463 research outputs found

    Kernel Mean Shrinkage Estimators

    Get PDF
    A mean function in a reproducing kernel Hilbert space (RKHS), or a kernel mean, is central to kernel methods in that it is used by many classical algorithms such as kernel principal component analysis, and it also forms the core inference step of modern kernel methods that rely on embedding probability distributions in RKHSs. Given a finite sample, an empirical average has been used commonly as a standard estimator of the true kernel mean. Despite a widespread use of this estimator, we show that it can be improved thanks to the well-known Stein phenomenon. We propose a new family of estimators called kernel mean shrinkage estimators (KMSEs), which benefit from both theoretical justifications and good empirical performance. The results demonstrate that the proposed estimators outperform the standard one, especially in a "large d, small n" paradigm.Comment: 41 page

    Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians

    Full text link
    This paper presents a general and efficient framework for probabilistic inference and learning from arbitrary uncertain information. It exploits the calculation properties of finite mixture models, conjugate families and factorization. Both the joint probability density of the variables and the likelihood function of the (objective or subjective) observation are approximated by a special mixture model, in such a way that any desired conditional distribution can be directly obtained without numerical integration. We have developed an extended version of the expectation maximization (EM) algorithm to estimate the parameters of mixture models from uncertain training examples (indirect observations). As a consequence, any piece of exact or uncertain information about both input and output values is consistently handled in the inference and learning stages. This ability, extremely useful in certain situations, is not found in most alternative methods. The proposed framework is formally justified from standard probabilistic principles and illustrative examples are provided in the fields of nonparametric pattern classification, nonlinear regression and pattern completion. Finally, experiments on a real application and comparative results over standard databases provide empirical evidence of the utility of the method in a wide range of applications

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study

    Get PDF
    Wavelet analysis has been found to be a powerful tool for the nonparametric estimation of spatially-variable objects. We discuss in detail wavelet methods in nonparametric regression, where the data are modelled as observations of a signal contaminated with additive Gaussian noise, and provide an extensive review of the vast literature of wavelet shrinkage and wavelet thresholding estimators developed to denoise such data. These estimators arise from a wide range of classical and empirical Bayes methods treating either individual or blocks of wavelet coefficients. We compare various estimators in an extensive simulation study on a variety of sample sizes, test functions, signal-to-noise ratios and wavelet filters. Because there is no single criterion that can adequately summarise the behaviour of an estimator, we use various criteria to measure performance in finite sample situations. Insight into the performance of these estimators is obtained from graphical outputs and numerical tables. In order to provide some hints of how these estimators should be used to analyse real data sets, a detailed practical step-by-step illustration of a wavelet denoising analysis on electrical consumption is provided. Matlab codes are provided so that all figures and tables in this paper can be reproduced

    Extreme Entropy Machines: Robust information theoretic classification

    Full text link
    Most of the existing classification methods are aimed at minimization of empirical risk (through some simple point-based error measured with loss function) with added regularization. We propose to approach this problem in a more information theoretic way by investigating applicability of entropy measures as a classification model objective function. We focus on quadratic Renyi's entropy and connected Cauchy-Schwarz Divergence which leads to the construction of Extreme Entropy Machines (EEM). The main contribution of this paper is proposing a model based on the information theoretic concepts which on the one hand shows new, entropic perspective on known linear classifiers and on the other leads to a construction of very robust method competetitive with the state of the art non-information theoretic ones (including Support Vector Machines and Extreme Learning Machines). Evaluation on numerous problems spanning from small, simple ones from UCI repository to the large (hundreads of thousands of samples) extremely unbalanced (up to 100:1 classes' ratios) datasets shows wide applicability of the EEM in real life problems and that it scales well
    corecore