9 research outputs found

    Unions of conjunctive queries in SHOQ

    Get PDF
    Conjunctive queries play an important role as an expressive query language in Description Logics (DLs). Decision procedures for expressive Description Logics are, however, only recently emerging and it is still an open question whether answering conjunctive queries is decidable for the DL SHOIQ that underlies the OWL DL standard. In fact, no decision procedure was known for expressive DLs that contain nominals. In this paper, we close this gap by providing a decision procedure for entailment of unions of conjunctive queries in SHOQ. Our algorithm runs in deterministic time single exponential in the size of the knowledge base and double exponential in the size of the query, which is the same as for SHIQ. Our procedure also shows that SHOQ knowledge base consistency is indeed ExpTime-complete, which was, to the best of our knowledge, always conjectured but never proved

    Consequence-based Reasoning for Description Logics with Disjunction, Inverse Roles, Number Restrictions, and Nominals

    Full text link
    We present a consequence-based calculus for concept subsumption and classification in the description logic ALCHOIQ, which extends ALC with role hierarchies, inverse roles, number restrictions, and nominals. By using standard transformations, our calculus extends to SROIQ, which covers all of OWL 2 DL except for datatypes. A key feature of our calculus is its pay-as-you-go behaviour: unlike existing algorithms, our calculus is worst-case optimal for all the well-known proper fragments of ALCHOIQ, albeit not for the full logic

    Scalable Reasoning for Knowledge Bases Subject to Changes

    Get PDF
    ScienceWeb is a semantic web system that collects information about a research community and allows users to ask qualitative and quantitative questions related to that information using a reasoning engine. The more complete the knowledge base is, the more helpful answers the system will provide. As the size of knowledge base increases, scalability becomes a challenge for the reasoning system. As users make changes to the knowledge base and/or new information is collected, providing fast enough response time (ranging from seconds to a few minutes) is one of the core challenges for the reasoning system. There are two basic inference methods commonly used in first order logic: forward chaining and backward chaining. As a general rule, forward chaining is a good method for a static knowledge base and backward chaining is good for the more dynamic cases. The goal of this thesis was to design a hybrid reasoning architecture and develop a scalable reasoning system whose efficiency is able to meet the interaction requirements in a ScienceWeb system when facing a large and evolving knowledge base. Interposing a backward chaining reasoner between an evolving knowledge base and a query manager with support of trust yields an architecture that can support reasoning in the face of frequent changes. An optimized query-answering algorithm, an optimized backward chaining algorithm and a trust-based hybrid reasoning algorithm are three key algorithms in such an architecture. Collectively, these three algorithms are significant contributions to the field of backward chaining reasoners over ontologies. I explored the idea of trust in the trust-based hybrid reasoning algorithm, where each change to the knowledge base is analyzed as to what subset of the knowledge base is impacted by the change and could therefore contribute to incorrect inferences. I adopted greedy ordering and deferring joins in optimized query-answering algorithm. I introduced four optimizations in the algorithm for backward chaining. These optimizations are: 1) the implementation of the selection function, 2) the upgraded substitute function, 3) the application of OLDT and 4) solving of the owl: sameAs problem. I evaluated our optimization techniques by comparing the results with and without optimization techniques. I evaluated our optimized query answering algorithm by comparing to a traditional backward-chaining reasoner. I evaluated our trust-based hybrid reasoning algorithm by comparing the performance of a forward chaining algorithm to that of a pure backward chaining algorithm. The evaluation results have shown that the hybrid reasoning architecture with the scalable reasoning system is able to support scalable reasoning of ScienceWeb to answer qualitative questions effectively when facing both a fixed knowledge base and an evolving knowledge base

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    A Resolution-Based Decision Procedure for SHOIQ.

    No full text
    We present a resolution-based decision procedure for the description logic SHOIQ - the logic underlying the Semantic Web ontology language OWL-DL. Our procedure is goal-oriented, and it naturally extends a similar procedure for SHIQ, which has proven itself in practice. Applying existing techniques for deriving saturation-based decision procedures to SHOIQ is not straightforward due to nominals, number restrictions, and inverse roles - a combination known to cause termination problems. We overcome this difficulty by using the basic superposition calculus, extended with custom simplification rules. © Springer-Verlag Berlin Heidelberg 2006
    corecore