4,966 research outputs found

    Data Improving in Time Series Using ARX and ANN Models

    Get PDF
    Anomalous data can negatively impact energy forecasting by causing model parameters to be incorrectly estimated. This paper presents two approaches for the detection and imputation of anomalies in time series data. Autoregressive with exogenous inputs (ARX) and artificial neural network (ANN) models are used to extract the characteristics of time series. Anomalies are detected by performing hypothesis testing on the extrema of the residuals, and the anomalous data points are imputed using the ARX and ANN models. Because the anomalies affect the model coefficients, the data cleaning process is performed iteratively. The models are re-learned on “cleaner” data after an anomaly is imputed. The anomalous data are reimputed to each iteration using the updated ARX and ANN models. The ARX and ANN data cleaning models are evaluated on natural gas time series data. This paper demonstrates that the proposed approaches are able to identify and impute anomalous data points. Forecasting models learned on the unclean data and the cleaned data are tested on an uncleaned out-of-sample dataset. The forecasting model learned on the cleaned data outperforms the model learned on the unclean data with 1.67% improvement in the mean absolute percentage errors and a 32.8% improvement in the root mean squared error. Existing challenges include correctly identifying specific types of anomalies such as negative flows

    Stochastic RUL calculation enhanced with TDNN-based IGBT failure modeling

    Get PDF
    Power electronics are widely used in the transport and energy sectors. Hence, the reliability of these power electronic components is critical to reducing the maintenance cost of these assets. It is vital that the health of these components is monitored for increasing the safety and availability of a system. The aim of this paper is to develop a prognostic technique for estimating the remaining useful life (RUL) of power electronic components. There is a need for an efficient prognostic algorithm that is embeddable and able to support on-board real-time decision-making. A time delay neural network (TDNN) is used in the development of failure modes for an insulated gate bipolar transistor (IGBT). Initially, the time delay neural network is constructed from training IGBTs' ageing samples. A stochastic process is performed for the estimation results to compute the probability of the health state during the degradation process. The proposed TDNN fusion with a statistical approach benefits the probability distribution function by improving the accuracy of the results of the TDDN in RUL prediction. The RUL (i.e., mean and confidence bounds) is then calculated from the simulation of the estimated degradation states. The prognostic results are evaluated using root mean square error (RMSE) and relative accuracy (RA) prognostic evaluation metrics

    Improved Observability for State Estimation in Active Distribution Grid Management

    Get PDF

    Hybrid state-estimation in combined heat and electric network using SCADA and AMI measurements

    Get PDF
    State-estimation plays a vital role to monitor, observe and understand the combined heat and electric network. In this paper, a hybrid framework is presented to accurately estimate the system states of electric distribution network and heat network, using the limited non-redundant measurements obtained from supervisory control and data acquisition and advanced metering infrastructure systems. The presented hybrid framework involves two steps, namely, the state-forecasting and the state-estimation. The state-forecasting uses a deep neural network to forecast the system states at every fifteen minutes interval, while these forecasted states are further used by the hybrid estimator, which uses a robust extended Kalman filter to estimate the system states with help of both datasets corresponding to supervisory control and data acquisition and advanced metering infrastructure systems, at hourly interval. The proposed framework does not completely rely on the system model at different instants. The effectiveness of the method is validated through thorough comparisons with simulation studies carried out using the Barry Island test system, United Kingdom. Satisfactory performance is observed even with the presence of bad data in the measurements

    Load forecast on a Micro Grid level through Machine Learning algorithms

    Get PDF
    As Micro Redes constituem um sector em crescimento da indústria energética, representando uma mudança de paradigma, desde as remotas centrais de geração até à produção mais localizada e distribuída. A capacidade de isolamento das principais redes elétricas e atuar de forma independente tornam as Micro Redes em sistemas resilientes, capazes de conduzir operações flexíveis em paralelo com a prestação de serviços que tornam a rede mais competitiva. Como tal, as Micro Redes fornecem energia limpa eficiente de baixo custo, aprimoram a coordenação dos ativos e melhoram a operação e estabilidade da rede regional de eletricidade, através da capacidade de resposta dinâmica aos recursos energéticos. Para isso, necessitam de uma coordenação de gestão inteligente que equilibre todas as tecnologias ao seu dispor. Daqui surge a necessidade de recorrer a modelos de previsão de carga e de produção robustos e de confiança, que interligam a alocação dos recursos da rede perante as necessidades emergentes. Sendo assim, foi desenvolvida a metodologia HALOFMI, que tem como principal objetivo a criação de um modelo de previsão de carga para 24 horas. A metodologia desenvolvida é constituída, numa primeira fase, por uma abordagem híbrida de multinível para a criação e escolha de atributos, que alimenta uma rede neuronal (Multi-Layer Perceptron) sujeita a um ajuste de híper-parâmetros. Posto isto, numa segunda fase são testados dois modos de aplicação e gestão de dados para a Micro Rede. A metodologia desenvolvida é aplicada em dois casos de estudo: o primeiro é composto por perfis de carga agregados correspondentes a dados de clientes em Baixa Tensão Normal e de Unidades de Produção e Autoconsumo (UPAC). Este caso de estudo apresenta-se como um perfil de carga elétrica regular e com contornos muito suaves. O segundo caso de estudo diz respeito a uma ilha turística e representa um perfil irregular de carga, com variações bruscas e difíceis de prever e apresenta um desafio maior em termos de previsão a 24-horas A partir dos resultados obtidos, é avaliado o impacto da integração de uma seleção recursiva inteligente de atributos, seguido por uma viabilização do processo de redução da dimensão de dados para o operador da Micro Rede, e por fim uma comparação de estimadores usados no modelo de previsão, através de medidores de erros na performance do algoritmo.Micro Grids constitute a growing sector of the energetic industry, representing a paradigm shift from the central power generation plans to a more distributed generation. The capacity to work isolated from the main electric grid make the MG resilient system, capable of conducting flexible operations while providing services that make the network more competitive. Additionally, Micro Grids supply clean and efficient low-cost energy, enhance the flexible assets coordination and improve the operation and stability of the of the local electric grid, through the capability of providing a dynamic response to the energetic resources. For that, it is required an intelligent coordination which balances all the available technologies. With this, rises the need to integrate accurate and robust load and production forecasting models into the MG management platform, thus allowing a more precise coordination of the flexible resource according to the emerging demand needs. For these reasons, the HALOFMI methodology was developed, which focus on the creation of a precise 24-hour load forecast model. This methodology includes firstly, a hybrid multi-level approach for the creation and selection of features. Then, these inputs are fed to a Neural Network (Multi-Layer Perceptron) with hyper-parameters tuning. In a second phase, two ways of data operation are compared and assessed, which results in the viability of the network operating with a reduced number of training days without compromising the model's performance. Such process is attained through a sliding window application. Furthermore, the developed methodology is applied in two case studies, both with 15-minute timesteps: the first one is composed by aggregated load profiles of Standard Low Voltage clients, including production and self-consumption units. This case study presents regular and very smooth load profile curves. The second case study concerns a touristic island and represents an irregular load curve with high granularity with abrupt variations. From the attained results, it is evaluated the impact of integrating a recursive intelligent feature selection routine, followed by an assessment on the sliding window application and at last, a comparison on the errors coming from different estimators for the model, through several well-defined performance metrics

    User flexibility aware price policy synthesis for smart grids

    Get PDF
    In order to optimally manage a modern electricity distribution network, peaks in residential users demand should be avoided, as this can reduce energy and network asset management costs. Furthermore, this must be done without compressing residential users demand. To this aim, in a demand response setting, residential users are given a price policy, which economically motivates them to shift their loads in order to achieve this goal. However, if the price policy for all users is similar, this demand response may result in simply shifting the demand peaks (peak rebound), leaving the problem unsolved. In this paper we propose a novel methodology which i) for each network substation s, automatically computes the desired power profile to be kept in order to optimally manage the network itself, ii) for each network substation s, automatically synthesizes individualized price policies for residential users connected to s, so that s is kept at the desired profile. Note that price policies individualization avoids the peak rebound problem, as different users have different low tariff areas. Furthermore, our methodology measures the flexibility of a residential user as the capacity needed by a home energy storage system (e.g., a battery) to always follow the given price policy, thus mitigating residential users discomfort. We show the feasibility of our approach on a realistic scenario taken from an existing medium voltage Danish distribution network

    Advancing Attack-Resilient Scheduling of Integrated Energy Systems with Demand Response via Deep Reinforcement Learning

    Full text link
    Optimally scheduling multi-energy flow is an effective method to utilize renewable energy sources (RES) and improve the stability and economy of integrated energy systems (IES). However, the stable demand-supply of IES faces challenges from uncertainties that arise from RES and loads, as well as the increasing impact of cyber-attacks with advanced information and communication technologies adoption. To address these challenges, this paper proposes an innovative model-free resilience scheduling method based on state-adversarial deep reinforcement learning (DRL) for integrated demand response (IDR)-enabled IES. The proposed method designs an IDR program to explore the interaction ability of electricity-gas-heat flexible loads. Additionally, a state-adversarial Markov decision process (SA-MDP) model characterizes the energy scheduling problem of IES under cyber-attack. The state-adversarial soft actor-critic (SA-SAC) algorithm is proposed to mitigate the impact of cyber-attacks on the scheduling strategy. Simulation results demonstrate that our method is capable of adequately addressing the uncertainties resulting from RES and loads, mitigating the impact of cyber-attacks on the scheduling strategy, and ensuring a stable demand supply for various energy sources. Moreover, the proposed method demonstrates resilience against cyber-attacks. Compared to the original soft actor-critic (SAC) algorithm, it achieves a 10\% improvement in economic performance under cyber-attack scenarios
    corecore