1,270 research outputs found

    The Public Service Media and Public Service Internet Manifesto

    Get PDF
    This book presents the collectively authored Public Service Media and Public Service Internet Manifesto and accompanying materials.The Internet and the media landscape are broken. The dominant commercial Internet platforms endanger democracy. They have created a communications landscape overwhelmed by surveillance, advertising, fake news, hate speech, conspiracy theories, and algorithmic politics. Commercial Internet platforms have harmed citizens, users, everyday life, and society. Democracy and digital democracy require Public Service Media. A democracy-enhancing Internet requires Public Service Media becoming Public Service Internet platforms – an Internet of the public, by the public, and for the public; an Internet that advances instead of threatens democracy and the public sphere. The Public Service Internet is based on Internet platforms operated by a variety of Public Service Media, taking the public service remit into the digital age. The Public Service Internet provides opportunities for public debate, participation, and the advancement of social cohesion. Accompanying the Manifesto are materials that informed its creation: Christian Fuchs’ report of the results of the Public Service Media/Internet Survey, the written version of Graham Murdock’s online talk on public service media today, and a summary of an ecomitee.com discussion of the Manifesto’s foundations

    In-situ health monitoring for wind turbine blade using acoustic wireless sensor networks at low sampling rates

    Get PDF
    PhD ThesisThe development of in-situ structural health monitoring (SHM) techniques represents a challenge for offshore wind turbines (OWTs) in order to reduce the cost of the operation and maintenance (O&M) of safety-critical components and systems. This thesis propos- es an in-situ wireless SHM system based on acoustic emission (AE) techniques. The proposed wireless system of AE sensor networks is not without its own challenges amongst which are requirements of high sampling rates, limitations in the communication bandwidth, memory space, and power resources. This work is part of the HEMOW- FP7 Project, ‘The Health Monitoring of Offshore Wind Farms’. The present study investigates solutions relevant to the abovementioned challenges. Two related topics have been considered: to implement a novel in-situ wireless SHM technique for wind turbine blades (WTBs); and to develop an appropriate signal pro- cessing algorithm to detect, localise, and classify different AE events. The major contri- butions of this study can be summarised as follows: 1) investigating the possibility of employing low sampling rates lower than the Nyquist rate in the data acquisition opera- tion and content-based feature (envelope and time-frequency data analysis) for data analysis; 2) proposing techniques to overcome drawbacks associated with lowering sampling rates, such as information loss and low spatial resolution; 3) showing that the time-frequency domain is an effective domain for analysing the aliased signals, and an envelope-based wavelet transform cross-correlation algorithm, developed in the course of this study, can enhance the estimation accuracy of wireless acoustic source localisa- tion; 4) investigating the implementation of a novel in-situ wireless SHM technique with field deployment on the WTB structure, and developing a constraint model and approaches for localisation of AE sources and environmental monitoring respectively. Finally, the system has been experimentally evaluated with the consideration of the lo- calisation and classification of different AE events as well as changes of environmental conditions. The study concludes that the in-situ wireless SHM platform developed in the course of this research represents a promising technique for reliable SHM for OWTBs in which solutions for major challenges, e.g., employing low sampling rates lower than the Nyquist rate in the acquisition operation and resource constraints of WSNs in terms of communication bandwidth and memory space are presente

    Structural health monitoring damage detection systems for aerospace

    Get PDF

    Structural Health Monitoring Damage Detection Systems for Aerospace

    Get PDF
    This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation

    Structural Health Monitoring in Composite Structures: A Comprehensive Review.

    Full text link
    This study presents a comprehensive review of the history of research and development of different damage-detection methods in the realm of composite structures. Different fields of engineering, such as mechanical, architectural, civil, and aerospace engineering, benefit excellent mechanical properties of composite materials. Due to their heterogeneous nature, composite materials can suffer from several complex nonlinear damage modes, including impact damage, delamination, matrix crack, fiber breakage, and voids. Therefore, early damage detection of composite structures can help avoid catastrophic events and tragic consequences, such as airplane crashes, further demanding the development of robust structural health monitoring (SHM) algorithms. This study first reviews different non-destructive damage testing techniques, then investigates vibration-based damage-detection methods along with their respective pros and cons, and concludes with a thorough discussion of a nonlinear hybrid method termed the Vibro-Acoustic Modulation technique. Advanced signal processing, machine learning, and deep learning have been widely employed for solving damage-detection problems of composite structures. Therefore, all of these methods have been fully studied. Considering the wide use of a new generation of smart composites in different applications, a section is dedicated to these materials. At the end of this paper, some final remarks and suggestions for future work are presented

    Addressing training data sparsity and interpretability challenges in AI based cellular networks

    Get PDF
    To meet the diverse and stringent communication requirements for emerging networks use cases, zero-touch arti cial intelligence (AI) based deep automation in cellular networks is envisioned. However, the full potential of AI in cellular networks remains hindered by two key challenges: (i) training data is not as freely available in cellular networks as in other fields where AI has made a profound impact and (ii) current AI models tend to have black box behavior making operators reluctant to entrust the operation of multibillion mission critical networks to a black box AI engine, which allow little insights and discovery of relationships between the configuration and optimization parameters and key performance indicators. This dissertation systematically addresses and proposes solutions to these two key problems faced by emerging networks. A framework towards addressing the training data sparsity challenge in cellular networks is developed, that can assist network operators and researchers in choosing the optimal data enrichment technique for different network scenarios, based on the available information. The framework encompasses classical interpolation techniques, like inverse distance weighted and kriging to more advanced ML-based methods, like transfer learning and generative adversarial networks, several new techniques, such as matrix completion theory and leveraging different types of network geometries, and simulators and testbeds, among others. The proposed framework will lead to more accurate ML models, that rely on sufficient amount of representative training data. Moreover, solutions are proposed to address the data sparsity challenge specifically in Minimization of drive test (MDT) based automation approaches. MDT allows coverage to be estimated at the base station by exploiting measurement reports gathered by the user equipment without the need for drive tests. Thus, MDT is a key enabling feature for data and artificial intelligence driven autonomous operation and optimization in current and emerging cellular networks. However, to date, the utility of MDT feature remains thwarted by issues such as sparsity of user reports and user positioning inaccuracy. For the first time, this dissertation reveals the existence of an optimal bin width for coverage estimation in the presence of inaccurate user positioning, scarcity of user reports and quantization error. The presented framework can enable network operators to configure the bin size for given positioning accuracy and user density that results in the most accurate MDT based coverage estimation. The lack of interpretability in AI-enabled networks is addressed by proposing a first of its kind novel neural network architecture leveraging analytical modeling, domain knowledge, big data and machine learning to turn black box machine learning models into more interpretable models. The proposed approach combines analytical modeling and domain knowledge to custom design machine learning models with the aim of moving towards interpretable machine learning models, that not only require a lesser training time, but can also deal with issues such as sparsity of training data and determination of model hyperparameters. The approach is tested using both simulated data and real data and results show that the proposed approach outperforms existing mathematical models, while also remaining interpretable when compared with black-box ML models. Thus, the proposed approach can be used to derive better mathematical models of complex systems. The findings from this dissertation can help solve the challenges in emerging AI-based cellular networks and thus aid in their design, operation and optimization

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0
    • …
    corecore