75 research outputs found

    Multiple Content Adaptive Intelligent Watermarking Schemes for the Protection of Blocks of a Document Image

    Get PDF
    Most of the documents contain different types of information such as white space, static information and dynamic information or mix of static and dynamic information. In this paper, multiple watermarking schemes are proposed for protection of the information content. The proposed approach comprises of three phases. In Phase-1, the edges of the source document image are extracted and the edge image is decomposed into blocks of uniform size. In Phase-2, GLCM features like energy, homogeneity, contrast and correlation are extracted from each block and the blocks are classified as no-information, static, dynamic and mix of static and dynamic information content blocks. The adjacent blocks of same type are merged together into a single block. Each block is watermarked in Phase-3. The type and amount of watermarking applied is decided intelligently and adaptively based on the classification of the blocks which results in improving embedding capacity and reducing time complexity incurred during watermarking. Experiments are conducted exhaustively on all the images in the corpus. The experimental evaluations exhibit better classification of segments based on information content in the block. The proposed technique also outperforms the existing watermarking schemes on document images in terms of robustness, accuracy of tamper detection and recovery

    Contourlet Domain Image Modeling and its Applications in Watermarking and Denoising

    Get PDF
    Statistical image modeling in sparse domain has recently attracted a great deal of research interest. Contourlet transform as a two-dimensional transform with multiscale and multi-directional properties is known to effectively capture the smooth contours and geometrical structures in images. The objective of this thesis is to study the statistical properties of the contourlet coefficients of images and develop statistically-based image denoising and watermarking schemes. Through an experimental investigation, it is first established that the distributions of the contourlet subband coefficients of natural images are significantly non-Gaussian with heavy-tails and they can be best described by the heavy-tailed statistical distributions, such as the alpha-stable family of distributions. It is shown that the univariate members of this family are capable of accurately fitting the marginal distributions of the empirical data and that the bivariate members can accurately characterize the inter-scale dependencies of the contourlet coefficients of an image. Based on the modeling results, a new method in image denoising in the contourlet domain is proposed. The Bayesian maximum a posteriori and minimum mean absolute error estimators are developed to determine the noise-free contourlet coefficients of grayscale and color images. Extensive experiments are conducted using a wide variety of images from a number of databases to evaluate the performance of the proposed image denoising scheme and to compare it with that of other existing schemes. It is shown that the proposed denoising scheme based on the alpha-stable distributions outperforms these other methods in terms of the peak signal-to-noise ratio and mean structural similarity index, as well as in terms of visual quality of the denoised images. The alpha-stable model is also used in developing new multiplicative watermark schemes for grayscale and color images. Closed-form expressions are derived for the log-likelihood-based multiplicative watermark detection algorithm for grayscale images using the univariate and bivariate Cauchy members of the alpha-stable family. A multiplicative multichannel watermark detector is also designed for color images using the multivariate Cauchy distribution. Simulation results demonstrate not only the effectiveness of the proposed image watermarking schemes in terms of the invisibility of the watermark, but also the superiority of the watermark detectors in providing detection rates higher than that of the state-of-the-art schemes even for the watermarked images undergone various kinds of attacks

    A Novel HVS-based Watermarking Scheme in CT Domain

    Get PDF
    In this paper, a novel watermarking technique in contourlet transform (CT) domain is presented. The proposed algorithm takes advantage of a multiscale framework and multi- directionality to extract the significant frequency, luminance and texture component in an image. Unlike the conventional methods in the contourlet domain, mask function is accomplished pixel by pixel by taking into account the frequency, the luminance and the texture content of all the image subbands including the low-pass subband and directional subbands. The adaptive nature of the novel method allows the scheme to be adaptive in terms of the imperceptibility and robustness. The watermark is detected by computing the correlation. Finally, the experimental results demonstrate the imperceptibility and the robustness against standard watermarking attacks

    Robust Watermarking Using FFT and Cordic QR Techniques

    Get PDF
    Digital media sharing and access in today’s world of the internet is very frequent for every user. The management of digital rights may come into threat easily as the accessibility of data through the internet become wide. Sharing digital information under security procedures can be easily compromised due to the various vulnerabilities floating over the internet. Existing research has been tied to protecting internet channels to ensure the safety of digital data. Researchers have investigated various encryption techniques to prevent digital rights management but certain challenges including external potential attacks cannot be avoided that may give unauthorized access to digital media. The proposed model endorsed the concept of watermarking in digital data to uplift media security and ensure digital rights management. The system provides an efficient procedure to conduct over-watermarking in digital audio signals and confirm the avoidance of ownership of the host data. The proposed technique uses a watermark picture as a signature that has been initially encrypted with Arnold's cat map and cyclic encoding before being embedded. The upper triangular R-matrix component of the energy band was then created by using the Fast Fourier transform and Cordic QR procedures to the host audio stream. Using PN random sequences, the encrypted watermarking image has been embedded in the host audio component of the R-matrix. The same procedure has been applied to extract the watermark image from the watermarked audio. The proposed model evaluates the quality of the watermarked audio and extracted watermark image. The average PSNR of the watermarked audio is found to be 37.01 dB. It has also been seen that the average PSNR, Normal cross-correlation, BER, SSMI (structure similarity index matric) value for the extracted watermark image is found to be 96.30 dB, 0.9042 units, 0.1033 units, and 0.9836 units respectively. Further, the model has been tested using various attacks to check its robustness. After applying attacks such as noising, filtering, cropping, and resampling on the watermarked audio, the watermark image has been extricated and its quality has been checked under the standard parameters. It has been found that the quality of the recovered watermark image satisfying enough to justify the digital ownership of the host audio. Hence, the proposed watermarking model attains a perfect balance between imperceptibility, payload, and robustness

    A Review on Steganography Techniques

    Get PDF
    Steganography is the science of hiding a secret message in cover media, without any perceptual distortion of the cover media. Using steganography, information can be hidden in the carrier items such as images, videos, sounds files, text files, while performing data transmission. In image steganography field, it is a major concern of the researchers how to improve the capacity of hidden data into host image without causing any statistically significant modification. Therefore, this paper presents most of the recent works that have been conducted on image steganography field and analyzes them to clarify the strength and weakness points in each work separately in order to be taken in consideration for future works in such field.   

    Wavelet Domain Watermark Detection and Extraction using the Vector-based Hidden Markov Model

    Get PDF
    Multimedia data piracy is a growing problem in view of the ease and simplicity provided by the internet in transmitting and receiving such data. A possible solution to preclude unauthorized duplication or distribution of digital data is watermarking. Watermarking is an identifiable piece of information that provides security against multimedia piracy. This thesis is concerned with the investigation of various image watermarking schemes in the wavelet domain using the statistical properties of the wavelet coefficients. The wavelet subband coefficients of natural images have significantly non-Gaussian and heavy-tailed features that are best described by heavy-tailed distributions. Moreover the wavelet coefficients of images have strong inter-scale and inter-orientation dependencies. In view of this, the vector-based hidden Markov model is found to be best suited to characterize the wavelet coefficients. In this thesis, this model is used to develop new digital image watermarking schemes. Additive and multiplicative watermarking schemes in the wavelet domain are developed in order to provide improved detection and extraction of the watermark. Blind watermark detectors using log-likelihood ratio test, and watermark decoders using the maximum likelihood criterion to blindly extract the embedded watermark bits from the observation data are designed. Extensive experiments are conducted throughout this thesis using a number of databases selected from a wide variety of natural images. Simulation results are presented to demonstrate the effectiveness of the proposed image watermarking scheme and their superiority over some of the state-of-the-art techniques. It is shown that in view of the use of the hidden Markov model characterize the distributions of the wavelet coefficients of images, the proposed watermarking algorithms result in higher detection and decoding rates both before and after subjecting the watermarked image to various kinds of attacks
    • …
    corecore