6 research outputs found

    Modular Isolated LLC DC/DC Conversion System for Offshore Wind Farm Collection and Integration

    Get PDF

    Soft-Switched Step-Up Medium Voltage Power Converters

    Get PDF
    With a ten-year average annual growth rate of 19 percent, wind energy has been the largest source of new electricity generation for the past decade. Typically, an offshore wind farm has a medium voltage ac (MVac) grid that collects power from individual wind turbines. Since the output voltage of a wind turbine is too low (i.e., typically 400 690 V) to be connected to the MVac grid (i.e., 20 40 kV), a heavy line-frequency transformer is used to step up the individual turbines output voltage to the MV level. To eliminate the need for bulky MVac transformers, researchers are gravitating towards the idea of replacing the MVac grid with a medium voltage dc (MVdc) grid, so that MV step-up transformers are replaced by MV step-up power electronic converters that operate at the medium frequency range with much lower size and weight. This dissertation proposes a class of modular step-up transformerless MV SiC-based power converters with soft-switching capability for wind energy conversion systems with MVdc grid. This dissertation consists of two parts: the first part focuses on the development of two novel groups of step-up isolated dc-dc MV converters that utilize various step-up resonant circuits and soft-switched high voltage gain rectifier modules. An integrated magnetic design approach is also presented to combine several magnetic components together in the modular high voltage gain rectifiers. The second part of this dissertation focuses on the development of several three-phase ac-dc step-up converters with integrated active power factor correction. In particular, a bridgeless input ac-dc rectifier is also proposed to combine with the devised step-up transformerless dc-dc converters (presented in the first part) to form the three-phase soft-switched ac-dc step-up voltage conversion unit. In each of the presented modular step-up converter configurations, variable frequency control is used to regulate the output dc voltage of each converter module. The operating principles and characteristics of each presented converter are provided in detail. The feasibility and performance of all the power converter concepts presented in this dissertation are verified through simulation results on megawatts (MW) design examples, as well as experimental results on SiC-based laboratory-scale proof-of-concept prototypes

    Soft-Switched Step-Up Medium Voltage Power Converters

    Get PDF
    With a ten-year average annual growth rate of 19 percent, wind energy has been the largest source of new electricity generation for the past decade. Typically, an offshore wind farm has a medium voltage ac (MVac) grid that collects power from individual wind turbines. Since the output voltage of a wind turbine is too low (i.e., typically 400 690 V) to be connected to the MVac grid (i.e., 20 40 kV), a heavy line-frequency transformer is used to step up the individual turbines output voltage to the MV level. To eliminate the need for bulky MVac transformers, researchers are gravitating towards the idea of replacing the MVac grid with a medium voltage dc (MVdc) grid, so that MV step-up transformers are replaced by MV step-up power electronic converters that operate at the medium frequency range with much lower size and weight. This dissertation proposes a class of modular step-up transformerless MV SiC-based power converters with soft-switching capability for wind energy conversion systems with MVdc grid. This dissertation consists of two parts: the first part focuses on the development of two novel groups of step-up isolated dc-dc MV converters that utilize various step-up resonant circuits and soft-switched high voltage gain rectifier modules. An integrated magnetic design approach is also presented to combine several magnetic components together in the modular high voltage gain rectifiers. The second part of this dissertation focuses on the development of several three-phase ac-dc step-up converters with integrated active power factor correction. In particular, a bridgeless input ac-dc rectifier is also proposed to combine with the devised step-up transformerless dc-dc converters (presented in the first part) to form the three-phase soft-switched ac-dc step-up voltage conversion unit. In each of the presented modular step-up converter configurations, variable frequency control is used to regulate the output dc voltage of each converter module. The operating principles and characteristics of each presented converter are provided in detail. The feasibility and performance of all the power converter concepts presented in this dissertation are verified through simulation results on megawatts (MW) design examples, as well as experimental results on SiC-based laboratory-scale proof-of-concept prototypes

    Soft-Switched Step-Up Medium Voltage Power Converters

    Get PDF
    With a ten-year average annual growth rate of 19 percent, wind energy has been the largest source of new electricity generation for the past decade. Typically, an offshore wind farm has a medium voltage ac (MVac) grid that collects power from individual wind turbines. Since the output voltage of a wind turbine is too low (i.e., typically 400 690 V) to be connected to the MVac grid (i.e., 20 40 kV), a heavy line-frequency transformer is used to step up the individual turbines output voltage to the MV level. To eliminate the need for bulky MVac transformers, researchers are gravitating towards the idea of replacing the MVac grid with a medium voltage dc (MVdc) grid, so that MV step-up transformers are replaced by MV step-up power electronic converters that operate at the medium frequency range with much lower size and weight. This dissertation proposes a class of modular step-up transformerless MV SiC-based power converters with soft-switching capability for wind energy conversion systems with MVdc grid. This dissertation consists of two parts: the first part focuses on the development of two novel groups of step-up isolated dc-dc MV converters that utilize various step-up resonant circuits and soft-switched high voltage gain rectifier modules. An integrated magnetic design approach is also presented to combine several magnetic components together in the modular high voltage gain rectifiers. The second part of this dissertation focuses on the development of several three-phase ac-dc step-up converters with integrated active power factor correction. In particular, a bridgeless input ac-dc rectifier is also proposed to combine with the devised step-up transformerless dc-dc converters (presented in the first part) to form the three-phase soft-switched ac-dc step-up voltage conversion unit. In each of the presented modular step-up converter configurations, variable frequency control is used to regulate the output dc voltage of each converter module. The operating principles and characteristics of each presented converter are provided in detail. The feasibility and performance of all the power converter concepts presented in this dissertation are verified through simulation results on megawatts (MW) design examples, as well as experimental results on SiC-based laboratory-scale proof-of-concept prototypes

    Optimal Power Conversion System Architectures for Utility-Scale Solar-Plus-Storage Farms

    Get PDF
    For utility-scale photovoltaic (PV) projects, solar-plus-storage (SPS) has become an increasingly favored configuration owing to significantly reduced PV and battery storage costs, improved energy dispatchability, and grid-support services with added storage. However, the state-of-the-art power conversion system (PCS) architectures based on central and string inverters feature a low-voltage direct-current (DC)/alternating-current (AC) distribution with underground cables inside solar farms, inducing significant copper losses and costs. Furthermore, these two approaches require additional converters to integrate the paired battery storage, resulting in extra investment and maintenance effort. These factors result in an increased Levelized Cost of Electricity (LCOE) of utility-scale SPS farms and thus dampen the continued proliferation of solar energy. The objective of this research is to propose three new medium-voltage AC (MVAC) PCS architectures to reduce the LCOE of utility-scale SPS farms and thus accelerate the deployment of dispatchable and low-cost solar energy. These three proposed approaches, namely tri-port medium-voltage string inverter (TMVSI), multi-port DC transformer (MDCT), and massively distributed micro-multiport converter (µMC), enable localized DC-coupled battery storage, an MVAC distribution network using standard and low-cost overhead lines, and distributed layout of power conditioning units across the plant with scalable SPS farm building block design. Throughout this dissertation, a 300 kVA/4 kVac TMVSI has been designed, built, and tested to validate its effectiveness and viability, with a focus on the medium-frequency transformer design and control optimization. In addition, enhanced energy dispatchability and grid-support services of a 20 MW/80 MWh TMVSI-based SPS farm have been demonstrated. Finally, a framework for system-level LCOE analysis has been established to validate the advantages of the proposed MVAC architectures in reducing system LCOE of utility-scale SPS farms over a wide range of inverter-loading-ratios.Ph.D
    corecore