2,255 research outputs found

    A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms

    Full text link
    In this paper a review is presented of the research on eye gaze estimation techniques and applications, that has progressed in diverse ways over the past two decades. Several generic eye gaze use-cases are identified: desktop, TV, head-mounted, automotive and handheld devices. Analysis of the literature leads to the identification of several platform specific factors that influence gaze tracking accuracy. A key outcome from this review is the realization of a need to develop standardized methodologies for performance evaluation of gaze tracking systems and achieve consistency in their specification and comparative evaluation. To address this need, the concept of a methodological framework for practical evaluation of different gaze tracking systems is proposed.Comment: 25 pages, 13 figures, Accepted for publication in IEEE Access in July 201

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Deep Neural Network and Data Augmentation Methodology for off-axis iris segmentation in wearable headsets

    Full text link
    A data augmentation methodology is presented and applied to generate a large dataset of off-axis iris regions and train a low-complexity deep neural network. Although of low complexity the resulting network achieves a high level of accuracy in iris region segmentation for challenging off-axis eye-patches. Interestingly, this network is also shown to achieve high levels of performance for regular, frontal, segmentation of iris regions, comparing favorably with state-of-the-art techniques of significantly higher complexity. Due to its lower complexity, this network is well suited for deployment in embedded applications such as augmented and mixed reality headsets

    MLGaze: Machine Learning-Based Analysis of Gaze Error Patterns in Consumer Eye Tracking Systems

    Full text link
    Analyzing the gaze accuracy characteristics of an eye tracker is a critical task as its gaze data is frequently affected by non-ideal operating conditions in various consumer eye tracking applications. In this study, gaze error patterns produced by a commercial eye tracking device were studied with the help of machine learning algorithms, such as classifiers and regression models. Gaze data were collected from a group of participants under multiple conditions that commonly affect eye trackers operating on desktop and handheld platforms. These conditions (referred here as error sources) include user distance, head pose, and eye-tracker pose variations, and the collected gaze data were used to train the classifier and regression models. It was seen that while the impact of the different error sources on gaze data characteristics were nearly impossible to distinguish by visual inspection or from data statistics, machine learning models were successful in identifying the impact of the different error sources and predicting the variability in gaze error levels due to these conditions. The objective of this study was to investigate the efficacy of machine learning methods towards the detection and prediction of gaze error patterns, which would enable an in-depth understanding of the data quality and reliability of eye trackers under unconstrained operating conditions. Coding resources for all the machine learning methods adopted in this study were included in an open repository named MLGaze to allow researchers to replicate the principles presented here using data from their own eye trackers.Comment: https://github.com/anuradhakar49/MLGaz

    An Intelligent and Low-cost Eye-tracking System for Motorized Wheelchair Control

    Full text link
    In the 34 developed and 156 developing countries, there are about 132 million disabled people who need a wheelchair constituting 1.86% of the world population. Moreover, there are millions of people suffering from diseases related to motor disabilities, which cause inability to produce controlled movement in any of the limbs or even head.The paper proposes a system to aid people with motor disabilities by restoring their ability to move effectively and effortlessly without having to rely on others utilizing an eye-controlled electric wheelchair. The system input was images of the users eye that were processed to estimate the gaze direction and the wheelchair was moved accordingly. To accomplish such a feat, four user-specific methods were developed, implemented and tested; all of which were based on a benchmark database created by the authors.The first three techniques were automatic, employ correlation and were variants of template matching, while the last one uses convolutional neural networks (CNNs). Different metrics to quantitatively evaluate the performance of each algorithm in terms of accuracy and latency were computed and overall comparison is presented. CNN exhibited the best performance (i.e. 99.3% classification accuracy), and thus it was the model of choice for the gaze estimator, which commands the wheelchair motion. The system was evaluated carefully on 8 subjects achieving 99% accuracy in changing illumination conditions outdoor and indoor. This required modifying a motorized wheelchair to adapt it to the predictions output by the gaze estimation algorithm. The wheelchair control can bypass any decision made by the gaze estimator and immediately halt its motion with the help of an array of proximity sensors, if the measured distance goes below a well-defined safety margin.Comment: Accepted for publication in Sensor, 19 Figure, 3 Table

    An end-to-end review of gaze estimation and its interactive applications on handheld mobile devices

    Get PDF
    In recent years we have witnessed an increasing number of interactive systems on handheld mobile devices which utilise gaze as a single or complementary interaction modality. This trend is driven by the enhanced computational power of these devices, higher resolution and capacity of their cameras, and improved gaze estimation accuracy obtained from advanced machine learning techniques, especially in deep learning. As the literature is fast progressing, there is a pressing need to review the state of the art, delineate the boundary, and identify the key research challenges and opportunities in gaze estimation and interaction. This paper aims to serve this purpose by presenting an end-to-end holistic view in this area, from gaze capturing sensors, to gaze estimation workflows, to deep learning techniques, and to gaze interactive applications.PostprintPeer reviewe

    A Novel Authentication Method Using Multi-Factor Eye Gaze

    Get PDF
    A method for novel, rapid and robust one-step multi-factor authentication of a user is presented, employing multi-factor eye gaze. The mobile environment presents challenges that render the conventional password model obsolete. The primary goal is to offer an authentication method that competitively replaces the password, while offering improved security and usability. This method and apparatus combine the smooth operation of biometric authentication with the protection of knowledge based authentication to robustly authenticate a user and secure information on a mobile device in a manner that is easily used and requires no external hardware. This work demonstrates a solution comprised of a pupil segmentation algorithm, gaze estimation, and an innovative application that allows a user to authenticate oneself using gaze as the interaction medium
    • …
    corecore