(t) =

NhX
i=1

w
(2)
ci (t)yi(t);

61

)(ta

)(ts

memory

)1(+ta

)(tJ

1−z

Critic

Actor

)()1(tw)()2(twa)(ta

)(ts

memory

)1(+ta

)(tJ

1−z

Critic

Actor

)()1(tw

)()2(twc

)(ta

)(ts

memory

)1(+ta

)(tJ

1−z 1−z

Critic

Actor

)()1(tw)()2(twa)(ta

)(ts

memory

)1(+ta

)(tJ

1−z 1−z

Critic

Actor

)()1(tw

)()2(twc

Figure 5-4: Neural Network Implementation of Consolidated Actor Critic Model

where Nh is the number of neurons in the hidden layer, yi(t) is the output of the ith node in

the hidden layer and wci denotes the weights between the ith node in the hidden layer and the

critic output node. Correspondingly, the action output, a(t+ 1), is of the form

a(t+ 1) =

NhX
i=1

w
(2)
ai (t)yi(t);

where w(2)ai represents the weights between the i
th node in the hidden layer and the actor output

node. Further, we compute yi(t) as

yi(t) =
1� e�xi(t)

1 + e�xi(t)
; i = 1; :::; Nh; (5.1)

xi(t) =

nX
j=1

w
(1)
ij (t)u(t); i = 1; :::; Nh

where n is the dimension of the input vector and w(1)ij (t) is the weights between the input and

hidden layers. Memory units are represented by yj(t� 1) in the expression above. By applying

the chain rule, we �rst backpropagate the action error,

@Ea(t)

@a(t)
=

NhX
i=1

@Ea(t)

@yi(t)

@yi(t)

@xi(t)

@xi(t)

@a(t)

62

The weight parameters are updated according to the following steps:

� �w(2)a (hidden to actor node):

�w
(2)
ia (t) = l(t)

"
�@Ea(t)
@a(t)

@a(t)

@w
(2)
ia (t)

#
;

@Ea(t)

@a(t)

@a(t)

@w
(2)
ia (t)

=

NhX
i=1

@Ea(t)

@yi(t)

@yi(t)

@xi(t)

@xi(t)

@a(t)

@a(t)

@w
(2)
ia (t)

=

NhX
i=1

@Ea(t)

@J(t)

@J(t)

@yi(t)

@yi(t)

@xi(t)

@xi(t)

@a(t)

@a(t)

@w
(2)
ia (t)

= ea(t)

NhX
i=1

w
(2)
ci (t)

�
1

2

�
1� y2i (t)

��
w
(1)
ia (t)yi(t)

!
;

where w(1)ia (t) is the weight between the action and i
th node in the hidden layer.

� �w(2)c (hidden to critic node):

�w
(2)
ic (t) = l(t)

"
� @Ec(t)

@w
(2)
ic (t)

#
;

@Ec(t)

@w
(2)
ic (t)

=
@Ec(t)

@J(t)

@J(t)

@w
(2)
ic (t)

= ec(t)yi(t):

� �w(1) (input to hidden layer):

�w
(1)
ij (t) = l(t)

"
� @E(t)

@w
(1)
ij (t)

#
;

@E(t)

@w
(1)
ij (t)

=
@Ec(t)

@w
(1)
ij (t)

+
@Ea(t)

@a(t)

@a(t)

@w
(1)
ij (t)

=

�
@Ec(t)

@J(t)

@J(t)

@yi(t)
+
@Ea(t)

@a(t)

@a(t)

@yi(t)

�
@yi(t)

@xi(t)

@xi(t)

@w
(1)
ij (t)

63

Pseudocode implementing CACM method
Initialize w arbitrarily
Repeat (for each trial)
Initialize network input as u(t) = [s(t) y(t� 1)]
Repeat (for each step t of the trial):
Feedback the action from previous step a(t)
Calculate estimated reward-to-go: J(t) = nn (u(t); a(t))
Choose the action for the next state: a(t+ 1) = nn (u(t); a(t))
Repeat (updating w):
ec(t) = [r(t) + �J(t)]� J(t� 1)
Ec(t) =

1
2e
2
c(t)

ea(t) = J(t)�R�
Ea(t) =

1
2e
2
a(t):

E(t) = Ec(t) +
@Ea(t)
@a(t)

�w(t) = l(t)
h
�@E(t)@w(t)

i
w(t+ 1) = w(t) + �w(t)

until maximum iteration number is reached
u(t) � u(t+ 1); J(t� 1) � J(t)
until s(t) is terminal
until maximal trial is reached

Table 5.1: Pseudocode implementing CACM method.

=

"
ec(t)w

(2)
ic (t) + ea(t)

NhX
i=1

w
(2)
ci (t)

�
1

2

�
1� y2i (t)

��
w
(1)
ia (t)

!
w
(2)
ia (t)

#

�
�
1

2

�
1� y2i (t)

��
uj(t)

Pseudocode for implementing the CACM method is summarized in the table 5.1.

5.6 Performance Evaluation

5.6.1 Cart-pole Balancing

The classic cart-pole balancing example is used to evaluate the CACM. This problem is often

used as an example of inherently unstable and dynamic systems to demonstrate both modern

and classic control techniques or reinforcement learning schemes, and is used here as a control

benchmark. As depicted in �gure 5-5, the cart�pole balancing problem is the problem of learning

how to balance an upright pole. The bottom of the pole is hinged to the left or right of a cart

64

Parameters used in cart-pole system
g �9:8 m=s2
mc 1:0 kg
m 0:1 kg
l 0:5 m
F force applied to the cart�s center in newtons

Table 5.2: Parameters used in cart-pole system.

that travels along a �nite-length track. The cart can only move in the horizontal direction,

while the pole can only rotate about the point at which it is attached; that is, each has only

one degree of freedom.

There are four state variables in the system: �, the angle of the pole in an upright position

(in degrees); x, the horizontal position of the cart�s center (in meters);
:
x, the velocity of the cart

(in m/s);
:
�, angular velocity (in degree/s). The only control action is f , which is the amount

of force (in N) applied to the cart to move it left or right; the range of f in this experiment is

[�1; 1]: The system fails when the pole falls past a certain angle (12 is used here) or when the

cart runs into the boundary of the track (the distance is 2.4 m from the center to each boundary

of the track). The system is modeled by the following nonlinear di¤erential equations:

::
�t =

g sin �t + cos �t

�
�Ft�ml

:
�
2

t sin �t+�csgn(
:
xt)

mc+m

�
� �p

:
�t

ml

l
h
4
3 �

m cos2 �t
mc+m

i

::
xt =

Ft +ml

�
:
�
2

l sin �t �
::
�t cos �t

�
� �csgn

� :
xt
�

mc +m

The parameters used in this experiment are summarized in Table 5.2.

The goal of the controller is to determine a sequence of forces that, when applied to the

cart, balance the pole so that it is kept upright. A control strategy was deemed successful if it

balanced a pole for 100 000 time steps.

We use the cart-pole balance testbench to evaluate our CACM with fully connected recurrent

neural network using both the TRTRL-SMD learning algorithm and a classic Elman network.

We compare the performance of the CACM with a standard a actor-critic scheme. For the

CACM/Elman implementation, a network consisting of one hidden layer with 24 nodes, 16 of

65

Figure 5-5: The cart-pole balancing system used [1].

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

100

101

102

103

104

105

Trials

S
te

ps
 b

ef
or

e
fa

lls
 d

ow
n

Learning Curve for CACM
Learning Curve for Actor Critic
Learning Curve for CACM­TRTRL

Figure 5-6: Comparison of learning performance between CACM (with Elman and with
TRTRL-SMD) and the classical actor-critic method.

66

which are fed back to the input as context units. For the classical actor-critic architecture,

the actor network is an Elman network consisting of one hidden layer with 16 neurons and

the critic network is also an Elman network with one hidden layer having 24 neurons. Figure

5-6 depicts the learning process, averaged over 20 runs, for both the CACM and actor-critic

methods. The x�axis denotes the number of trials before a successful balancing and y�axis

the number of steps in each trial before the pole falls down. The results clearly demonstrates

that by consolidating the actor and critic network, CACM achieves at least the same if not

better performance when compared to a separate actor-critic system. This could be easily

explained by the fact that redundant model learning has been avoided, thus improving the

learning rate. Moreover, we eliminated the neurons and weights from the actor network thus

e¤ectively conserving resources and computations.

67

Chapter 6

Summary of Contributions

This dissertation has focused on pragmatic approaches to e¤ectively scaling reinforcement learn-

ing based systems, in both tabular and function-approximation based frameworks. For the

latter, particular attention has been given to partially-observable problems, which characterize

many practical problems. Moreover, the di¤erent components contribute to the overall e¤ort

of facilitating hardware realization in next-generation RL systems. The following outlines the

key contributions made.

6.1 Convergence Proof of Q-Learning with Delays

In chapter 3, we have shown that Q-Learning can be applied to MDPs with observation, action

and cost delays. MDPs with delays can be treated as a partially observable MDPs, where

the agent has no instantaneous system state information and the actions it issues experience

delay, as is the case in many pragmatic applications. We have identi�ed optimal values for

such scenarios and proved respective convergence properties. The assertions made were based

on previous work which has shown that the optimal policy for an MDP with delays can be

computed by utilizing an equivalent MDP without delays. We have extend this prior work

by proving convergence of Q-Learning variants that pertain to MDPs for which the costs and

transition probabilities are unknown.

68

6.2 Truncated Real Time Recurrent Learning with Stochastic

Meta-Descent

In chapter 4, we presented TRTRL-SMD - a framework for substantially reducing the resource

requirements of learning in recurrent neural network, while retaining high-performance. The

method is based on limiting the sensitivities of neuron activations to weights associated with

either incoming or outgoing links, coupled with employing SMD - an e¢ cient stochastic gradient

descent method. Based on standard testbench cases, it is demonstrated through simulations

that the performance of TRTRL-SMD exceeds that of RTRL, while speed and storage require-

ments are signi�cantly reduced. Moreover, the clustered TRTRL is proposed to further reduce

the computation and storage while maintain the essential properties of RTRL. The comparison

graph shows that non-clustered TRTRL outperforms clustered TRTRL by a small number,

which can be eliminated by increasing the number of clusters or the number of neurons per

cluster in clustered TRTRL.

6.3 NeuroDynamic Programming with TRTRL

In chapter 4, we also presented a recurrent neural network based Q-learning POMDP framework.

An e¢ cient realization of the RNN yielded a scalable architecture, while training was improved

via the stochastic-meta descent technique. Simulation results applied to several POMDP test

cases clearly demonstrated the performance advantages of the proposed scheme, with respect

to both accuracy in estimating the average reward as well as convergence properties. As part of

this e¤ort, we have improved the core SMD technique by further adapting learning parameters

as a function of the data processed.

6.4 The Consolidated Actor-Critic Model

In chapter 5, we presented a novel recurrent neural network based consolidated actor-critic

model for solving complex POMDPs. The architecture recognizes the fact that the actor and

critic model both need to model the environment dynamics and thus propose a compact net-

work that overcomes the ine¢ ciency of standard actor-critic systems, yielding a more resource-

69

e¢ cient and lower-complexity solution. The cart-pole balance simulation clearly demonstrated

the performance and e¤ectiveness of the proposed scheme, with regards to both convergence

accuracy and speed.

6.5 Relevant Publications

The following is a list of publications pertaining to contributions made thus far, as described

in this proposal:

� Zhenzhen Liu and Itamar Elhannay, "A Consolidated Actor Critic Model for Solving

Large-Scale POMDPs," in preparation for submission.

� Zhenzhen Liu and Itamar Elhanany, "High-Speed Q-Learning Hardware Architecture

for Large Action Sets," IEEE Midwest Symposium on Circuits and Systems (MWSCAS),

2007.

� Zhenzhen Liu and Itamar Elhanany, A Fast and Scalable Recurrent Neural Network

based on Stochastic Meta-Descent," to appear in IEEE Transactions on Neural Networks.

� Zhenzhen Liu and Itamar Elhanany, "Fast and Scalable Recurrent Neural Network

Learning based on Stochastic Meta-Descent," the 26th American Control Conference

(ACC), New York City, July 11-13, 2007.

� Zhenzhen Liu and Itamar Elhanany, "A Scalable Model-Free Recurrent Neural Network

Framework for Solving POMDPs," 2007 IEEE International Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL), April 1-5, 2007.

� Zhenzhen Liu and Itamar Elhanany, "RL-MAC: A Reinforcement Learning based MAC

Protocol for Wireless Sensor Networks," the International Journal of Sensor Networks,

Vol.1, No.2, 2006.

� Zhenzhen Liu and Itamar Elhanany, "RL-MAC: A QoS-Aware Reinforcement Learning

based MAC Protocol for Wireless Sensor Networks," IEEE Conference on Networking,

Sensing and Control, Ft. Lauderdale, FL, April 23-25, 2006.

70

Bibliography

71

Bibliography

[1] S. Grant, �Modelling cognitive aspects of complex control tasks,�Proceedings of the IFIP

TC13 Third Interational Conference on Human-Computer Interaction, pp. 1017�1018,

1990.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge MA,

MIT Press, 1998.

[3] K. Murphy, �A survey of pomdp solution techniques,�K. Murphy. A survey of POMDP

solution techniques. Technical Report, U.C. Berkeley, 2000., 2000. [Online]. Available:

citeseer.ist.psu.edu/murphy00survey.html

[4] D. P. Bertsekas, Dynamic programming and optimal control, 3rd ed., 2007, vol. 2.

[5] C. J. Watkins, �Learning from delayed rewards,�PhD thesis, 1989.

[6] M. Jordan, �Serial order: A parallel distributed processing approach,� Institute for Cog-

nitive Science Report 8694. University of California, San Diego, 1986.

[7] J. L. Elman, �Finding structure in time,�Cognitive Science, no. 14, pp. 179�211, 1990.

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, �Learning internal representation by

error propagation,�in Parallel Distributed Processing: Explorations in the Microstructure

of Condition, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT Press,

Bradford Books, 1986, vol. 1, pp. 318�362.

[9] P. Werbos, �Backpropagation through time: what it does and how to do it,�Special issue

on neural networks, Proceedings of IEEE, vol. 78, pp. 1550�1560, October 1990.

72

[10] R. J. Williams and J. Peng, �An e¢ cient gradient-based algorithm for on-line training of

recurrent network trajectories,�Neural Computation, vol. 2, pp. 490�501, 1990.

[11] B. A. Pearlmutter, �Learning state space trajectories in recurrent neural networks,�Neural

Computation, vol. 1, pp. 263�269, 1989.

[12] D. Zipser, �A subgrouping strategy that reduces complexity and speeds up learning in

recurrent networks,�Neural Computation, no. 1, pp. 552�558, 1989.

[13] J. Si, A. G. Barto, W. B. Powell, and D. W. II, Handbook of learning and approximate

dynamic programming. Wiley-IEEE Press, August 2004.

[14] P. Werbos, �Approximate dynamic programming for real-time control and neural model-

ing,�Handbook of Intelligent Control, 1992.

[15] J. H. Schmidhuber, �Networks adjusting networks,� 1990. [Online]. Available:

citeseer.ist.psu.edu/schmidhuber90network.html

[16] L. Meeden, G. McGraw, and D. Blank, �Emergent control and planning

in an autonomous vehicle,� pp. 735�740, 1993. [Online]. Available: cite-

seer.ist.psu.edu/meeden93emergent.html

[17] L.-J. Lin and T. M. Mitchell, �Reinforcement learning with hidder states,�Proceedings of

the second international conference on From animals to animats 2 : simulation of adaptive

behavior: simulation of adaptive behavior, pp. 271 �280, 1993.

[18] K. Katsikopoulos and S. Engelbrecht, �Markov decision processes with delays and asyn-

chronous cost collection,� IEEE Transactions on Automatic Control, vol. 48, no. 4, pp.

568�574, 2003.

[19] E. Altman and P. Nain, �Closed-loop control with delayed information,�Perf. Eval. Rev.,

vol. 14, pp. 193�204, 1992.

[20] J. L. Bander and C. C. W. III, �Markov decision processes with noise-corrupted and delayed

state observations,�J. Opl. Res. Soc., vol. 50, pp. 660�668, 1999.

73

[21] P. Varaiya and J. Walrand, �On delayed sharing patterns,� IEEE Transactions on Auto-

matic Control, vol. 23, no. 3, pp. 443�445, 1978.

[22] K. Hsi and S. I. Marcus, �Decentralized control of �nite state markov processes,� IEEE

Transactions on Automatic Control, vol. AC-27, pp. 426�431, 1982.

[23] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. Belmont, MA: Athena

Scienti�c, 1996.

[24] C. J. C. H. Watkins and P. Dayan, �Q-learning,�Mach. Learn., vol. 8, pp. 279�292, 1992.

[25] V. Chinthalapati, N. Yadati, and R. Karumanchi, �Learning dynamic prices in multiseller

electronic retail markets with price sensitive customers, stochastic demands, and inventory

replenishments,�Systems, Man and Cybernetics, Part C, IEEE Transactions on, vol. 36,

no. 1, pp. 92�106, 2006.

[26] M. J. Er and C. Deng, �Online tuning of fuzzy inference systems using dynamic fuzzy

q-learning,�Systems, Man and Cybernetics, Part B, IEEE Transactions on, vol. 34, no. 3,

pp. 1478�1489, 2004.

[27] K.-S. Hwang, S.-W. Tan, and C.-C. Chen, �Cooperative strategy based on adaptive q-

learning for robot soccer systems,� IEEE Transactions on Fuzzy Systems, vol. 12, no. 4,

pp. 569�576, 2004.

[28] J. Tsitsiklis, �Asynchronous stochastic approximation and q-learning,� Mach. Learn.,

vol. 16, pp. 185�202, 1994.

[29] N. N. Schraudolph, �Local gain adaptation in stochastic gradient descent,� Tech. Rep.

IDSIA-09-99, Aug 1999.

[30] J. Kivinen and M. Warmuth, �Additive versus exponentiated gradient updates for linear

prediction,�Proc. 27th Annual ACM Symposium on Theory of Computing, pp. 209�218,

May 1995, new York, NY.

[31] S. E. Fahlman, �An empirical study of learning speed in back-propagation networks,�

Computer Science Technical Report, 1988.

74

[32] N. N. Schraudolph, J. Yu, and D. Aberdeen, �Fast online policy gradient learning with

SMD gain vector adaptation,�19th Annual Conference on Neural Information Processing

Systems, Dec 2005, vancouver, Canada.

[33] B. A. Pearlmutter, �Fast exact multiplication by the Hessian,�Neural Computation, vol. 6,

no. 1, pp. 147�160, 1994.

[34] G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis, �Improving the convergence of the

backpropagation algorithm using learning rate adaptation methods,�Neural Computation,

vol. 11, no. 7, pp. 1769�1796, 1999.

[35] T. tollenaere, �Supersab: fast adaptive backpropagation with good scaling properties,�

Neural Networks, vol. 3, no. 5, pp. 561�573, 1990.

[36] M. Mackey and L. Glass, �Oscillation and chaos in physiological control systems,�Science,

vol. 197, pp. 287�289, July 1977.

[37] R. C. III, �Predicting the mackey-glass timeseries with cascade-correlation learning,� in

D. Touretzky, G. Hinton and T. Sejnowski eds., Connectionist Models Summer School

Proceedings, 1990, pp. 117�123, carnegie Mellon University.

[38] N. Schraudolph, J. Yu, and D. Aberdeen, �Fast online policy gradient learning with

smd gain vector adaptation,� in Advances in Neural Information Processing Systems 18,

Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA: MIT Press, 2006, pp. 1185�

1192.

[39] W. B. P. Jennie Si, Andrew G. Barto and D. W. II, Handbook of Learning and Approximate

Dynamic Programming. Wiley Interscience, 2004.

[40] E. Mizutani and S. E. Dreyfus, �Totally model-free reinforcement learning by

actor-critic elman networks in non-markovian domains.� [Online]. Available: cite-

seer.ist.psu.edu/325130.html

75

Vita

Zhenzhen Liu was born in Taihe, Jiangxi, People�s Republic of China, on April 2nd, 1984. After

�nishing high school in 2000, she attended Nanjing University of Posts and Telecommunications,

Nanjing, P.R.China, where she received a Bachelor of Engineering degree in 2004. Between

August 2004 and December 2004, she worked as a software engineer in Amoi Electronic co.,

Ltd., Xiamen, P.R.China. In 2005, she came to study at the University of Tennessee, Knoxville,

United States. She received a Doctor of Philosophy degree in computer engineering in Fall

2007, from the department of Electrical Engineering and Computer Science at the University

of Tennessee, Knoxville.

76

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2007

	Hardware-Efficient Scalable Reinforcement Learning Systems
	Zhenzhen Liu
	Recommended Citation

	tmp.1455808732.pdf.ZeWAM

