6 research outputs found

    Robust Learning Enabled Intelligence for the Internet-of-Things: A Survey From the Perspectives of Noisy Data and Adversarial Examples

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThe Internet-of-Things (IoT) has been widely adopted in a range of verticals, e.g., automation, health, energy and manufacturing. Many of the applications in these sectors, such as self-driving cars and remote surgery, are critical and high stakes applications, calling for advanced machine learning (ML) models for data analytics. Essentially, the training and testing data that are collected by massive IoT devices may contain noise (e.g., abnormal data, incorrect labels and incomplete information) and adversarial examples. This requires high robustness of ML models to make reliable decisions for IoT applications. The research of robust ML has received tremendous attentions from both academia and industry in recent years. This paper will investigate the state-of-the-art and representative works of robust ML models that can enable high resilience and reliability of IoT intelligence. Two aspects of robustness will be focused on, i.e., when the training data of ML models contains noises and adversarial examples, which may typically happen in many real-world IoT scenarios. In addition, the reliability of both neural networks and reinforcement learning framework will be investigated. Both of these two machine learning paradigms have been widely used in handling data in IoT scenarios. The potential research challenges and open issues will be discussed to provide future research directions.Engineering and Physical Sciences Research Council (EPSRC

    A survey on industry 4.0 for the oil and gas industry: upstream sector

    Get PDF
    The market volatility in the oil and gas (O&G) sector, the dwindling demand for oil due to the impact of COVID-19, and the push for alternative greener energy are driving the need for innovation and digitization in the O&G industry. This has attracted research interest from academia and the industry in the application of industry 4.0 (I4.0) technologies in the O&G sector. The application of some of these I4.0 technologies has been presented in the literature, but the domain still lacks a comprehensive survey of the application of I4.0 in the O&G upstream sector. This paper investigates the state-of-the-art efforts directed toward I4.0 technologies in the O&G upstream sector. To achieve this, first, an overview of the I4.0 is discussed followed by a systematic literature review from an integrative perspective for publications between 2012-2021 with 223 analyzed documents. The benefits and challenges of the adoption of I4.0 have been identified. Moreover, the paper adds value by proposing a framework for the implementation of I4.0 in the O&G upstream sector. Finally, future directions and research opportunities such as framework, edge computing, quantum computing, communication technologies, standardization, and innovative areas related to the implementation of I4.0 in the upstream sector are presented. The findings from this review show that I4.0 technologies are currently being explored and deployed for various aspects of the upstream sector. However, some of the I4.0 technologies like additive manufacturing and virtual reality are least explored

    A Robust Dynamic Edge Network Architecture for the Internet of Things

    No full text
    corecore