703 research outputs found

    Alignment of Hyperspectral Images Using KAZE Features

    Get PDF
    Image registration is a common operation in any type of image processing, specially in remote sensing images. Since the publication of the scale–invariant feature transform (SIFT) method, several algorithms based on feature detection have been proposed. In particular, KAZE builds the scale space using a nonlinear diffusion filter instead of Gaussian filters. Nonlinear diffusion filtering allows applying a controlled blur while the important structures of the image are preserved. Hyperspectral images contain a large amount of spatial and spectral information that can be used to perform a more accurate registration. This article presents HSI–KAZE, a method to register hyperspectral remote sensing images based on KAZE but considering the spectral information. The proposed method combines the information of a set of preselected bands, and it adapts the keypoint descriptor and the matching stage to take into account the spectral information. The method is adequate to register images in extreme situations in which the scale between them is very different. The effectiveness of the proposed algorithm has been tested on real images taken on different dates, and presenting different types of changes. The experimental results show that the method is robust achieving image registrations with scales of up to 24.0×This research was supported in part by the Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia [grant numbers GRC2014/008 and ED431G/08] and Ministerio de Educación, Cultura y Deporte [grant number TIN2016-76373-P] both are co–funded by the European Regional Development Fund. The work of Álvaro Ordóñez was supported by the Ministerio de Educación, Cultura y Deporte under an FPU Grant [grant number FPU16/03537]. This work was also partially supported by Consejería de Educación, Junta de Castilla y León (PROPHET Project) [grant number VA082P17]S

    Biometrics Sensor Fusion

    Get PDF

    HSI-MSER: Hyperspectral Image Registration Algorithm based on MSER and SIFT

    Get PDF
    Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. The Maximally Stable Extremal Regions (MSER) is a feature detection algorithm which extracts regions by thresholding the image at different grey levels. These extremal regions are invariant to image transformations making them ideal for registration. The Scale-Invariant Feature Transform (SIFT) is a well-known keypoint detector and descriptor based on the construction of a Gaussian scale-space. This article presents a hyperspectral remote sensing image registration method based on MSER for feature detection and SIFT for feature description. It efficiently exploits the information contained in the different spectral bands to improve the image alignment. The experimental results over nine hyperspectral images show that the proposed method achieves a higher number of correct registration cases using less computational resources than other hyperspectral registration methods. Results are evaluated in terms of accuracy of the registration and also in terms of execution timeMinisterio de Ciencia e Innovación, Government of Spain PID2019-104834GB-I00; Consellería de Cultura, Educación e Universidade (Grant Number: ED431C 2018/19 and 2019-2022 ED431G-2019/04); Junta de Castilla y León under Project VA226P20; 10.13039/501100008530-European Regional Development Fund; Ministerio de Universidades, Government of Spain (Grant Number: FPU16/03537)S
    corecore