18,840 research outputs found

    The development of a rich multimedia training environment for crisis management: using emotional affect to enhance learning

    Get PDF
    PANDORA is an EU FP7-funded project developing a novel training and learning environment for Gold Commanders, individuals who carry executive responsibility for the services and facilities identified as strategically critical e.g. Police, Fire, in crisis management strategic planning situations. A key part of the work for this project is considering the emotional and behavioural state of the trainees, and the creation of more realistic, and thereby stressful, representations of multimedia information to impact on the decision-making of those trainees. Existing training models are predominantly paper-based, table-top exercises, which require an exercise of imagination on the part of the trainees to consider not only the various aspects of a crisis situation but also the impacts of interventions, and remediating actions in the event of the failure of an intervention. However, existing computing models and tools are focused on supporting tactical and operational activities in crisis management, not strategic. Therefore, the PANDORA system will provide a rich multimedia information environment, to provide trainees with the detailed information they require to develop strategic plans to deal with a crisis scenario, and will then provide information on the impacts of the implementation of those plans and provide the opportunity for the trainees to revise and remediate those plans. Since this activity is invariably multi-agency, the training environment must support group-based strategic planning activities and trainees will occupy specific roles within the crisis scenario. The system will also provide a range of non-playing characters (NPC) representing domain experts, high-level controllers (e.g. politicians, ministers), low-level controllers (tactical and operational commanders), and missing trainee roles, to ensure a fully populated scenario can be realised in each instantiation. Within the environment, the emotional and behavioural state of the trainees will be monitored, and interventions, in the form of environmental information controls and mechanisms impacting on the stress levels and decisionmaking capabilities of the trainees, will be used to personalise the training environment. This approach enables a richer and more realistic representation of the crisis scenario to be enacted, leading to better strategic plans and providing trainees with structured feedback on their performance under stress

    A Spatial Agent-based Model for Volcanic Evacuation of Mt. Merapi

    Get PDF
    Natural disasters, especially volcanic eruptions, are hazardous events that frequently happen in Indonesia. As a country within the “Ring of Fire”, Indonesia has hundreds of volcanoes and Mount Merapi is the most active. Historical studies of this volcano have revealed that there is potential for a major eruption in the future. Therefore, long-term disaster management is needed. To support the disaster management, physical and socially-based research has been carried out, but there is still a gap in the development of evacuation models. This modelling is necessary to evaluate the possibility of unexpected problems in the evacuation process since the hazard occurrences and the population behaviour are uncertain. The aim of this research was to develop an agent-based model (ABM) of volcanic evacuation to improve the effectiveness of evacuation management in Merapi. Besides the potential use of the results locally in Merapi, the development process of this evacuation model contributes by advancing the knowledge of ABM development for large-scale evacuation simulation in other contexts. Its novelty lies in (1) integrating a hazard model derived from historical records of the spatial impact of eruptions, (2) formulating and validating an individual evacuation decision model in ABM based on various interrelated factors revealed from literature reviews and surveys that enable the modelling of reluctant people, (3) formulating the integration of multi-criteria evaluation (MCE) in ABM to model a spatio-temporal dynamic model of risk (STDMR) that enables representation of the changing of risk as a consequence of changing hazard level, hazard extent and movement of people, and (4) formulating an evacuation staging method based on MCE using geographic and demographic criteria. The volcanic evacuation model represents the relationships between physical and human agents, consisting of the volcano, stakeholders, the population at risk and the environment. The experimentation of several evacuation scenarios in Merapi using the developed ABM of evacuation shows that simultaneous strategy is superior in reducing the risk, but the staged scenario is the most effective in minimising the potential of road traffic problems during evacuation events in Merapi. Staged evacuation can be a good option when there is enough time to evacuate. However, if the evacuation time is limited, the simultaneous strategy is better to be implemented. Appropriate traffic management should be prepared to avoid traffic problems when the second option is chosen

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    System Issues in Multi-agent Simulation of Large Crowds

    No full text
    Crowd simulation is a complex and challenging domain. Crowds demonstrate many complex behaviours and are consequently difficult to model for realistic simulation systems. Analyzing crowd dynamics has been an active area of research and efforts have been made to develop models to explain crowd behaviour. In this paper we describe an agent based simulation of crowds, based on a continuous field force model. Our simulation can handle movement of crowds over complex terrains and we have been able to simulate scenarios like clogging of exits during emergency evacuation situations. The focus of this paper, however, is on the scalability issues for such a multi-agent based crowd simulation system. We believe that scalability is an important criterion for rescue simulation systems. To realistically model a disaster scenario for a large city, the system should ideally scale up to accommodate hundreds of thousands of agents. We discuss the attempts made so far to meet this challenge, and try to identify the architectural and system constraints that limit scalability. Thereafter we propose a novel technique which could be used to richly simulate huge crowds

    Modelling Individual Evacuation Decisions during Natural Disasters: A Case Study of Volcanic Crisis in Merapi, Indonesia

    Get PDF
    As the size of human populations increases, so does the severity of the impacts of natural disasters. This is partly because more people are now occupying areas which are susceptible to hazardous natural events, hence, evacuation is needed when such events occur. Evacuation can be the most important action to minimise the impact of any disaster, but in many cases there are always people who are reluctant to leave. This paper describes an agent-based model (ABM) of evacuation decisions, focusing on the emergence of reluctant people in times of crisis and using Merapi, Indonesia as a case study. The individual evacuation decision model is influenced by several factors formulated from a literature review and survey. We categorised the factors influencing evacuation decisions into two opposing forces, namely, the driving factors to leave (evacuate) versus those to stay, to formulate the model. The evacuation decision (to stay/leave) of an agent is based on an evaluation of the strength of these driving factors using threshold-based rules. This ABM was utilised with a synthetic population from census microdata, in which everyone is characterised by the decision rule. Three scenarios with varying parameters are examined to calibrate the model. Validations were conducted using a retrodictive approach by performing spatial and temporal comparisons between the outputs of simulation and the real data. We present the results of the simulations and discuss the outcomes to conclude with the most plausible scenario

    Estimating Spatio-Temporal Risks from Volcanic Eruptions using an Agent-Based Model

    Get PDF
    Managing disasters caused by natural events, especially volcanic crises, requires a range of approaches, including risk modelling and analysis. Risk modelling is commonly conducted at the community/regional scale using GIS. However, people and objects move in response to a crisis, so static approaches cannot capture the dynamics of the risk properly, as they do not accommodate objects’ movements within time and space. The emergence of Agent-Based Modelling makes it possible to model the risk at an individual level as it evolves over space and time. We propose a new approach of Spatio-Temporal Dynamics Model of Risk (STDMR) by integrating multi-criteria evaluation (MCE) within a georeferenced agent-based model, using Mt. Merapi, Indonesia, as a case study. The model makes it possible to simulate the spatio-temporal dynamics of those at risk during a volcanic crisis. Importantly, individual vulnerability is heterogeneous and depends on the characteristics of the individuals concerned. The risk for the individuals is dynamic and changes along with the hazard and their location. The model is able to highlight a small number of high-risk spatio-temporal positions where, due to the behaviour of individuals who are evacuating the volcano and the dynamics of the hazard itself, the overall risk in those times and places is extremely high. These outcomes are extremely relevant for the stakeholders, and the work of coupling an ABM, MCE, and dynamic volcanic hazard is both novel and contextually relevant

    Towards a Formal Model of Privacy-Sensitive Dynamic Coalitions

    Full text link
    The concept of dynamic coalitions (also virtual organizations) describes the temporary interconnection of autonomous agents, who share information or resources in order to achieve a common goal. Through modern technologies these coalitions may form across company, organization and system borders. Therefor questions of access control and security are of vital significance for the architectures supporting these coalitions. In this paper, we present our first steps to reach a formal framework for modeling and verifying the design of privacy-sensitive dynamic coalition infrastructures and their processes. In order to do so we extend existing dynamic coalition modeling approaches with an access-control-concept, which manages access to information through policies. Furthermore we regard the processes underlying these coalitions and present first works in formalizing these processes. As a result of the present paper we illustrate the usefulness of the Abstract State Machine (ASM) method for this task. We demonstrate a formal treatment of privacy-sensitive dynamic coalitions by two example ASMs which model certain access control situations. A logical consideration of these ASMs can lead to a better understanding and a verification of the ASMs according to the aspired specification.Comment: In Proceedings FAVO 2011, arXiv:1204.579
    corecore