18 research outputs found

    A Hybrid Approach Towards Content Boosted Recommender System

    Get PDF
    With the exponential increase in data over the web the users face the problem in retrieving relevant knowledge. For eliminating this problem recommenders are used. They are based on one of the traditional recommendation approaches – content based approach and collaborative based approach. Recommendation can be provided to users using past user activities with help of data mining concepts and the market trend can be merged with it to provide optimized results from recommender. The user profile similarity for personalization, the hit based approach for new movies, history based approach all tackle one problem or the other faced by the traditional recommender systems. The paper proposes a new hybrid approach which combines the effect and positive functionality of all the above methods and tries to tackle major problems faced by recommender systems. The approach can be used to develop web based applications in other domains as well. The approach can be further refined by considering additional parameters based on the system’s need. DOI: 10.17762/ijritcc2321-8169.15050

    Incremental Kernel Mapping Algorithms for Scalable Recommender Systems

    No full text
    Recommender systems apply machine learning techniques for filtering unseen information and can predict whether a user would like a given item. Kernel Mapping Recommender (KMR)system algorithms have been proposed, which offer state-of-the-art performance. One potential drawback of the KMR algorithms is that the training is done in one step and hence they cannot accommodate the incremental update with the arrival of new data making them unsuitable for the dynamic environments. From this line of research, we propose a new heuristic, which can build the model incrementally without retraining the whole model from scratch when new data (item or user) are added to the recommender system dataset. Furthermore, we proposed a novel perceptron type algorithm, which is a fast incremental algorithm for building the model that maintains a good level of accuracy and scales well with the data. We show empirically over two datasets that the proposed algorithms give quite accurate results while providing significant computation savings

    Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems

    Get PDF
    One of the main concerns for online shopping websites is to provide efficient and customized recommendations to a very large number of users based on their preferences. Collaborative filtering (CF) is the most famous type of recommender system method to provide personalized recommendations to users. CF generates recommendations by identifying clusters of similar users or items from the user-item rating matrix. This cluster of similar users or items is generally identified by using some similarity measurement method. Among numerous proposed similarity measure methods by researchers, the Pearson correlation coefficient (PCC) is a commonly used similarity measure method for CF-based recommender systems. The standard PCC suffers some inherent limitations and ignores user rating preference behavior (RPB). Typically, users have different RPB, where some users may give the same rating to various items without liking the items and some users may tend to give average rating albeit liking the items. Traditional similarity measure methods (including PCC) do not consider this rating pattern of users. In this article, we present a novel similarity measure method to consider user RPB while calculating similarity among users. The proposed similarity measure method state user RPB as a function of user average rating value, and variance or standard deviation. The user RPB is then combined with an improved model of standard PCC to form an improved similarity measure method for CF-based recommender systems. The proposed similarity measure is named as improved PCC weighted with RPB (IPWR). The qualitative and quantitative analysis of the IPWR similarity measure method is performed using five state-of-the-art datasets (i.e. Epinions, MovieLens-100K, MovieLens-1M, CiaoDVD, and MovieTweetings). The IPWR similarity measure method performs better than state-of-the-art similarity measure methods in terms of mean absolute error (MAE), root mean square error (RMSE), precision, recall, and F-measure

    Goal-based hybrid filtering for user-to-user Personalized Recommendation

    Get PDF
    Recommendation systems are gaining great importance with e-Learning and multimedia on the internet. It fails in some situations such as new-user profile (cold-start) issue. To overcome this issue, we propose a novel goalbased hybrid approach for user-to-user personalized similarity recommendation and present its performance accuracy. This work also helps to improve collaborative filtering using k-nearest neighbor as neighborhood collaborative filtering (NCF) and content-based filtering as content-based collaborative filtering (CBCF). The purpose of combining k-nn with recommendation approaches is to increase the relevant recommendation accuracy and decrease the new-user profile (cold-start) issue. The proposed goal-based approach associated with nearest neighbors, compare personalized profile preferences and get the similarities between users. The paper discussed research architecture, working of proposed goal-based approach, its experimental steps and initial results.DOI:http://dx.doi.org/10.11591/ijece.v3i3.241

    A Hybrid Recommender System for Patient-Doctor Matchmaking in Primary Care

    Full text link
    We partner with a leading European healthcare provider and design a mechanism to match patients with family doctors in primary care. We define the matchmaking process for several distinct use cases given different levels of available information about patients. Then, we adopt a hybrid recommender system to present each patient a list of family doctor recommendations. In particular, we model patient trust of family doctors using a large-scale dataset of consultation histories, while accounting for the temporal dynamics of their relationships. Our proposed approach shows higher predictive accuracy than both a heuristic baseline and a collaborative filtering approach, and the proposed trust measure further improves model performance.Comment: This paper is accepted at DSAA 2018 as a full paper, Proc. of the 5th IEEE International Conference on Data Science and Advanced Analytics (DSAA), Turin, Ital

    Deep neuro‐fuzzy approach for risk and severity prediction using recommendation systems in connected health care

    Get PDF
    Internet of Things (IoT) and Data science have revolutionized the entire technological landscape across the globe. Because of it, the health care ecosystems are adopting the cutting‐edge technologies to provide assistive and personalized care to the patients. But, this vision is incomplete without the adoption of data‐focused mechanisms (like machine learning, big data analytics) that can act as enablers to provide early detection and treatment of patients even without admission in the hospitals. Recently, there has been an increasing trend of providing assistive recommendation and timely alerts regarding the severity of the disease to the patients. Even, remote monitoring of the present day health situation of the patient is possible these days though the analysis of the data generated using IoT devices by doctors. Motivated from these facts, we design a health care recommendation system that provides a multilevel decision‐making related to the risk and severity of the patient diseases. The proposed systems use an all‐disease classification mechanism based on convolutional neural networks to segregate different diseases on the basis of the vital parameters of a patient. After classification, a fuzzy inference system is used to compute the risk levels for the patients. In the last step, based on the information provided by the risk analysis, the patients are provided with the potential recommendation about the severity staging of the associated diseases for timely and suitable treatment. The proposed work has been evaluated using different datasets related to the diseases and the outcomes seem to be promising

    Brokerage Platform for Media Content Recommendation

    Get PDF
    Near real time media content personalisation is nowadays a major challenge involving media content sources, distributors and viewers. This paper describes an approach to seamless recommendation, negotiation and transaction of personalised media content. It adopts an integrated view of the problem by proposing, on the business-to-business (B2B) side, a brokerage platform to negotiate the media items on behalf of the media content distributors and sources, providing viewers, on the business-to-consumer (B2C) side, with a personalised electronic programme guide (EPG) containing the set of recommended items after negotiation. In this setup, when a viewer connects, the distributor looks up and invites sources to negotiate the contents of the viewer personal EPG. The proposed multi-agent brokerage platform is structured in four layers, modelling the registration, service agreement, partner lookup, invitation as well as item recommendation, negotiation and transaction stages of the B2B processes. The recommendation service is a rule-based switch hybrid filter, including six collaborative and two content-based filters. The rule-based system selects, at runtime, the filter(s) to apply as well as the final set of recommendations to present. The filter selection is based on the data available, ranging from the history of items watched to the ratings and/or tags assigned to the items by the viewer. Additionally, this module implements (i) a novel item stereotype to represent newly arrived items, (ii) a standard user stereotype for new users, (iii) a novel passive user tag cloud stereotype for socially passive users, and (iv) a new content-based filter named the collinearity and proximity similarity (CPS). At the end of the paper, we present off-line results and a case study describing how the recommendation service works. The proposed system provides, to our knowledge, an excellent holistic solution to the problem of recommending multimedia contents

    A Random Walk Model for Item Recommendation in Social Tagging Systems

    Get PDF
    Social tagging, as a novel approach to information organization and discovery, has been widely adopted in many Web 2.0 applications. Tags contributed by users to annotate a variety of Web resources or items provide a new type of information that can be exploited by recommender systems. Nevertheless, the sparsity of the ternary interaction data among users, items, and tags limits the performance of tag-based recommendation algorithms. In this article, we propose to deal with the sparsity problem in social tagging by applying random walks on ternary interaction graphs to explore transitive associations between users and items. The transitive associations in this article refer to the path of the link between any two nodes whose length is greater than one. Taking advantage of these transitive associations can allow more accurate measurement of the relevance between two entities (e.g., user-item, user-user, and item-item). A PageRank-like algorithm has been developed to explore these transitive associations by spreading users\u27 preferences on an item similarity graph and spreading items\u27 influences on a user similarity graph. Empirical evaluation on three real-world datasets demonstrates that our approach can effectively alleviate the sparsity problem and improve the quality of item recommendation

    Movie recommender systems: Concepts, methods, challenges, and future directions

    Get PDF
    Movie recommender systems are meant to give suggestions to the users based on the features they love the most. A highly performing movie recommendation will suggest movies that match the similarities with the highest degree of performance. This study conducts a systematic literature review on movie recommender systems. It highlights the filtering criteria in the recommender systems, algorithms implemented in movie recommender systems, the performance measurement criteria, the challenges in implementation, and recommendations for future research. Some of the most popular machine learning algorithms used in movie recommender systems such as K-means clustering, principal component analysis, and self-organizing maps with principal component analysis are discussed in detail. Special emphasis is given to research works performed using metaheuristic-based recommendation systems. The research aims to bring to light the advances made in developing the movie recommender systems, and what needs to be performed to reduce the current challenges in implementing the feasible solutions. The article will be helpful to researchers in the broad area of recommender systems as well as practicing data scientists involved in the implementation of such systems.Web of Science2213art. no. 490
    corecore