733 research outputs found

    Satisfiability and Derandomization for Small Polynomial Threshold Circuits

    Get PDF
    A polynomial threshold function (PTF) is defined as the sign of a polynomial p : {0,1}^n ->R. A PTF circuit is a Boolean circuit whose gates are PTFs. We study the problems of exact and (promise) approximate counting for PTF circuits of constant depth. - Satisfiability (#SAT). We give the first zero-error randomized algorithm faster than exhaustive search that counts the number of satisfying assignments of a given constant-depth circuit with a super-linear number of wires whose gates are s-sparse PTFs, for s almost quadratic in the input size of the circuit; here a PTF is called s-sparse if its underlying polynomial has at most s monomials. More specifically, we show that, for any large enough constant c, given a depth-d circuit with (n^{2-1/c})-sparse PTF gates that has at most n^{1+epsilon_d} wires, where epsilon_d depends only on c and d, the number of satisfying assignments of the circuit can be computed in randomized time 2^{n-n^{epsilon_d}} with zero error. This generalizes the result by Chen, Santhanam and Srinivasan (CCC, 2016) who gave a SAT algorithm for constant-depth circuits of super-linear wire complexity with linear threshold function (LTF) gates only. - Quantified derandomization. The quantified derandomization problem, introduced by Goldreich and Wigderson (STOC, 2014), asks to compute the majority value of a given Boolean circuit, under the promise that the minority-value inputs to the circuit are very few. We give a quantified derandomization algorithm for constant-depth PTF circuits with a super-linear number of wires that runs in quasi-polynomial time. More specifically, we show that for any sufficiently large constant c, there is an algorithm that, given a degree-Delta PTF circuit C of depth d with n^{1+1/c^d} wires such that C has at most 2^{n^{1-1/c}} minority-value inputs, runs in quasi-polynomial time exp ((log n)^{O (Delta^2)}) and determines the majority value of C. (We obtain a similar quantified derandomization result for PTF circuits with n^{Delta}-sparse PTF gates.) This extends the recent result of Tell (STOC, 2018) for constant-depth LTF circuits of super-linear wire complexity. - Pseudorandom generators. We show how the classical Nisan-Wigderson (NW) generator (JCSS, 1994) yields a nontrivial pseudorandom generator for PTF circuits (of unrestricted depth) with sub-linearly many gates. As a corollary, we get a PRG for degree-Delta PTFs with the seed length exp (sqrt{Delta * log n})* log^2(1/epsilon)

    Quantified Derandomization of Linear Threshold Circuits

    Full text link
    One of the prominent current challenges in complexity theory is the attempt to prove lower bounds for TC0TC^0, the class of constant-depth, polynomial-size circuits with majority gates. Relying on the results of Williams (2013), an appealing approach to prove such lower bounds is to construct a non-trivial derandomization algorithm for TC0TC^0. In this work we take a first step towards the latter goal, by proving the first positive results regarding the derandomization of TC0TC^0 circuits of depth d>2d>2. Our first main result is a quantified derandomization algorithm for TC0TC^0 circuits with a super-linear number of wires. Specifically, we construct an algorithm that gets as input a TC0TC^0 circuit CC over nn input bits with depth dd and n1+exp⁑(βˆ’d)n^{1+\exp(-d)} wires, runs in almost-polynomial-time, and distinguishes between the case that CC rejects at most 2n1βˆ’1/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n1βˆ’1/5d2^{n^{1-1/5d}} inputs. In fact, our algorithm works even when the circuit CC is a linear threshold circuit, rather than just a TC0TC^0 circuit (i.e., CC is a circuit with linear threshold gates, which are stronger than majority gates). Our second main result is that even a modest improvement of our quantified derandomization algorithm would yield a non-trivial algorithm for standard derandomization of all of TC0TC^0, and would consequently imply that NEXPβŠ†ΜΈTC0NEXP\not\subseteq TC^0. Specifically, if there exists a quantified derandomization algorithm that gets as input a TC0TC^0 circuit with depth dd and n1+O(1/d)n^{1+O(1/d)} wires (rather than n1+exp⁑(βˆ’d)n^{1+\exp(-d)} wires), runs in time at most 2nexp⁑(βˆ’d)2^{n^{\exp(-d)}}, and distinguishes between the case that CC rejects at most 2n1βˆ’1/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n1βˆ’1/5d2^{n^{1-1/5d}} inputs, then there exists an algorithm with running time 2n1βˆ’Ξ©(1)2^{n^{1-\Omega(1)}} for standard derandomization of TC0TC^0.Comment: Changes in this revision: An additional result (a PRG for quantified derandomization of depth-2 LTF circuits); rewrite of some of the exposition; minor correction

    A Casual Tour Around a Circuit Complexity Bound

    Full text link
    I will discuss the recent proof that the complexity class NEXP (nondeterministic exponential time) lacks nonuniform ACC circuits of polynomial size. The proof will be described from the perspective of someone trying to discover it.Comment: 21 pages, 2 figures. An earlier version appeared in SIGACT News, September 201

    0-1 Integer Linear Programming with a Linear Number of Constraints

    Full text link
    We give an exact algorithm for the 0-1 Integer Linear Programming problem with a linear number of constraints that improves over exhaustive search by an exponential factor. Specifically, our algorithm runs in time 2(1βˆ’poly(1/c))n2^{(1-\text{poly}(1/c))n} where n is the number of variables and cn is the number of constraints. The key idea for the algorithm is a reduction to the Vector Domination problem and a new algorithm for that subproblem

    Algorithms and lower bounds for de Morgan formulas of low-communication leaf gates

    Get PDF
    The class FORMULA[s]∘GFORMULA[s] \circ \mathcal{G} consists of Boolean functions computable by size-ss de Morgan formulas whose leaves are any Boolean functions from a class G\mathcal{G}. We give lower bounds and (SAT, Learning, and PRG) algorithms for FORMULA[n1.99]∘GFORMULA[n^{1.99}]\circ \mathcal{G}, for classes G\mathcal{G} of functions with low communication complexity. Let R(k)(G)R^{(k)}(\mathcal{G}) be the maximum kk-party NOF randomized communication complexity of G\mathcal{G}. We show: (1) The Generalized Inner Product function GIPnkGIP^k_n cannot be computed in FORMULA[s]∘GFORMULA[s]\circ \mathcal{G} on more than 1/2+Ξ΅1/2+\varepsilon fraction of inputs for s=o ⁣(n2(kβ‹…4kβ‹…R(k)(G)β‹…log⁑(n/Ξ΅)β‹…log⁑(1/Ξ΅))2). s = o \! \left ( \frac{n^2}{ \left(k \cdot 4^k \cdot {R}^{(k)}(\mathcal{G}) \cdot \log (n/\varepsilon) \cdot \log(1/\varepsilon) \right)^{2}} \right). As a corollary, we get an average-case lower bound for GIPnkGIP^k_n against FORMULA[n1.99]∘PTFkβˆ’1FORMULA[n^{1.99}]\circ PTF^{k-1}. (2) There is a PRG of seed length n/2+O(sβ‹…R(2)(G)β‹…log⁑(s/Ξ΅)β‹…log⁑(1/Ξ΅))n/2 + O\left(\sqrt{s} \cdot R^{(2)}(\mathcal{G}) \cdot\log(s/\varepsilon) \cdot \log (1/\varepsilon) \right) that Ξ΅\varepsilon-fools FORMULA[s]∘GFORMULA[s] \circ \mathcal{G}. For FORMULA[s]∘LTFFORMULA[s] \circ LTF, we get the better seed length O(n1/2β‹…s1/4β‹…log⁑(n)β‹…log⁑(n/Ξ΅))O\left(n^{1/2}\cdot s^{1/4}\cdot \log(n)\cdot \log(n/\varepsilon)\right). This gives the first non-trivial PRG (with seed length o(n)o(n)) for intersections of nn half-spaces in the regime where Ρ≀1/n\varepsilon \leq 1/n. (3) There is a randomized 2nβˆ’t2^{n-t}-time #\#SAT algorithm for FORMULA[s]∘GFORMULA[s] \circ \mathcal{G}, where t=Ξ©(nsβ‹…log⁑2(s)β‹…R(2)(G))1/2.t=\Omega\left(\frac{n}{\sqrt{s}\cdot\log^2(s)\cdot R^{(2)}(\mathcal{G})}\right)^{1/2}. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]∘LTFFORMULA[n^{1.99}]\circ LTF. (4) The Minimum Circuit Size Problem is not in FORMULA[n1.99]∘XORFORMULA[n^{1.99}]\circ XOR. On the algorithmic side, we show that FORMULA[n1.99]∘XORFORMULA[n^{1.99}] \circ XOR can be PAC-learned in time 2O(n/log⁑n)2^{O(n/\log n)}
    • …
    corecore