
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 2014

Scalable Reasoning for Knowledge Bases Subject to
Changes
Hui Shi
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Shi, Hui. "Scalable Reasoning for Knowledge Bases Subject to Changes" (2014). Doctor of Philosophy (PhD), dissertation, Computer
Science, Old Dominion University, DOI: 10.25777/sh7k-7a32
https://digitalcommons.odu.edu/computerscience_etds/65

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/65?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

SCALABLE REASONING FOR KNOWLEDGE BASES SUBJECT

TO CHANGES

by

Hui Shi
B.S. July 2003, Hefei University o f Technology, China
M.S. June 2006, Hefei University o f Technology, China

A Thesis Submitted to the Faculty o f
Old Dominion University in Partial Fulfillment o f the

Requirements for the Degree o f

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
August 2014

Approved by:

Steven Zeil (Co-Director)

Xiaoping Liu (Member)

Mohammad Zubair (Member)

Harris Wu (Member)

UMI Number: 3581597

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation PiiblishMiQ

UMI 3581597
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

SCALABLE REASONING FOR KNOWLEDGE BASES SUBJECT TO CHANGES

Hui Shi
Old Dominion University, 2014

Co-Directors: Dr. Kurt Maly
Dr. Steven J. Zeil

ScienceWeb is a semantic web system that collects information about a research

community and allows users to ask qualitative and quantitative questions related to that

information using a reasoning engine. The more complete the knowledge base is, the

more helpful answers the system will provide. As the size o f knowledge base increases,

scalability becomes a challenge for the reasoning system. As users make changes to the

knowledge base and/or new information is collected, providing fast enough response time

(ranging from seconds to a few minutes) is one o f the core challenges for the reasoning

system.

There are two basic inference methods commonly used in first order logic:

forward chaining and backward chaining. As a general mle, forward chaining is a good

method for a static knowledge base and backward chaining is good for the more dynamic

cases. The goal o f this thesis was to design a hybrid reasoning architecture and develop a

scalable reasoning system whose efficiency is able to meet the interaction requirements in

a ScienceWeb system when facing a large and evolving knowledge base.

Interposing a backward chaining reasoner between an evolving knowledge base

and a query manager with support o f "trust" yields an architecture that can support

reasoning in the face o f frequent changes. An optimized query-answering algorithm, an

optimized backward chaining algorithm and a trust-based hybrid reasoning algorithm are

three key algorithms in such an architecture. Collectively, these three algorithms are

significant contributions to the field o f backward chaining reasoners over ontologies.

I explored the idea o f "trust" in the trust-based hybrid reasoning algorithm, where

each change to the knowledge base is analyzed as to what subset of the knowledge base is

impacted by the change and could therefore contribute to incorrect inferences. I adopted

greedy ordering and deferring joins in optimized query-answering algorithm. I introduced

four optimizations in the algorithm for backward chaining. These optimizations are: 1)

the implementation o f the selection function, 2) the upgraded substitute function, 3) the

application o f OLDT and 4) solving o f the "owksameAs" problem.

I evaluated our optimization techniques by comparing the results with and without

optimization techniques. I evaluated our optimized query answering algorithm by

comparing to a traditional backward-chaining reasoner. I evaluated our trust-based hybrid

reasoning algorithm by comparing the performance o f a forward chaining algorithm to

that o f a pure backward chaining algorithm. The evaluation results have shown that the

hybrid reasoning architecture with the scalable reasoning system is able to support

scalable reasoning o f ScienceWeb to answer qualitative questions effectively when facing

both a fixed knowledge base and an evolving knowledge base.

Copyright, 2014, by Hui Shi, All Rights Reserved.

This thesis is dedicated to my parents and my husband for their unconditional love,
support and encouragement.

VI

ACKNOWLEDGMENTS

I would never have been able to finish my dissertation without the guidance o f my

committee members and support from my parents and my husband.

I would love to express my deepest gratitude to my Ph.D. advisors, Dr. Kurt Maly

and Dr. Steven J. Zeil, for their excellent guidance, advice, caring and patience. Thank

you so much for believing in my abilities and thank you so much for your contributions

o f time and ideas to make these past five years a great experience for me.

I would love to thank my parents, for their unconditional and endless love and

encouragement in all my efforts. Thank you for raising me to be happy, healthy,

motivated. Thank you, Mom and Dad!

Finally, I would love to thank my husband, for always being my great partner.

Thank you for your love, patience and support during my Ph.D. study.

TABLE OF CONTENTS

Page

LIST OF TABLES..ix

LIST OF FIGURES..xi

Chapter

1. INTRODUCTION... 1
1.1 SCIENCEWEB...3
1.2 PROPOSED W ORK.. 8
1.3 OBJECTIVES... 14

2. BACKGROUND...16
2.1 RELATED AREAS... 16
2.2 THESIS AREAS.. 21

3. ONTOLOGY REASONING SYSTEMS USING CUSTOM RULES............................ 41
3.1 ONTOLOGY DEVELOPMENT AND A DATA GENERATOR................... 42
3.2 BENCHMARK STUDY USING LUBM AND UOBM45
3.3 ONTOLOGY DATA, CUSTOM RULE SETS AND QUERIES.................... 49
3.4 COMPARISON OF REASONING SYSTEMS ON CUSTOM RULES 52
3.5 ADDITIONAL TECHNIQUES FOR SCALABILITY...................................... 58
3.6 SPECIALIZED RULE SE T S.. 59
3.7 DISCUSSIONS.. 68

4. OPTIMIZED QUERY-ANSWERING ALGORITHM... 70
4.1 DYNAMIC QUERY OPTIMIZATION...70
4.2 EVALUATION OF THE QUERY-ANSWERING ALGORITHM................. 80

5. OPTIMIZED BACKWARD CHAINING ALGORITHM..83
5.1 ISSUES..83
5.2 THE ALGORITHM...84
5.3 OPTIMIZATION DETAILS AND DISCUSSION.. 87
5.4 EVALUATION OF OPTIMIZED BACKWARD CHAINING........................98
5.5 EVALUATION WITH EXTERNAL STORAGE...105
5.6 EVALUATION WITH CUSTOM RULE SETS AND QUERIES.................115

6. TRUST-BASED HYBRID REASONING..125
6.1 CHANGE CLASSIFICATION... 125
6.2 A TRUST-BASED HYBRID REASONING ALGORITHM......................... 126
6.3 CONSERVATIVE TRUST ASSESSMENT AND EXPERIMENTS........... 131

6.4 EVALUATION OF THE TRUST-BASED HYBRID REASONING 141

7. CONTRIBUTIONS AND FUTURE W ORK..150
7.1 CONCLUSIONS...150
7.2 FUTURE WORK..152

REFERENCES.. 153

VITA..177

LIST OF TABLES

Table Page

I. Comparison of ScienceWeb, LUBM and UOBM ..45
II. Query performance on LUBM (0, 1) Unit: seconds...................................... 47

III. Query performance on UOBM (DL-1) Unit: seconds................................... 48
IV. Completeness and soundness o f query on UOBM (DL-1)............................48
V. Size range o f datasets (in trip les)... 49

VI. Caching ratios between processing time o f single query and average
processing time on ScienceWeb ontology for query.......................................56

VII. Comparison o f different semantic reasoning systems....................................58
VIII. Examples o f specialized ru les ...62

EX. Evaluation o f Jena using the specialized rules and original ru les................ 67
X. Querypattens and estimated result s iz e ... 74

XI. Trace o f join o f clauses in the order given.. 75
XII. Trace o f join o f clauses in ascending order o f estimated size.......................75

XIII. Querypattems and their estimated sizes...77
XIV. Trace o f join o f clauses in ascending order o f estimated size.......................78
XV. Trace o f join o f clauses with deferring...78

XVI. Comparison against Jena with Backward Chaining....................................... 81
XVII. Comparison against Jena with with Hybrid Reasoner...................................82

XVIII. Evaluation o f clause selection optimization on LUBM (l).......................... 100
XIX. Evaluation o f clause selection optimization on LUBM(10)........................ 101
XX. Evaluation of dynamic selection versus binding propagation and free

variable modes on LUBM (10) ..102
XXI. Overall Comparison between the backward chaining reasoner and OWLIM-

S E ...104
XXII. Clock Time, CPU Time and I/O Time from experiments with Jena SDB

using LUBM(30)..107
XXIII. Estimated I/O time and ideal percentages from experiments with Jena SDB

using LUBM(30)..108
XXIV. Evaluation o f clause selection optimization on LUBM(1) using TDB as

external storage..110
XXV. Evaluation of clause selection optimization on LUBM(10) using TDB as

external storage.. I l l
XXVI. Evaluation of dynamic selection versus binding propagation and free

variable modes on LUBM(10) using TDB as external storage..................112
XXVII. Comparison among SDB, TDB and OWLIM-SE as external storage on I/O

time per store access on LUBM (50)... 113

X

XXVIII. Comparison between SDB, TDB and OWLIM-SE as external storage on
query response time on LUBM(50)..114

XXIX. Comparison between TDB and OWLIM-SE as external storage on query
response time on LUBM(IOO).. 115

XXX. Size range o f datasets (in triples).. 115
XXXI. Query processing time (ms) for query setl and query set2 on LU B M 121

XXXII. Query processing time for query setl and query set 2 on Science ontology
Unit: ms).. 122

XXXIII. Comparison o f query processing time between in-memory store and
external storage on LUBM(Unit: m s)... 124

XXXIV. Description o f the changes to the ontology, instances and custom rules ..127
XXXV. Results for property-based marking algorithm... 137

XXXVI. Query response time (ms) after adding student..139
XXXVII. Query response time (ms) after addin gundergraduate student....................139

XXXVIII. Sample scenarios.. 140
XXXIX. The number o f students removed and the generated untrusted percentage

...142
XL. The response times (ms) for the LUBM 14 queries with different

percentages o f untrusted facts in knowledge base LUBM (10)...................142
XLI. The relative response times (ms) for the LUBM 14 queries with different

percentages o f untrusted facts in knowledge base LUBM (10)................. 143
XLII. The correlation coefficients o f linear, exponential and power curve for

query response time and the untrusted percentage in knowledge base
LUBM (10)..145

XLIII. Response times (ms) for LUBM 14 queries with different percentages o f
untrusted facts in knowledge base LUBM (3 0).. 146

XLIV. The relative response times for LUBM 14 queries with different
percentages o f untrusted facts in knowledge base LUBM (3 0).................. 147

XLV. The correlation coefficients o f linear, exponential and power curve for
query response time and the untrusted percentage in knowledge base
LUBM (30)..148

LIST OF FIGURES

Figure Page

1. Architecture o f ScienceW eb.. 4
2. Evolution of ScienceW eb...5
3. Architecture o f an Adaptive Reasoning System..11
4. Class tree of research community ontology...43
5. Query processing time o f query 1 for ScienceWeb dataset.......................................55
6. Setup time for transitive rule.. 57
7. Query processing time after inference over transitive rule.. 58
8. Answering a Q uery..73
9. Restricting a SolutionSpace..76
10. Final Join... 79
11. Process o f BackwardChaining... 86
12. Process o f proving one rule...87
13. Process o f proving one goal..88
14. A hybrid reasoning algorithm.. 129
15. Process o f proving the rule b o d y ...130
16. The pattern-based trust marking algorithm.. 134
17. The collectUntrustedDueTo function... 135
18. An example o f curve fitting using exponential regression for Query7 in LUBM

(10)..144
19. An example o f curve fitting using linear regression for Query 13 in LUBM (10)

... 145
20. An example o f curve fitting using exponential regression for Query7 in LUBM

(30)..148
21. An example o f curve fitting using linear regression for Query 13 in LUBM (30)

... 149

1

CHAPTER 1

INTRODUCTION

Consider a potential chemistry Ph.D. student who is trying to find out what the

emerging areas are that have good academic job prospects. What are the schools and who

are the professors doing groundbreaking research in this area? What are the good funded

research projects in this area? Consider a faculty member who might ask, “Is my record

good enough to be tenured at my school? At another school?” Similarly consider an NSF

program manager who would like to identify emerging research areas in mathematics that

are not being currently supported by NSF. It is possible for these people each to mine this

information from the Web. However, it may take a considerable effort and time, and even

then the information may not be complete, may be partially incorrect, and would reflect

an individual perspective for qualitative judgments. Thus, the efforts o f the individuals

neither take advantage o f nor contribute to others’ efforts to reuse the data, the queries,

and the methods used to find the data. Qualitative descriptors such as “groundbreaking

research in data mining” are likely to be accepted as meaningful if they represent a

consensus o f an appropriate subset o f the community at large. Once accepted as

meaningful, these descriptors can be realized in a system and made available for use by

all members o f that community. For example, “groundbreaking” research for one

segment o f the community could be work that results in many publications in refereed

journals. For another segment it could be research that leads to artifacts that make people

more productive, where “more productive” might mean to spend less time on finding

papers in fields related to a given research problem. Qualitative descriptors also evolve

over time. For example, a community may later identify as another factor in “good

research” that the degree to which it is “transformative”. In addition to qualitative

descriptors, useful queries may also be written using quantitative descriptors, for

example: “What is the ordered list o f PhD departments in CS when the ranking is the

amount o f research dollar spent in 2009?”

The system implied by these queries is an example o f a semantic web where the

underlying knowledge base covers linked data about science research that are being

harvested from the Web and are supplemented and edited by community members. The

query examples given above also imply that the system not only supports querying o f

facts but also rules and reasoning as a mechanism for answering queries.

In semantic webs, knowledge is formally represented by an ontology, as a set o f

concepts within a domain, and the relationships between pairs of concepts. The ontology

is used to model a domain, to instantiate entities, and to support reasoning about entities

(or facts). Ontologies represent facts as triples and we shall use the terms facts, triples,

and instances synonymously. Common methods for implementing reasoning over

ontologies are based on First Order Logic, which allows one to define rules over the

ontology.

A number of projects (e.g., Libra [1, 2], Cimple [3], Ametminer [4]) have built

systems to capture limited aspects o f community knowledge and to respond to semantic

queries. However, all o f them lack the level o f community collaboration support that is

required to build a knowledge base system that can evolve over time, both in terms o f the

knowledge it represents as well as the semantics involved in responding to qualitative

questions. These systems are also homogeneous, in the sense that they harvest data from

one type o f resources. A team at ODU is working on ScienceWeb [5, 6], which will

combine diverse resources such as digital libraries for published papers, curricula vitae

from the web, and agency data bases such as NSF’s research grant data base and that will

use collaboration as the fundamental approach to evolve its knowledge base.

1.1 ScienceWeb

In ScienceWeb the ODU team is developing a framework for a system that

provides answers to qualitative and quantitative queries o f a large evolving knowledge

base covering science research. The system will support the community joining together,

sharing the insights o f its members, to evolve:

• the type o f data to be gathered and how to organize them,

• the methods for collecting the data, their sources,

• the process o f collecting them, and validating them,

• the meaning o f qualitative descriptors and queries most needed and how they can

be computationally realized.

ScienceWeb will need to scale to accommodate the substantial corpus o f

information about researchers, their projects and their publications. It will need to

accommodate the inherent heterogeneity o f both its information sources and o f its user

community. Finally, it must allow the semantic (qualitative) descriptors to evolve with

time as the knowledge of the community grows and the problems the community

researches change.

ScienceWeb will develop new tools, technologies, and a framework, allowing a

community to: (a) collaboratively develop and evolve its domain knowledge base, (b)

collaboratively develop queries for answering qualitative questions, and (c)

collaboratively help in automatically harvesting and validating information from different

resources. In the long-term, this framework should prove useful in many domains and

different contexts.

ScienceWeb is a platform where researchers including faculty, Ph.D. students

and program managers can collaboratively work together to get answers o f their queries

from a consensus point o f view or from their specific point o f view. The collaborative

aspect is not only in the construction o f queries but in the construction o f the underlying

ontology, rules and instance data. The proposed architecture o f the ScienceWeb is shown

in Fig. 1.

Harvesting
Methods

Construction

Query
Construction

Ontology
Construction

Rule
Construction Collaborative Clients

Co Ha bora Ive Middleware

Harvesting
Methods
Evolution

Query
Evolution

Ontology
Evolution

Server

Data Source
Web

HaivesterReasoner

DB

Knowledge Base

Fig. 1. Architecture o f ScienceW eb

A traditional data mining architecture involves harvesting from data sources to

populate a knowledge base, which in turn can then answer queries about the harvested

content. This architecture is enhanced by adding a layer o f collaborative clients for

construction o f queries, rules, ontological concepts, and harvesting methods, mediated by

a layer o f server functions that oversee and support the evolution of each o f those

functional groups within the knowledge base.

The system is built, developed and evolved based upon users’ collaborative

contributions as shown in Fig. 2. Users contribute during querying & answering,

harvesting and ontology evolution. Querying is not an ordinary job o f posting, parsing

and retrieving as in a conventional database system. Instead, it becomes an interactive,

collaborative process. Harvesting and ontology evolution also benefit from the

information provided by the users. Thus, collaboration is critical and widely spread

throughout the system.

Contribute

Get answers

Initial Knowledge Basi
(Ruleso+Ontology(
+lnstanoe Datao)

Knowledge Base K
(Rulesi+Ontologyi
^Instance Data,)

-► l
Community

System

Fig. 2. Evolution o f ScienceWeb

Queries and rules are the core o f ScienceWeb system. How the queries and rules

develop based on the collaboration is critical to the evolution o f the system. Here are the

main steps o f development o f queries and rules. First, users strive for consensus on rule

6

expression o f qualitative descriptor and quantitative descriptor, consensus on adding rules

into rule base, and consensus on changing the ontology. Second, when users construct

queries and rules, the existing queries and rules from others’ point o f view should be

made available for help and inspiration. Third, users will have access to methods for

automatic query enrichment and rule prediction that are based on analysis o f existing

queries, rules and relationship among them, and analysis o f behaviors and interests of

specific subsets o f a research community.

In ScienceWeb, a qualitative query is to be answered according to the criteria

given in the form of custom rules by members o f the community, which means inference

from custom rules has to be done before returning the results o f most queries. Current

ontology reasoning systems do support inference from custom rules. But the current

performance o f inferencing from custom rules on large size instance data does not meet

the requirement o f real-time response. I have done experiments on different sizes o f

instance data conforming to the ScienceWeb ontology [5]. The experiment results

explicitly show that when the size o f the instance data grows from thousands to millions,

the reasoning for a qualitative query with new custom rules takes minutes to hours, which

is unacceptable for the real-time query-answering system [5]. It is critical to find

approaches to solve the performance problem.

Some basic scenarios that illustrate the workings o f the modules constituting

ScienceWeb (as shown in Fig. 1) are:

Query construction and evolution:

• The user interacts with the Query Construction client to present his query.

7

• The Query Construction client works with the Query Evolution module and looks

for similar past queries in the knowledge base.

• The user chooses to select one query from similar past queries, or to edit a past

query, or to use the original query, unaltered.

• The query is passed on for query processing.

Query processing:

• The user submits a query, either a formerly constructed query or a new or

modified one, arising from interaction with the Query Construction and Query

Evolution modules.

• The reasoner and DB in the knowledge base work together to return the answers

o f the posted query.

Rule construction and evolution:

• The user constructs the rules (criteria) to express the qualitative descriptor and

quantitative descriptor appearing in a new query for further inference.

• The user interacts with the Rule Construction client to introduce his rule.

• The Rule Construction client works with the Rule Evolution module to look for

similar past rules to help users to compose rule.

• To compose a new rule, the user chooses to edit a past rule or to construct a

totally new rule.

• After the new rule is constructed, the system informs the user that the new rule

has been included in the rule base.

Ontology construction and evolution:

• The user works with the Ontology Construction client to add, edit or delete

classes or properties in the ontology.

• The user interacts with the Ontology Evolution module to make sure that the new

ontology is consistent after the changes.

Harvesting method construction and evolution:

• The user interacts with the Harvesting Method Construction client to describe the

resources from which new instance data can be obtained.

• The harvester crawls some sample data from these resources.

• The Harvesting Method Evolution module verifies the validity o f these resources.

• At a later time, the harvester obtains instance data within valid resources

1.2 Proposed Work

Collaboration is at the heart o f the approach to build ScienceWeb. Such

collaboration includes building and evolving the knowledge base, building, evolving and

reusing queries and identifying, specifying methods and harvesting raw information. The

interaction between the system and people must be effective enough to allow for

collaborative development. Users are not willing to spend more than an hour, perhaps

even only several minutes to wait for the response o f the system when trying, for

example, to create a new query [7],

Reasoning over the knowledge base provides support for answering qualitative

questions and quantitative questions, whose scalability and efficiency influence greatly

the response time o f the system.

ScienceWeb is a system that collects various research related information. The

more complete the knowledge base is, the more helpful answers the system will provide.

9

As the size o f knowledge base increases, scalability becomes a challenge for the

reasoning system. It may handle millions, even hundreds o f millions, o f items in the

knowledge base. As users make changes to the basic descriptors of the knowledge base,

providing fast enough response time (ranges from seconds to a few minutes) in the face

o f changes is one o f the core challenges for the reasoning system.

The goal o f this thesis is to design a hybrid reasoning architecture and develop a

scalable reasoning system whose efficiency is able to meet the interaction requirements in

a ScienceWeb system when facing a large and evolving knowledge base.

1.2.1 Architecture o f an Adaptive Reasoning System fo r a Semantic Web

There are two basic inference methods commonly used in first order logic:

forward chaining and backward chaining [8],

A question/answer system over a semantic web may experience changes

frequently. These changes may be to the ontology, to the rule set or to the instances

harvested from the web or other data sources. For the examples discussed in our opening

paragraph, such changes could occur hundreds o f times a day. Forward chaining is an

example o f data-driven reasoning, which starts with the known data in the knowledge

base and applies modus ponens in the forward direction, deriving and adding new

consequences until no more inferences can be made. Backward chaining is an example of

goal-driven reasoning, which starts with goals from the consequents, matching the goals

to the antecedents to find the data that satisfies the consequents. As a general rule,

forward chaining is a good method for a static knowledge base and backward chaining is

good for the more dynamic cases.

In order to achieve the goal o f improving the performance and scalability o f

10

reasoning, I introduce an adaptive reasoning architecture with a hybrid reasoner, a

knowledge base and management modules. In this architecture, an adaptive mechanism is

adopted to determine what part o f the knowledge base is unaffected by changes and to

switch between forward chaining and backward chaining depending on whether one or

the other performs better. In the knowledge base, the storage will contain core facts

obtained by the harvester, inferred instances from forward chaining, and standard

reasoning rules as well as custom rules.

The resulting architecture o f an adaptive reasoning system is presented in Fig. 3.

To explain this architecture I present first a short description o f the individual

components and then a series o f scenarios that will illustrate the sequence o f modules

executed and the resulting data flow upon various inputs from users.

Input from users: Queries and Changes

A query is the basic way for users to search and retrieve information. For

example, in the query “Who are the groundbreaking researchers in Digital Library?”

“groundbreaking” is a qualitative descriptor that has been evolved by one (or more)

user(s) by developing custom rules; “researcher” and “digital library” are classes in the

ontology.

Changes may be introduced to the ontology, to the custom rule set, or to instances

as the harvested from the web. For example, people might not agree on the ontology as it

was originally designed and they will make changes to reflect their own beliefs.

Similarly, custom rules represent a personal understanding o f qualitative descriptors.

Custom rules will change as more people add their own opinion. Hopefully, these

qualitative descriptors will evolve to a consensus. The collection o f instances will be

11

enriched gradually with the discovery o f new sources o f information by individuals and

the subsequent update o f the methods o f harvesting the information. Thus, changes o f

ontology, custom rule sets, and instances may occur with varying degree o f frequency.

Changes have a significant influence on the process o f storage and performance o f query

no matter whether the query involves inferencing or not.

ChangesQuery

Query &
Inference

Management
Change

Management

Storage
Management

Hybrid
Reasoner Knowledge Base

Forward Chaining
Inferred Triples

Backward Chaining C ore F ac ts

Rules

Fig. 3. Architecture o f an Adaptive Reasoning System

Query & Inference Management

Query & Inference Management is the component that determines what part o f

the knowledge base is unaffected by the changes and that makes the choice between

12

Forward Chaining and Backward Chaining.

Change Management

Change Management records the history o f all changes to the ontology, custom

rules or instances. It not only provides change records to Query & Inference Management

for the adaptive reasoning mechanism, but also communicates with the Storage

Management module to realize the actual changes in the storage module.

Hybrid Reasoner

As a central component in the adaptive reasoning system, the Hybrid Reasoner is

a combination o f forward chaining and backward chaining that is responsible for the

reasoning. Forward Chaining is the component that fires all o f the rules in the system and

generates all inferred triples at once - a process called materialization. After

materialization, answering a query does not involve any reasoning but simple parsing,

searching, and retrieving. Backward Chaining is the component that fires relevant rules in

the system only during the processing o f a query.

Storage Management

The Storage Management organizes storage to improve the scalability and

performance o f inferencing. This component provides mechanisms to group and index

base triples obtained from the users and the harvester module and triples that have been

inferred such that search and updates can be done efficiently.

Storage

There are three separate storage areas o f data in the system: Inferred Triples, Core

Facts, and Rules. Inferred Triples are generated by materialization, Core Facts include

data instances and the ontology, and Rules include standard logic rules, custom rules

13

created at the start o f the system and subsequent changes to these data.

1.2.2 Adaptive Reasoning Mechanism

ScienceWeb is a collaborative platform that integrates efforts from users to define

what data are to be obtained in what way and how the data are to be organized and what

forms the queries will be. After a bootstrapping process has generated an initial

knowledge base, we expect frequent changes to all aspects o f the knowledge base:

ontology, rule set, harvesting methods, and instance data. It is one o f my hypotheses, to

be tested in the future, that changes to the ontology and rule set will stabilize over time

whereas instance data will be continue to be changed as well as periodically harvested.

The Adaptive Reasoning Mechanism is designed to select the appropriate reasoning

method depending partially on the degree o f change. Forward chaining is good in

situations with infrequent or no updates. Queries, including qualitative queries, can then

be executed without any inferencing. Fast response to queries without inference is a merit

o f forward chaining. Any update o f the ontology, custom rules or instances requires

reloading of data and inferencing all over again, resulting in slow responses to queries

issued immediately subsequent to these changes. Backward chaining is good in situations

with fast-changing data because backward chaining starts from the query then searches

all the triples that meet the need, avoiding an entire materialization. As only rules and

data related to the query are involved, answers can be returned within an acceptable time

period. The critical question to be resolved in my thesis is how to delineate the impact o f

changes on the knowledge base so we know when and where to switch from one to the

other reasoning methods.

14

1.3 Objectives

ScienceWeb is a platform where researchers including faculty, Ph.D. students and

program managers can collaboratively work together to get answers o f their queries from

a consensus point of view or from their specific point of view. It will develop new tools,

technologies, and a framework, allowing a community to: (a) collaboratively develop and

evolve its domain knowledge base, (b) collaboratively develop queries for answering

qualitative questions, and (c) collaboratively help in automatically harvesting and

validating information from different resources.

I am addressing in this thesis only a select few o f the challenging research issues

ScienceWeb poses, and I am making certain assumptions about the context for the

problem I will research. I will not address the collaborative aspects o f ScienceWeb,

including collaborative query, harvesting methods and ontology evolution.

In this thesis I will research the issues involved in designing a hybrid reasoning

architecture and developing a scalable reasoning system whose scalability and efficiency

are able to meet the requirements o f query and answering in a semantic web system when

facing both a fixed knowledge base and an evolving knowledge base. For evaluation

purposes, I will develop a base query and rule set as well as instance data from a variety

o f sources. Specifically, the objectives are:

• Support scalable reasoning o f ScienceWeb to answer qualitative questions

effectively when facing a fixed knowledge base

o Support custom rule reasoning to answer qualitative questions

o Improve the scalability and efficiency of the backward chaining reasoner

o Improve the scalability and efficiency of the query and answering process

o Demonstrate completeness and soundness o f the reasoning system

o Demonstrate real-time or near real-time inferencing for a large knowledge

base

• Support scalable reasoning o f ScienceWeb to answer qualitative questions

effectively when facing an evolving knowledge base

o Classify and represent changes that the knowledge base faces

o Introduce the concept o f trust into the reasoning system

o Develop a hybrid reasoning system that will combine forward chaining

and backward chaining and adapt to changes in the knowledge base

o Demonstrate completeness and soundness o f the reasoning system

o Demonstrate real-time or near real-time inferencing for a large knowledge

base

In general, my main goal in this thesis is to support scalable reasoning of

ScienceWeb to answer qualitative questions effectively when facing both a fixed

knowledge base and an evolving knowledge base. For the purpose o f demonstrating the

performance o f our system, I have run experiments on top o f a widely used benchmark

(up to 10 million facts). I have evaluated various optimizations that impact the

effectiveness o f the reasoning system as measured in response time. I have evaluated the

system with respect to the scalability in terms of size of the knowledge base from

thousands to 10 million facts. I have evaluated the completeness and soundness o f the

reasoning system.

1 6

CHAPTER 2

BACKGROUND

In this chapter, I will describe the background of the ScienceWeb project which

provides the context for my thesis and that o f adaptive reasoning for ScienceWeb which

is the thesis’s subject. The Related Areas section gives a general view of the context o f

my thesis area: digital libraries and the semantic web. The Thesis Area section focuses

on the areas directly related to the work in this thesis, such as the background for

reasoning and benchmarks for ontologies.

2.1 Related Areas

2.1.1 Scientific Literature Digital Libraries

Digital libraries are collections o f digital objects. Digital libraries can be

contrasted based on the source o f their information such as scientific literature. The

professional societies such as IEEE [9] or ACM [10] and commercial publishing houses

such as Springer-Verlag [11] provide authoritative digital libraries for scientific

publications. These libraries are limited in scope, being focused by design upon the

publications o f the sponsoring organization. These organizations maintain complete

digital libraries for all their publications, but full access is typically restricted to paying

members o f the societies or subscribers. In addition to traditional search features, they

often provide special features such as references cited by a paper, allow the exploration

o f the co-author relation, and sometimes provide citation counts.

A contrasting class o f digital libraries consists of those systems that obtain their

content from the web. The stored content is typically a metadata record o f a publication

with references to the location o f the actual document. Google Scholar [12] is designed to

provide a simple way to search digital libraries o f scholarly literature. One can search

with keywords o f common metadata o f an article such as author, publication, date, and

area. It provides a citation count, related papers and a listing o f versions available for

download. For articles in professional digital libraries, it provides metadata and a link to

that digital library. DBLP [13, 14] provides bibliographic information on major computer

science conference proceedings and journals. DBLP provides a faceted search on

publication years, publication types, venues and authors. It also provides the functions o f

“Automatic Phrases” and “Syntactic Query Expansion” to generate more patterns and

forms for entering keywords and key phrases. CiteseerX [15, 16], Libra [1 ,2] and

getCITED [17] are other systems that maintain and update their collection by continually

crawling the web. All these systems have different levels o f coverage. For instance,

searching for “Smalltalk-80: the language and its implementation”, CiteceerX does not

include this book in its collection, Google scholar returns 979 as its citation count, Libra

returns a citation count o f 914, while getCITED returns 1. In some of these systems,

community members can edit and correct harvested information.

2.1.2 Science-related Knowledge Bases

There are a large number o f knowledge bases [3, 18-24] for a variety o f domains.

As an example, consider Cimple [3], which is being used to develop DBLife, a

community portal for database researchers. In the Cimple project, researchers developed

a knowledge base that draws its basic information from unstructured data on the web. It

then analyzes the information and discovers relations such as co-authorship and

1 8

concentrates on having a consistent state o f the information that it measures using

precision and recall. It uses members o f the community to correct and refine extracted

information.

Another example o f a sophisticated knowledge base in Computer Science is

AmetMiner [4], which provides profiles o f researchers, associations between researchers,

publications, co-author relationships, courses, and topic browsing. It has the capability to

rank research and papers. It is a centrally developed system with fixed queries and

schemas for data, but the knowledge base is continually growing as new data become

available.

The Mathematics Genealogy Project [25] is a knowledge base that defines the

transitive relation o f advisor-PhD student for the domain o f Mathematics. It is maintained

by a few dedicated users with few automated tools. However, it has obtained significant

coverage within its domain and even has expanded into Computer Science. Systems in

this category are typically sustained by few people but most users are also contributors.

A number of these systems have developed interesting ways o f harvesting

information (converting unstructured or semi-structured information into structured), o f

forming natural language questions into formal queries, and o f enhancing the precision,

recall and efficiency when returning answers.

2.1.3 Ontologies

There has been an increasing effort in organizing web information within

knowledge bases [26-29] using ontologies. Ontologies can model real world situations,

can incorporate semantics which can be used to detect conflicts and resolve

inconsistencies, and can be used together with a reasoning engine to infer new relations

19

or proof statements. The DBpedia [26] project focuses on converting Wikipedia content

into structured knowledge. YAGO [27] is automatically derived from Wikipedia [30] and

WordNet [31]. SwetoDblp is a large ontology derived from bibliographic data o f

computer science publications from DBLP. RKB Explorer [29] harvests information o f

people, projects, publications, research areas from a different types o f resources.

Ontology-driven applications also include data mining [32-35], software engineering

[36], general natural language query systems [37, 38], and systems that help users build

formal semantic queries [26, 39],

A number o f tools exist for collaboratively designing and developing ontologies:

CO-Protege [40], Ontolingua [41], Ontosaurus [42], OntoEdit [43], WebODE [44],

Kaon2 [45], OilEd [46]. With the exception o f OilEd and Protege they provide support

for collaboration and conflict resolution [47],

Changes introduced to ontologies can result in structural and semantic

inconsistencies, the resolution of which remains an open problem. Migration o f instance

data from one version of an ontology to the next is a critical issue in the context o f

evolving ontologies. Some ontology changes, such as creating new classes or properties,

do not affect instances. When these changes occur, instances that were valid in the old

version are still valid in the new version. However, other changes may potentially affect

instances. In this latter case, some strategies can include having tools take their best guess

as to how instances should be transformed, allowing users to specify what to do for a

specific class o f changes, or flagging instances that might be invalidated by changes.

2.1.4 Semantic Web

According to the W3C, "The Semantic Web provides a common framework that

allows data to be shared and reused across application, enterprise, and community

boundaries." [48] The concept o f a semantic web has been adopted in information

retrieval to improve the accuracy o f responses [49-54]. Assigning meanings to documents

would keep documents expressing the same meaning with different words and

eliminating documents expressing different meanings with the same words. For example,

ontology-based information retrieval approaches [50, 51] aim to increase the quality o f

responses by capturing some semantics o f documents. Another example is semantic

indexing [52, 53], which aims to identify appropriate concepts that characterize the

document content. Concepts from the semantic web have been adopted in information

extraction to improve the accuracy o f extraction [55-57], For example, semantic-based

text categorization aims to assign a class label to a document using semantic similarity

[57]. The semantic web has been adopted in the biological sciences to make information

accessible to researchers [58, 59], The semantic web has been applied in corporate

environments to facilitate the integration o f information and provide support for decision

making, for example, business processes [60], knowledge management [61]. A number

of communities have adopted the semantic web as the basis for collaboration, for

example, DBpedia [26], Friend o f a Friend (FOAF) [62], Semantically-Interlinked Online

Communities Project (SIOC) [63] and GoPubMed [64],

2.1.5 Sources o f Information

Many o f the systems already discussed can serve as a source o f information for

the knowledge base to be used in ScienceWeb. An open digital libraries such as DLBP

can provide publications for computer science publications and, as it provides detailed

citation records; it can also be used to build records o f faculty and researchers and their

21

affiliations in the knowledge base. Information on funded research can be obtained from

federal agencies in the United States such as NSF and NIH. NIH also requires all projects

to publish their papers in PubMed [65] which can be used as well.

Significant sources o f information will be the curricula vitae researchers typically

publish on their websites. In computer science, a very high fraction of the researchers

publish all relevant information about their research in their curricula vitae which are

generally available to any crawler. More importantly most researchers regularly update

these curricula vitae.

One of the few knowledge bases that provide information on the quality o f an

object is the study by the National Academy o f Sciences [66] that ranks various

departments and universities with respect to a number o f criteria such as research output

and student funding. It is interesting to note that, in a change to a similar study done ten

years ago, this report allows now user to define their measure of quality and obtain

dynamically rankings according to their view o f quality.

2.2 Thesis Areas

2.2.1 Description Logic (DL)

Research in the field o f knowledge representation and reasoning usually focused

on methods for providing high-level descriptions o f the world that can be effectively used

to build knowledge-based systems. These knowledge-based systems are then able to get

implicit consequences o f their explicitly represented knowledge. Thus, approaches to

knowledge representation are crucial to the ability o f finding inferred consequences [67],

Early knowledge representation methods such as frames [68] and semantic networks [69]

lack well-defined syntax and a formal, unambiguous semantics, which are elements o f

22

qualified knowledge representation. Description logic was introduced into knowledge

representation systems to improve the expressive power. Description logic [70] is a

family o f logic-based knowledge representation formalisms, which is designed to

represent the terminological knowledge from an application domain [71].

There are many varieties o f description logics. Different operators are allowed in these

varieties. The expressive power is encoded in the label for a logic using the following

letters[72]:

• Functional properties.

• T: Full existential qualification (Existential restrictions that have fillers other than

o w l : t h i n g) .

• 'U: Concept union.

• C: Complex concept negation.

• 5: An abbreviation for JALC with transitive roles.

• 3~f: Role hierarchy (subproperties - rdfs:subPropertyOf).

• 3t: Limited complex role inclusion axioms; reflexivity and irreflexivity; role

disjointness.

• O: Nominals. (Enumerated classes o f object value restrictions - o w l : o n e O f ,

o w l : h a s V a l u e) .

• /: Inverse properties.

• N . Cardinality restrictions (o w l : C a r d i n a l i t y , owl : M a x C a r d i n a l i t y) .

23

• Q Qualified cardinality restrictions (available in OWL 2, cardinality restrictions

that have fillers other than o w l : th in g) .

• (D): Use o f datatype properties, data values or data types.

OWL is a DL-based language that is a standard ontology language for the

Semantic Web. The design o f OWL is based on the family of DLs. OWL 2 is based

on the expressive power o f S'ROIQ*v>, OWL-DL is based on SlH O IJfu>, and for OWL-

Lite it is based on SJ-CfJyD>. [72]

A DL knowledge base consists o f two parts: intentional knowledge (TBox), which

represents general knowledge regarding a domain, and extensional knowledge (ABox),

which represents a specific state o f affairs. The “T” in term “TBox” denotes

“terminology” or “taxonomy” which is built based on the properties o f concepts and the

subsumption relationships among the concepts in the knowledge. The “A” in term

“ABox” denotes “assertional” knowledge that includes individuals o f the specific

domain. [67, 73]

2.2.2 Inference Methods

DL Reasoning Algorithm

The main reasoning tasks for DL reasoners are verifying KB consistency,

checking concept satisfiability, concept subsumption and concept instances [71]. There

are many algorithms for reasoning in DLs [71]. First are structural subsumption

algorithms [74, 75], which first normalize the descriptions o f concept, and then compare

the syntactic structure o f the normalized descriptions recursively. The disadvantage o f

this approach is that they are incomplete for expressive DLs, although they are efficient.

Second is the resolution-based approach [76-80], which transforms DLs into first-order

predicate logic and then applies appropriate first-order resolution provers. Third is the

automata-based approach [81-83], which is often more convenient for showing ExpTime

complexity upper-bounds than tableau-based approaches. Fourth is the tableau-based

approach [84], which is currently the most widely used reasoning algorithm for DLs. It

had been previously used for modal logics [85], then introduced in the application o f DLs

by Schmidt-SchauB and Smolka [86] in 1991. This approach is able to deal with large

knowledge bases from applications and is complete for expressive DLs. Furthermore,

highly-optimized tableau-based algorithms [87] are proposed as the basis for the new

Web Ontology Language OWL2.

Inference Methods in First Order Logic

There are three kinds o f inference methods in First Order Logic (FOL), Forward

chaining, Backward chaining and Resolution [8],

Forward chaining is an example o f data-driven reasoning, which starts with the

known data in the KB and applies modus ponens in the forward direction, deriving and

adding new consequences until no more inferences can be made. Rete [88] is a well-

known forward chaining algorithm. Backward chaining is an example o f goal-driven

reasoning, which starts with goals from the consequents matching the goals to the

antecedents to find the data that satisfies the consequents. Resolution is a complete

theorem-proving algorithm that proves the theorems by showing that the negation

contradicts with the premises[8].

Materialization and Query-Rewriting

Materialization and query-rewriting are the most popular inference strategies

25

adopted by almost all o f the state o f the art ontology reasoning systems. Materialization

means pre-computation and storage o f inferred truths in a knowledge base, which is

always executed during loading the data and combined with forward-chaining techniques.

Query-rewriting means expanding the queries, which is always executed during

answering the queries and combine with backward-chaining techniques.

Materialization and forward-chaining are suitable for frequent, expensive

computation o f answers with data that are relatively static. OWLIM [89, 90], Oracle 1 lg

[91], Minerva [92] and DLDB-OWL [93] all implement materialization during loading of

the data. Materialization permits rapid answer to queries because all possible inferences

have already been carried out. But any change in the ontology, instances, or custom rules

requires complete re-processing before responding to any new queries. Furthermore, a

large amount o f redundant data may be produced by materialization o f a large knowledge

base, which may slow the subsequent loading and querying.

Query-rewriting and backward-chaining are suitable for efficient computation o f

answers with data that are dynamic. Virtuoso [94], AllegroGraph [95] and Sher [96]

implement dynamic reasoning when it is necessary. This approach improves the

performance o f answering new queries after data changes and simplifies the maintenance

o f storage. But frequent repeated queries in query-rewriting will require repeated

reasoning, which is time-consuming compared to pure search in materialization. HStar

[97] attempts to improve performance by adopting a strategy of partially materializing

inference data instead of complete materializing.

A hybrid approach may give the best o f both worlds. Jena [98] supports three

ways o f inferencing: forward-chaining, backward-chaining and a hybrid o f these two

2 6

methods. In Jena’s hybrid mode, any hybrid rules will be instantiated according to the

variable bindings from the forward engine. Queries are answered using the backward

engine by applying the merge o f the supplied and instantiated rules to the data (raw data

+ inferred data). This hybrid approach has a fixed division between forward chaining and

backward chaining. In my dissertation, I will explore an adaptive hybrid approach with a

dynamic division between forward chaining and backward chaining for better

performance under changing circumstances.

2.2.3 Combination Method o f Ontologies and Rules

Classification of Combination

Ontologies are used to represent a domain o f interest by defining concepts,

recording relations among them and inserting individuals. Rules are mainly based on

subsets o f First Order Logic (FOL) and possible extensions. There is a trend to integrate

ontologies and rules into the world o f the Semantic Web.

The integration o f ontologies and rules has been clearly reflected in Tim Bemers-

Lee’s “Semantic Web Stack” diagram [99], which illustrates the hierarchy o f languages

that compose the architecture o f the Semantic Web. There exist two reasons why to

integrate ontologies and rules. First is expressive power: rules provide more expressive

power to complement ontology languages, such as “composite properties”. Second is

reasoning techniques: existing considerable research on effective reasoning support o f

rules provide solid basis for ontology inferencing.

Antoniou et al. classify the integration of ontologies and rules according to the

degree o f integration [100], distinguishing between either the hybrid approach or the

homogeneous approach as follows below. (Antoniou’s use o f the term “hybrid” is

27

unrelated to the hybrid reasoners discussed in the preceding section.)

In the homogeneous approach, the ontologies and rules are treated as a new

logical language. There is no separation between predicates o f an ontology and predicates

o f rules. Rules in this new language may be used to define classes and properties o f an

ontology. The inference in this approach is based on the inference o f the new logical

language. Examples o f the homogeneous approach include [101-105]. Some o f these are

very popular in applications, such as DL+log [103], SWRL [104], DLP [105],

In the hybrid approach, there is a strict separation between predicates o f

ontologies and predicates o f rules. Rules cannot define classes and relationships in the

ontology, but some specific relations used in applications. The ontology reasoning and

rule execution are performed by two different reasoners. Inferencing in the hybrid

approach is based on the interaction between the ontology reasoner and the rule reasoner.

There are also many examples o f the hybrid approach AL-Log [106, 107], HD-rules

[108], NLP-DL [109], CARIN [110], dl-programs [111], r-hybrid KBs [112],and

DatalogDL [113].

RDF-entailment and RDFS-entailment are both examples o f vocabulary

entailment that capture the semantics o f RDF and RDFS. Entailment rules are inference

patterns that define what RDF triples [114] can be inferred from the existing

knowledge[l 15]. Horst [116] defines “R-entailment” as an entailment over an RDF graph

based on a set of rules. It is an extension o f “RDFS entailment”, extending the meta­

modeling capabilities of RDFS. Horst defines pD* semantics in [117] as a weakened

variant o f OWL Full. Then in [118] pD* semantics were extended to apply to a larger

subset o f the OWL vocabulary. R-entailments incorporates pD* entailment. OWLIM [89,

28

90] is the practical reasoner based on OWL Horst [116-118], Rule-based OWL reasoners

are implemented based on the entailment rules, and the interpretation o f these entailment

rules relies on the rule engine.

There are three categories o f semantic reasoners that adopt the above inference

methods respectively. The first category is the DL reasoner, such as Racer [119], Pellet

[120, 121], fact++ [122] and hermiT [123], with the inference of these reasoners being

implemented by the popular tableau algorithm or hypertableau [123]. The second

category contains reasoners based on the homogeneous approach, such as rule-based

reasoner OWLIM [89, 90], OWLJessKB [124], BaseVISor [125], Jena [98, 126],

Bossam [127], SweetRules [128], with the inference of these reasoners being based on

the implementation o f entailments in a rule engine. For example: Jena relies on one

forward chaining RETE engine and one tabled Datalog engine [129]. OWLIM [89, 90]

cannot work without support o f TRREE. BaseVISor [125] and Bossam [127] are both

RETE-based reasoners. The Datalog-driven reasoner Kaon2 [130, 131], which reduces a

S~hfl£yx>> KB to a disjunctive Datalog program, and the F-Logic based reasoner F-OWL

[132] are both examples o f homogeneous approach besides rule-based reasoners. The

third category contains hybrid reasoners based on the hybrid approach o f integration o f

ontology and rules as described in Section 2.2.3, such as AL-Log [106, 107], HD-rules

[108], NLP-DL [109], CARIN [110], dl-programs [111], r-hybrid KBs [112], DatalogDL

[113], DLE [133, 134] and Minerva [92] with the inference o f these reasoners being

implemented by integration o f existing DL reasoner and with an existing rule engine.

DL reasoners have great performance on complex TBox reasoning, but they do

not have scalable query answering capabilities that are necessary in applications with

29

large ABoxes [135-137]. Rule-based reasoners are based on the implementation o f

entailments in a rule engine. They have limited TBox reasoning completeness because

they may not implement each entailment or they choose performance over completeness.

TBox and ABox entailment rules are fired against ontological knowledge in Rule-based

reasoners. Hybrid reasoners that integrate a DL reasoner and an existing rule engine can

combine the strong points o f both sides.

An example o f such a hybrid reasoned is DLE [133, 134] which is a mixed

framework combining the DL reasoning o f a DL reasoner and the forward-chaining

reasoning of a rule-based reasoner. By using the efficient DL algorithms, DLE

disengages the manipulation o f the TBox semantics from any incomplete entailment-

based approach. And DLE also achieves faster application o f the ABox related

entailments and efficient memory usage[133]. However, there are three limitations in this

framework:

1. It implements the materialization approach against the existing RDF graph based

on the forward-chaining engine. With fast changing ontology and rules, DLE has

to perform the materialization all over again, which makes some specific query

and answering slower.

2. It does not implement the storage schema for more scalable ABox reasoning when

the size o f ABox exceeds that o f main memory. It has only been tested in main

memory, so the performance is limited due to scalability of rule-based reasoners.

3. It is based totally on the performance o f the rule-based reasoner on firing the

entailments without any optimization.

It has also been mentioned in [133] that approaches described in [138] would

30

increase the performance. Minerva [92] is also a scalable owl ontology storage and

inference system, which combines a DL reasoner and a rule engine for ontology

inference, materializing all inferred results into a database. It implements the

materialization strategy like DLE.

Support of Custom Rules

With custom rules, users can compose rules to introduce new concepts, such as

the definition o f a new property, into the structure o f the TBox. Support o f custom rules

brings more flexibility into the reasoning systems. The combination o f ontologies and

rules makes the support o f custom rules easier in terms o f the expressive power and

inference. In other words, the combination supports custom rules more naturally. SWRL

is a good example. Some reasoners support custom rules by combining the logic and

inferencing o f SWRL to a differing extent, such as Racer, Pellet, hermiT, Bossam,

SweetRules, Kaon2 and Ontobroker. SWRL is a system that follows the homogeneous

approach o f combination o f ontologies and rules. Some reasoners support custom rules

using their own rule formats based on the existing rule engine, such as Bossam, OWLIM,

Jena, etc.

2.2.4 Scalability o f Semantic Store

Storage Scheme

More and more semantic web applications contain large amounts o f data

conforming to an ontology. How to store these large amounts of data and how to reason

with them becomes a challenging issue for the research in fields of Semantic Web and

Artificial Intelligence and many semantic web applications. Research has been

conducted on the storage scheme and the improvement o f reasoning methods for large

size o f data [139],

I will first discuss the storage scheme and its implementation o f different triple

stores.

Generally, there are two main kinds o f triple stores: native stores (employing

conventional file systems) and database-based stores, using relational or object relational

databases.

Examples o f native stores are OWLIM [89, 90], AllegroGraph [95], Sesame

Native [140] ,Jena TDB [98, 126], HStar [97], Virtuoso [94].

AllegroGraph is a powerful graph-oriented database that can store pure RDF as

well as any graph data-structure. The bulk o f an AllegroGraph RDFstore is composed o f

assertions. Each assertion has five fields: subject (s), predicate (p), object (o), graph (g)

and triple-id (i). The s, p, o, and g fields are strings o f arbitrary size. AllegroGraph

maintains a string dictionary which associates the unique string with a special number to

prevent duplication. AllegroGraph creates indices which contain the assertions plus

additional information to speed queries. AllegroGraph also keeps track o f all the deleted

triples. All these features result in fast speed for load and update.[141]

OWLIM has two versions. The “standard” OWLIM version, referred to as

OWLIM-Lite, uses in-memory reasoning and query evaluation. The persistence strategy

o f this version is based on N-Triples. The indices o f OWLIM-Lite are essentially hash

tables. OWLIM-SE is an even more scalable not-in-memory version, which stores the

contents o f the repository (including the “inferred closure”) in binary files with no need

to parse, re-load and re-infer all the knowledge from scratch. OWLIM-SE uses sorted

indices, which are seen as permanently stored ordered lists. OWLIM uses B+ trees to

32

index triples[139],

Jena TDB is a component of Jena for non-transactional native store and query. It

is based on the file system. A TDB store consists o f three parts, the node table, triple and

quad indexes and the prefixes table. The node table generally stores the representation o f

RDF terms, and the node table provides two mappings. One is from Node to Nodeld, and

the other is from Nodeld to Node. The default storage o f the node table for the Nodeld to

Node mapping is a sequential access file, and that for Node to Nodeld mapping is a B+

Tree. Triples are used for the default graph and stored as 3-tuples o f Nodelds in triple

indexes. Quads are used for named graphs and stored as 4-tuples. Each index has all the

information about a triple. The prefixes table uses a node table and an index for GPU

(Graph->Prefix->URI). And customized threaded B+ Trees are used in implementation

o f many persistent data structures in TDB [142],

In the HStar data model, OWL data has been divided into three categories. The

first category contains OWL Class, OWL Property and Individual Resource. The second

category contains the relation between elements in the first category. The third category

contains characters defined on the OWL Property. HStar designs a customized storage

model following the categorization o f OWL data. It uses inner identifier OID instead o f

URI of an entity. HStar stores the mapping from the URI o f an entity to its OID in global

hash tables. Inheritance relations among Classes are stored in a tree structure Class Tree

with a C-index for faster access to the data. The C-index is a B+ tree structure.

Equivalence relations among Classes are stored in a B+ Tree and maintained in memory.

Inheritance relations among Properties are stored in Property Tree. Equivalence relations

among Classes are stored in a B+ Tree and maintained in memory. Inverse relations

33

among Properties are stored as data members o f nodes in Property Tree. Therefore, HStar

organizes its triples according to the categorization o f different relationships and

characteristics. Tree structures and lists are the main data structures that are used in the

implementation o f storage. B+ trees are also used to index triples [97].

RDF data are stored as quads, such as graph, subject, predicate and object tuples

in Virtuoso. All such quads are in one table, which may require different indexing

depending on the query. Bitmap indices are adopted by Virtuoso to improve the space

efficiency. When the graph is known, the default index layout is a GSPO (graph, subject,

predicate and object) as the primary key and OPGS as a bitmap index. When the graph is

left open, the recommended index layout is SPOG for primary key, OPGS, GPOS and

POGS as bitmap indices [143, 144],

Representative database-based stores are: Jena SDB [98], Oracle 1 lg R2 [91],

Minerva [92], (Sesame + MySQL) [140], DLDB-OWL [93] and (Sesame+ PostgreSQL)

[140]. They all take advantage of existing mature database technologies for persistent

storage.

Comparing the native stores with database-based stores illustrates both their

advantages and disadvantages. The advantage o f native stores is that they reduce the time

for loading and updating data. However, a disadvantage o f native stores is that they are

not able to make direct use o f the query optimization features in database systems. Native

stores need to implement the functionality o f a relational database from the beginning,

such as indexing, query optimization, and access control. As for database-based stores,

the advantage is that they are able to make full use o f mature database technologies,

especially query optimization while the disadvantage is that they may be slower in

34

loading and updating data,

Reasoning over Large ABoxes

Due to the large size o f instance data conformed to corresponding ontology in

many knowledge bases, reasoning over large ABoxes has become an issue in the fields o f

semantic web and description logics. There are two main kinds of approaches to dealing

with this issue. The first approach includes designing novel algorithms, schemes and

mechanisms that enhance the reasoning ability on large and expressive knowledge bases.

The second approach adopts simplification by reducing the expressive power o f TBoxes

describing large ABoxes.

In the first approach, Kaon2 has been shown to have better performance on

knowledge bases with large ABoxes but with simple TBoxes [137] when compared with

state-of-the-art DL reasoners such as Racer, FaCT++, and Pellet. One o f the novel

techniques adopted in the implementation o f Kaon2 is reducing a SHIQ(D)knowledge

base KB to a disjunctive Datalog program DD(KB) such that KB and DD(KB) entail the

same set o f ground facts. There are three advantages and extensions based on this

transformation. First, existing research on techniques and optimizations o f disjunctive

Datalog programs could be reused, such as magic set transformation [145]. Second, DL-

safe rules are combined with disjunctive programs naturally by translating them into

Datalog rules, which increases the expressive power of the logic. Third, in [146] an

algorithm is developed for answering conjunctive queries in extended with DL-

safe rules efficiently based on the reduction to disjunctive Datalog.

A scalable ontology reasoning method by summarization and refinement has been

applied in Sher [96], A summary o f the ontology, called a “summary ABox”, is used to

35

reduce the reasoning to a small subset o f the original ABox, keeping the soundness and

completeness [147], The main idea o f the method is to aggregate individuals that belong

to the same concepts into the summary with all the necessary relations that preserve the

consistency. Then queries are performed on the summary ABox rather than on the

original ABox. Another process called refinement is used in determine the answers o f

the queries by expanding the summary ABox to make it more precise. Dolby et al.

claimed that the method o f summarization and refinement can also be treated as an

optimization that any tableau reasoner can employ to achieve scalable ABox reasoning

[148],

Guo et al. [149] have proposed a method that partitions a large and expressive

ABox into small and comparatively independent components following the analyses o f

the TBox. Thus, specific kinds o f reasoning can be executed separately on each

component and the final results are completed through collecting and combining the

results from each small component. After the partition, large ABoxes can be processed by

state-of-the-art in-memory reasoners.

In [150] Wandelt and Moller present another example of the first approach using

the method of “role condensates”, which is a complete, but unsound approach to answer

conjunctive queries in a proxy-like manner.

Using the second approach, Calvanese et al. [151, 152] have proposed a new

Description logic, called DL-Lite, which is not only rich enough to capture basic

ontology languages, but also requires low complexity o f reasoning. The expressive

power of this description logic allows conjunctive query answering through standard

database technology so that the query optimization strategies provided by current DBMSs

36

can be used for the better performance. They concluded that this is the first result o f

polynomial data complexity for query answering over DL knowledge bases.

Hom-SHIQ [153, 154] is an expressive fragment o f SHIQ and the Horn fragment

o f first-order logic. It provides polynomial algorithms for satisfiability checking and

conjunctive query answering on large ABoxes.

2.2.5 Benchmarks

Benchmarks evaluate and compare the performances o f different reasoning

systems. A number of popular RDF and OWL benchmarks exist to conduct evaluation o f

performance over such variables as ABox size, TBox size, TBox complexity, and query

response.

The SP2Bench SPARQL Performance Benchmark [155]has a scalable RDF data

generator that creates DBLP-like data and a set of benchmark queries. SP2Bench has

been applied to a number o f well-known existing engines including the Java engine ARQ

on top o f Jena [156], SDB, Sesame and Virtuoso.

The Berlin SPARQL Benchmark(BSBM) [157] is also designed for comparison

o f the query performance o f storage systems that expose SPARQL endpoints (i.e., a

conformant SPARQL protocol service that enables users to query a knowledge base via

the SPARQL language[158, 159]). BSBM simulates the realistic enterprise conditions

and focuses on measuring SPARQL query performance against large amounts o f RDF

data. It is built around an e-commerce use case with a benchmark dataset, a set o f

benchmark queries and a query sequence. BSBM has been applied to a number of

existing systems such as Virtuoso, Jena TDB, 4store [160], and OWLIM.

The Lehigh University Benchmark (LUBM) [161] is a widely used benchmark for

37

evaluation of Semantic Web repositories with different reasoning capabilities and storage

mechanisms. LUBM includes an ontology for university domain, scalable synthetic OWL

data, fourteen extensional queries and performance metrics.

The University Ontology Benchmark (UOBM) [162] extends the LUBM

benchmark in terms o f inference and scalability testing. UOBM adds a complete set o f

OWL Lite and DL constructs in the ontologies for more thorough evaluation on inference

capability. UOBM creates more effective instance links by enriching necessary properties

and improves the instance generation methods for more evaluation on scalability.

Both LUBM and UOBM have been widely applied to the state o f the art

reasoning systems to show the performance regarding different aspects[161, 162],

Although more and more systems consider the existing benchmarks as a standard

way to evaluate and highlight their performance, some researchers have challenged the

coverage o f these benchmarks [163, 164], Weithoner et al. [163] discussed some new

aspects of evaluation such as ontology serialization, TBox complexity, query caching,

and dynamic ontology changes. They concluded that there is still no current single

benchmark suite that can cover both traditional and new aspects, as well as no reasoner

that is able to deal with large and complex ABoxes in a robust manner. A set o f

requirement that is useful for the future benchmarking suites are given in the end.

2.2.6 Summary o f Major Reasoning Systems

Jena

Jena is a Java framework for Semantic Web applications that includes an API for

RDF. It supports in-memory and persistent storage, a SPARQL query engine and a rule-

based inference engine for RDFS and OWL. The rule-based reasoner implements both

38

the RDFS and OWL reasoners. It provides forward and backward chaining and a hybrid

execution model. It also provides ways to combine inferencing for RDFS/OWL with

inferencing over custom rules. [98]

Pellet

Pellet is a free open-source Java-based reasoner supporting reasoning with the full

expressive power of OWL-DL (S J-fO lN vr) in description logic terminology). It is a

great choice when sound and complete OWL DL reasoning is essential. It provides

inference services such as consistency checking, concept satisfiability, classification and

realization. Pellet also includes an optimized query engine capable o f answering ABox

queries. DL-safe custom rules can be encoded in SWRL. [121]

Kaon2

Kaon2 is a free (free for non-commercial usage) Java reasoner including an API

for programmatic management o f OWL-DL, SWRL, and F-Logic ontologies. It supports

all o f OWL Lite and all features o f OWL-DL apart from nominal. It also has an

implementation for answering conjunctive queries formulated using SPARQL. Much,

but not all, o f the SPARQL specification is supported. SWRL is the way to support

custom rules in Kaon2. [131]

Oracle l l g

As an RDF store, Oracle 1 lg provides APIs that supports the Semantic Web.

Oracle 1 lg provides full support for native inference in the database for RDFS, RDFS++,

OWLPRIME, OWL2RL, etc. Custom rules are called user-defined rules in Oracle l lg. It

uses forward chaining to perform inferencing. [91] In Oracle the custom rules are saved

as records in tables.

39

OWLIM

OWLIM is both a scalable semantic repository and reasoner that supports the

semantics o f RDFS, OWL Horst and OWL 2 RL. OWLIM-Lite is a “standard” edition o f

OWLIM for medium data volumes. It is the edition in which all the reasoning and query

are performed in memory. [90] Custom rules are defined via rules and axiomatic triples.

HermIT

HermiT is an efficient OWL reasoner based on a novel “hypertableau” reasoning

algorithm. HermiT supports the semantics o f OWL2. Since version 1.1, HermiT supports

reasoning with DL Safe rules added to the ontology if there are no complex properties

used in the rule bodies. [123]

2.2. 7 Limitations o f Existing Research

In order to implement an adaptive reasoning framework suitable for

“ScienceWeb”, an efficient, complete and scalable reasoning system with support o f

customs rules that can adapt to changes in the ontology, rules and instances is required.

As mentioned in Section 1.2.3, DL reasoners [119, 120, 122] have sufficient

performance on complex TBox reasoning, but they do not have scalable query answering

capabilities that are necessary in applications with large ABoxes. Rule-based OWL

reasoners [89, 126] are based on the implementation of entailment rules in a rule engine.

They have limited TBox reasoning completeness because they may not implement each

entailment rule or they choose the performance instead of the completeness [133]. Hybrid

reasoners [133, 165] that integrate a DL reasoner and a rule engine can combine the

strong points o f both sides. However, to our best knowledge, existing hybrid reasoners do

not deal with evolving knowledge bases.

40

Forward-chaining and materialization, adopted in reasoning systems [89-93], is

suitable for frequent, expensive computation o f answers with data that are relatively

static. However, any change in the ontology, instances or custom rules requires complete

re-processing before response to the new queries. And large amount o f redundant data

will be produced for large knowledge base, which may slow the performance o f loading

and querying. Backward-chaining and query-rewriting, adopted in reasoning systems [94-

96], is suitable for efficient computation o f answers with data that are dynamic and

infrequent queries. However, frequent, repeated queries will require repeated reasoning

that is a waste o f time. Reasonable adaptive hybrid approach would combine the strong

points o f both patterns for better performance under changing circumstances.

Persistent, external stores, either native stores or database-based stores, are

necessary for a scalable reasoning system. Database-based stores may be slower in

loading and updating data, but they are able to make full use o f mature database

technologies, especially, query optimization. As for native stores, they are not able to

make use o f the query optimization features in database systems. However, native stores

reduce the time for loading and updating data greatly.

In this thesis I combine both forward-chaining and backward-chaining with

support for persistent native stores for scalable reasoning. The purpose o f this

combination is to develop a scalable reasoning system whose scalability and efficiency is

able to meet the requirements of query and answering in a semantic web system when

facing both a fixed knowledge base and an evolving knowledge base.

41

CHAPTER 3

ONTOLOGY REASONING SYSTEMS USING CUSTOM RULES

In ScienceWeb we will be able to answer questions that contain qualitative

descriptors such as “groundbreaking”, ’’top researcher”, and “tenurable at university x”

ScienceWeb is being built using ontologies, reasoning systems and custom based rules

for the reasoning system. In this chapter, I will address the scalability issue for a variety

o f supporting systems for ontologies and reasoning. In particular, I will discuss the

impact o f using custom inference rules that are needed when processing queries in

ScienceWeb.

In this chapter, we evaluate the performance o f Jena, Pellet, KAON2, Oracle 1 lg

and OWLIM using representative custom rules, including transitive and recursive rules,

on top o f our ontology and LUBM [161]. In order to support custom rules, they do need

to combine OWL inference and custom rule inference. These systems support custom

rules in different formats and degrees. We will compare how the size o f the ABox and the

distribution o f the ABox affect their inference performance for different samples o f

custom rules. We also compare query performance and query cache effects.

The remainder o f this chapter is organized as follows: In Section 3.1 we discuss

the ontology for ScienceWeb, a data generator for it and compare the generator to

existing benchmarks. In Section 3.2 we evaluate various reasoning systems on multiple

benchmarks on standard queries. In Section 3.3 we describe the data sets, custom rules

and queries to be used in the experiments given in Section 3.4. Conclusions are given in

Section 3.5.

42

3.1 Ontology Development and a Data Generator

3.1.1 Ontology Development

There have been a number o f studies on reasoning systems using only their native

logic. To provide credibility for our context, we used benchmark data from these studies,

replicate their results with native logic, and then extend them by adding customized rules.

I use LUBM [161] for comparing our results with earlier studies. The second set o f data

will emulate a future ScienceWeb. Since ScienceWeb at this time is only a plan, we need

to use artificial data for experimentation.

Fig. 4 shows the limited ontology class tree we deem sufficient to explore the

scalability issues. The ontology shown in Fig. 4 represents only a small subset o f the one

to be used for ScienceWeb. It was derived to be a minimal subset that is sufficient to

answer a few select qualitative queries. The queries were selected to test the full

capabilities o f a reasoning system and to necessitate the addition o f customized rules.

3.1.2 Synthetic Data Generator

In support o f the performance analysis described above, a flexible system has

been developed for generating a knowledge bases o f varying sizes to serve as

benchmarks [166], This system is called “UnivGenerator” . The major challenge for this

generator is to not only produce ontology-conformant data sets of the desired size, but to

guarantee a plausible distribution for the many properties that relate objects across the

knowledge base. Existing generators such as LUBM [161] tend to work within an

aggregation tree (e.g., for a university object generate a number of departments, for each

department generate a number o f faculty, for each faculty member generate a number o f

43

papers authored by that faculty member). Obtaining reasonable distributions within such

a tree is relatively straightforward. But when the domain expands to include other

aggregation trees (e.g., for each publisher generate several journals, for each journal

generate several papers) that must share objects with other aggregation trees, it is more of

a challenge to maintain reasonable distributions for relations that span such trees (e.g., in

how many different journals will a faculty member publish?) but such distributions are

important to performance analysis o f reasoning systems involving such relations.

^ A III
9 Non FundedProjec

i Faculseati;

AdjunctPrdesso

Fig. 4. Class tree o f research community ontology

44

3.1.3 Comparison of the ScienceWeb, LUBM and UOBM Ontologies

The LUBM, the UOBM and the ScienceWeb ontologies are all about concepts

and relationships in a research community. For instance, concepts such as Faculty,

Publication, and Organization are included in all ontologies, as are properties such as

adv isor, p u b lic a t io n A u th o r , and worksFor. All the concepts o f the LUBM can be

found in the ScienceWeb ontology, albeit the exact name for classes and properties may

not be same.

ScienceWeb will provide more detail for some classes. For example, the

ScienceWeb ontology has a smaller granularity when it describes the classification and

properties o f Publication. ScienceWeb provides more classes, for example, class

ResearchFie ld and class Projects. ScienceWeb also provides more properties for some

classes, for example, isRankedAt and hasProjectCount, where isRankedAt is to

hold rankings o f universities, and hasProjectCount is to hold the number o f projects

o f one university and one department. The addition o f the concepts o f research fields and

projects, corresponding relationships and properties will make ScienceWeb more

representative o f the real research community.

LUBM starts with a university and generates faculty members for that university.

The advisor o f a student must be a faculty in the same university. The coauthors o f a

paper must be in the same university. In ScienceWeb we generate data that reflect a more

realistic situation where faculty can have advisors at different universities and, co-authors

can be at different universities.

UOBM extends LUBM in terms o f inference and scalability testing. UOBM

includes both OWL Lite and OWL DL ontologies for inference capability testing.

45

Moreover, UOBM generates links between individuals from different universities for

scalability testing. Table I shows a comparison o f the ScienceWeb, LUBM and UOBM

including number o f classes, properties and individuals per university. Following the

rules o f [162], the number o f classes and properties used to define ABox are denoted in

the bracket.

TABLE I
C o m p a r i s o n o f S c ie n c e W e b , LUBM a n d UOBM

Ontology+datasets ScienceWeb The LUBM The UOBM
OWL Lite OWL DL

No. o f Classes 31(20) 43(22) 51(41) 69(59)
No. o f Datatype

Property 30(23) 7(3) 9(5) 9(5)

No. o f Object
Property 18(13) 25(14) 34(24) 34(24)

No. o f Individuals
in TBox 0 0 18 58

No. o f Statements
per University 3,400-7,000 90,000-

110,000
210,000-
250,000

220,000-
260,000

No. o f Individuals
per University 300-500 8,000-15,000

10,000-
20,000

10,000-
20,000

Table I illustrates the size o f LUBM ontology and how the LUBM synthetic data

set scales up as we change the number o f universities. ScienceWeb tends to generate

classes and relationships that are more suggestive o f a real research community. The

ScienceWeb ontology in Table I is a limited ontology that represents only a small subset

o f the one to be used for ScienceWeb. It was derived to be a minimal subset that is

sufficient to answer a few select qualitative queries.

3.2 Benchmark Study Using LUBM and UOBM

In this section, I replicate a benchmark study on LUBM and UOBM for the

various reasoning systems under consideration. In the study, I employ the extensional

46

queries contained in the benchmarks themselves.

LUBM contains scalable synthetic OWL data. Different size o f dataset can be

generated for experiments. To identify the dataset, I use the following notation from

paper [161] in the subsequent description: LUBM (N, S): The dataset that contains N

universities beginning at UniversityO and is generated using a seed value o f S.

The instance generator in UOBM can create instances according to user specified

ontology (OWL Lite or OWL DL). In addition, the user can specify the size o f the

generated instance data by setting the number o f universities to be constructed. UOBM

contains 6 test datasets for experiments set up for various goals: Lite-1, Lite-5, Lite-10,

DL-1, DL-5 and DL-10. We use the following notation to identify these test datasets in

the subsequent description: UOBM (Lite/DL-N): The dataset that contains N universities

and is conformed to OWL Lite/OWL DL.

Due to scalability limits, some of the reasoning systems, such as Jena and Pellet,

are not able to answer queries on large datasets, I therefore collected experimental results

only on the small dataset LUBM (0, 1). These are presented in Table II. There are 14

extensional queries involved in this experiment.

In Table II, if there is a time-out (one hour), we mark it with an “n/a”. Generally,

most ontology reasoning systems have a reasonable performance except for Jena. Jena

could not answer 7 out o f 14 queries and its answer to query 6 is incomplete. Pellet does

not return answers for query 2 and query 9. OWLIM has poor performance for query 7

and is not able to answer query 9 before time-out. Query 9 is more complicated than

query 7. There are 2 constraints in query 7 while query 9 is featured by the most classes

and properties in all the queries with 3 constraints. The complexity o f a query does

47

influence the querying performance o f OWLIM. Kaon2 and Oracle have the best overall

performance.

TABLE II
Q u e r y P e r f o r m a n c e o n LUBM (0 ,1) U n i t : S e c o n d s

Jena PeUet Oracle Kaon2 OWLIM
qi n/a 4.6 0.5 0.4 0.1
q2 n/a n/a 0.9 0.5 0.1

q3 6.4 4.5 0.5 0.4 0.1
q4 354.2 4.5 1.5 0.6 0.1
qs n/a 4.8 0.8 0.6 0.4
q6 6.9 5.3 1.5 0.6 2.9
q7 . n/a 870 1.5 0.6 56.6
q8 n/a 684.1 2.7 1 7.3
q9 n/a n/a 95.8 0.7 n/a

qlO n/a n/a 0.8 0.6 0.1
q l l 191 4.6 0.6 0.4 0.2

q i2 6.2 5.8 0.7 0.6 0.1
q!3 208.5 4.7 0.6 0.6 0.1
q!4 6.8 5.3 1.4 0.4 1.7

The goal of our second experiment is to compare the reasoning systems in terms

o f query performance and completeness and soundness o f the results using UOBM.

Again, due to scalability limits, some reasoning systems are not able to answer queries on

large datasets. I therefore only present the experiment results on the small dataset UOBM

(DL-1). These are shown in Table III and Table IV. 15 extensional queries are involved

in this experiment.

In Table III, if there is a time-out (one hour), we mark it with an “n/a”. OWLIM is

the only one system that could answer all the queries. The completeness and soundness of

results are shown in Table IV. Oracle also performs well with a success on 14 out o f 15

queries.

48

TABLE III
Q u e r y P e r f o r m a n c e o n UOBM (DL-1) U n i t : S e c o n d s

Jena PeUet Oracle Kaon2 OWLIM
q 1 n/a 9.9 1.8 n/a 0.2
q2 n/a 9.8 2 n/a 0.8
q3 n/a 10.2 0.8 n/a 0.4

q4 n/a n/a 1.1 n/a 0.5
q5 n/a 9.9 0.7 n/a 0.1

q6 n/a 10.9 0.8 n/a 0.2
q7 n/a 10.3 0.7 n/a 0.2
q8 n/a 15.2 0.8 n/a 0.2

q9 n/a 9.6 1 n/a 0.4
qlO n/a 9.3 0.6 n/a 0.1
q ll n/a 1446.1 6.6 n/a 2.9
q i2 n/a 11 1.3 n/a 0.4
q i3 n/a n/a 0.5 n/a 0.3
q l4 n/a 1725.7 2.4 n/a 2.2
q l 5 n/a 14.3 0.4 n/a 0.1

TABLE IV
C o m p l e t e n e s s a n d S o u n d n e s s o f Q u e r y o n UOBM (DL-1)

Jena Pellet Oracle Kaon2 OWLIM

qi n/a 32/32 32/32 n/a 32/32
q2 n/a 2512/2512 2512/2512 n/a 2512/2512
q3 n/a 666/666 666/666 n/a 666/666
q4 n/a n/a 383/383 n/a 383/383
q5 n/a 0/200 200/200 n/a 200/200
q6 n/a 165/165 165/165 n/a 165/165
q7 n/a 19/19 19/19 n/a 19/19
q8 n/a 303/303 303/303 n/a 303/303
q9 n/a 0/1057 1057/1057 n/a 1057/1057
qlO n/a 24/25 25/25 n/a 25/25
q l l n/a 934/953 953/953 n/a 953/953
qi2 n/a 65/65 65/65 n/a 65/65
qi3 n/a n/a 0/379 n/a 379/379
q l4 n/a 0/6643 6643/6643 n/a 6643/6643
qi5 n/a 0/0 0/0 n/a 0/0

49

3.3 Ontology Data, Custom Rule Sets and Queries

The UnivGenerator that I described in Section 3.1.2 generates a specified number

o f ontology triples within specific constraints. For instance, the user can specify that the

number o f publications o f an associate professor ranges within 10-15 publications and the

number o f co-authors ranges from 0-4. The generator will ensure that triples are

generated within these constraints and will make sure that the relations, e.g. co-author,

are properly instantiated. The size range o f the datasets in our experiments is listed in

Table V. I generate 7 datasets for LUBM and 9 datasets for ScienceWeb, both ranges

from thousand to millions for our experiment.

TABLE V
S iz e R a n g e o f D a t a s e t s (in T r i p l e s)

Data

setl

Data

set2

Data

set3

Data

set4

Data

set5

Science
Web 3511 6728 13244 166163 332248

LUBM 8814 15438 34845 100838 624827

Data

set6

Data

set7

Data

set8

Data

set9

Science
Web 1327573 2656491 3653071 3983538

LUBM 1272870 2522900

I now present the 5 rule sets and 3 corresponding queries that I will use in the next

set of experiments. Rule sets were defined to test basic reasoning to allow for validation,

such as co-authors having to be different, and to allow for transitivity and recursion. Rule

sets 1 and 2 are for the co-authorship relation, rule set three is used in queries for the

50

genealogy o f PhD advisors (transitive) and rule set 4 is to enable queries for distinguished

advisors. Rule set 5 is a combination o f the first 4 sets.

Rule set 1: Co-author
a u th o rO f(? x , ?p)A auth orO f(Py, ?p)
=>coAuthor(?x, ?y)
Rule set 2: validated Co-author
au th o rO f(? x , ? p)A au th orO f(?y , ? p)A n otE qua l(? x , ?y)

=> coAuthorCPx, ?y)
Rule set 3: Research ancestor (transitive)
a d v is o rO f(?x, ? y) => re s e arch A n ces to r(? x , ?y)
researchA n cestor(P x , ? y)A research A n ces to r(? y , ?z)
= * researchA n cesto r(? x , ?z)
Rule set 4: Distinguished advisor (recursive)
a d v is o rO f(? x ,? y)A a d v is o rO f(? x ,P z)A n o tE q u a l(? y , ?z)
AworksFor(?Xj ?u)
= * d is t in g u is h A d v is o r (? x , ?u)

a d v is o rO f(? x , ? y)A d is t in g u is h A d v is o r (> y , Pu)AworksFor(?x,?d) =>
d is t in g u is h A d v is o r (? X j ?d)
Rule set 5: combination of above 4 rule sets.

In the Jena rules language, these rules are encoded as:

^ in c lu d e <OWL>.
[r u l e l : (?x u n i:a u th o rO f ?p) (?y u n ira u th o rO f ?p) n o tE q u a l(? x ,? y)
-> (? x un i:coAuthor ?y)]
[r u le 2 : (?x u n i:a d v is o rO f ?y) -> (?x u n i:re search A n ce s to r ?y)]
[r u le 3 : (?x u n i: re search A n ce s to r ? y)(? y u n i : researchAncestor ?z)
-> (? x u n i:research A n cesto r ? z)]
[r u le 4 : (?x u n i:a d v is o rO f ?y) (?x u n i : adv iso rO f ?z
notEqualCPy,?z) (?x un i:w orksFor ?u) -> (?x
u n i:d is t in g u is h A d v is o r ? u)]
[r u le 5 : (?x u n i:a d v is o rO f ?y) (?y u n i :d is t in g u is h A d v is o r ?u) (?x
uni:worksFor ?d) -> (?x u n i :d is t in g u is h A d v is o r ?d)]

In SWRL these rules are less compact. Rule 1 would be encoded as:

< s w r l :V a r ia b le r d f : ab o u t= "#x" />
< s w r l :V a r ia b le r d f : ab o u t= "#y" />
<swr1 : V a r ia b le r d f : a b o u t= " # p " />

<sw rl: Im p r d f :a b o u t= " r u le l ' '>

51

< s w r l : head r d f : p a rs e T y p e = " C o lle c t io n " >
< s w r l : In d iv id u a lP ro p ertyA to m >

< s w r l :p ro p e r ty P re d ic a te
r d f : resource="#coA uthor"/>

<sw rl:a rgum ent1 r d f : re s o u rc e = " # x " />
< s w r l : argument2 r d f : reso u rce= "#y" />

< / s w r l : In d iv id u a lP ro p ertyA to m >
< /s w rl:h e ad >
<sw rl:body rd f :p a rs e T y p e = " C o lle c t io n " >

< s w r l : In d iv id u a lP ro p ertyA to m >
< s w r l :p ro p e r ty P re d ic a te

r d f : resou rce="#au thorO f" />
< s w rl:a rg u m e n tl r d f : re s o u rc e = " # x " />
< s w r l : argument2 r d f : resou rce= "#p" />

< / s w r l : In d iv id u a lP ro p ertyA to m >
< s w rl: In d iv id u a lP ro p e rty A to m >

< s w r l :p ro p e r ty P re d ic a te
r d f : resou rce="#au thorO f" />

< sw rl:a rg u m en tl r d f : reso u rc e= "#y" />
<sw rl:argum ent2 r d f : resou rce= "#p" />

< / s w r l : In d iv id u a lP ro p ertyA to m >
< s w r l : D i f fe re n t In d iv id u a ls A to m >

< s w rl:a rg u m e n tl r d f : reso u rc e= "#x" />
<sw rl:argum ent2 r d f : reso u rce= "#y" />

< /s w r l :D i f fe r e n t In d iv id u a ls A to m >
< / s w rl:b o d y>

< /s w r l : Imp>

In OWLIM, rulel would be encoded as:

Id : r u l e l
x < u n i:a u th o rO f> p [C o n s tra in t x != y]
y < u n i:a u th o rO f> p [C o n s tra in t y != x]

x <uni:coAuthor> y [C o n s tra in t x != y]

I have composed 3 queries to use in these tests, expressed in SPARQL notation:

Query 1: Co-author
PREFIX u n i :< h t tp : / /w w w .o w l-
o n to lo g ies .com /O nto logyl)n ivers ityResearchM odel.ow l#>

http://www.owl-

52

SELECT ?x ?y
WHERE {?x un i:coA uthor ?y. ?x uni:hasName
\ " F u l lP r o fe s s o r 0 _ d 0 _ u 0 \” }
Query 2: Research ancestor
PREFIX u n i : <h t tp : / /w w w .o w l-
on to lo g ies .co m /O n to lo g yU n ive rs ityR esearch M o d e l .owl#>
SELECT ?x ?y
WHERE {?x u n i:re search A n ce s to r ?y. ?x uni:hasName
\" F u l lP ro fe s s o r0 _ d 0 _ u 0 \” } ;
Query 3: Distinguished advisor
PREFIX u n i :< h t tp : / /w w w .o w l-
on to lo g ies .co m /O n to lo g yU n ive rs ityR esearch M o d e l.o w l#>
SELECT ?x ?y
WHERE {?x u n i:d is t in g u is h A d v is o r ?y. ?y u n i : h a s T i t le
\"d ep artm en t0u 0 \" >;

Queries are used with the rules sets that define the properties employed in the

queries. Rule sets 1 and 2 are tested with query 1. Rule set 2 is tested with query 2. Rule

sets 3 and 4 are tested with queries 2 and 3. Rule set 5 is tested with all queries.

3.4 Comparison of Reasoning Systems on Custom Rules

3.4.1 Experimental Environment and Metrics

The latest versions (as o f the date o f these experiments, May 2010) o f OWL

reasoning systems supporting custom rules have been chosen for the evaluation: Jena

(2.6.2, 2009-10-22 release), KAON2 (2008-06-29 release), Pellet (2.2.0, 2010-07-06

release), OWLIM (3.3, 2010-07-22 release), and Oracle l l g R2 (11.2.0.1.0, 2009-09-01

release). As I wanted to insure that I was obtaining results that were commensurate with

the earlier benchmark studies, I have taken the two main metrics from[167]. These are:

• Setup time: This stage includes loading and preprocessing time before any query

can be made. This includes loading the ontology and instance data into the

reasoning system, and any parsing, inference that needs to be done.

http://www.owl-
http://www.owl-

53

• Query processing time: This stage starts with parsing and executing the query and

ends when all the results have been saved in the result set. It includes the time o f

traversing the result set sequentially. For some systems (Jena, Pellet, Kaon) it

might include some preprocessing work.

All the tests were performed on a PC with a 2.40 GHz Intel Xeon processor and

16 G memory, running Windows Server 2008 R2 Enterprise. Sun Java 1.6.0 was used for

Java-Based tools. The maximum heap size was set to 800M. I defined one hour as the

time-out period.

3.4.2 Evaluation Procedure

Our goal is to evaluate the performance of different ontology reasoning systems in

terms o f reasoning and querying time using custom rules.

I am interested in two aspects o f scalability. One aspect is simply the size o f data.

That is, I am interested in the performance o f a system as the number o f triplet’s changes

from small toy size to realistic sizes o f millions. A second aspect o f scalability I am

interested is the expressive power o f reasoning. That is, I am interested what some o f the

limits are in the type o f questions ScienceWeb users can ask. To that end, I will perform

the experiments with the transitive rules where we have different limits on the transitive

chain.

Finally I am interested in the impact o f using realistic models o f the instance

space (ScienceWeb) versus a simpler model (LUBM).

3.4.3 Comparison on Custom Rules

Setup Time

I begin by comparing setup times for the five systems under investigation. The

54

generated data sets contained thousands to millions o f triples o f information. The setup

time can be sensitive to the rules sets used for inferencing about the data because some

rules require filters (e.g., “not equal”) and some rules express transitivity, or recursion.

All will consequently involve different ABox reasoning with different sizes and

distributions o f ABoxes. Therefore, each system-ontology pair was examined using each

o f the 5 rules sets.

Jena, Pellet and Kaon2 load the entire data set into memory when performing

inferencing. For these systems, therefore, the maximum accepted size o f the ABox

depends on the size of memory. In our environment, Jena and Pellet could only provide

inferencing for small ABoxes (less than 600,000 triples). Kaon2 was able to return

answers for ABoxes o f up to 2 million triples. OWLIM and Oracle have better scalability

because they are able to exploit external memory. They both are able to handle the largest

data set posed, which is nearly 4 million triples. As the dataset grows, it turns out Oracle

has the best scalability.

For smaller ABoxes (less than 2 million triples), Kaon2 usually has the best

performance on setup time. However, as the size o f the ABox grows past that point, only

Oracle 1 lg and OWLIM are able to finish the setup before time-out occurs.

The performances of these systems vary considerably, especially when the size of

dataset grows. OWLIM performs better than Oracle 1 lg on rule sets 1, 2 and 3. However,

OWLIM is not good at rule set 4 with the ScienceWeb dataset. This appears to be

because the ScienceWeb dataset involves more triples in the ABox inference for rule set

4 than does the LUBM dataset. Thus, when large ABox inferencing is involved in set-up,

Oracle 11 g performs better than OWLIM. Oracle 1 lg needs to set a “filter” when

55

inserting rule set 2 into the database to implement “notEqual” function in this rule set. As

the ABox grows, more data has to be filtered while creating the entailment. This filter

significantly slows the performance. For LUBM, Oracle 11 g is not able to finish the setup

for a one million triple ABox in one hour while OWLIM could finish in 100 seconds.

Some data points are missing for larger size o f datasets because we cut off experiments

lasting longer than an hour.

Query Processing Time

Based on our results, OWLIM has the best query performance in most datasets in

our experiments, but this superiority is overtaken as the size o f dataset grows. Fig. 5

shows the time required to process query 1 on the ScienceWeb dataset.

10

M
C

8o
43-

E

»)ena

■“• —pellet

oracle

)(kaon2

— . owlim

1 2 3 4 5

Size of D atasetfm ilions of triples)

Fig. 5. Query processing time o f query 1 for ScienceWeb dataset

In actual use, one might expect that some inferencing results will be requested

repeatedly as component steps in larger queries. If so, then the performance o f a

56

reasoning system may be enhanced if such results are cached.

Next, we therefore record the processing time for single queries and the average

processing time for repeated queries. The average processing time is computed by

executing the query consecutively 10 times. The average query processing time has been

divided by the single query processing time to detect how caching might affect query

processing. Table VI shows the caching ratio between processing time o f one single

query and average processing time on ScienceWeb ontology for query 1. Based on our

results, OWLIM is the only one that does not have a pronounced caching effect. The

caching effect o f other systems becomes weaker as the size o f dataset grows.

TABLE VI
C a c h in g R a t io s b e t w e e n P r o c e s s in g T im e o f S in g l e Q u e r y a n d A v e r a g e P r o c e s s in g T im e

o n Sc i e n c e W e b O n t o l o g y f o r Q u e r y

Data
sett

Data
set2

Data
set3

Data
set4

Data
set5

Data
set6

Data
set7

Data
set8

Data
set9

Jena 6.13 5.57 5.50 2.40 1.87

Pellet 6.03 5.48 4.91 1.56 1.32

Oracle 5.14 2.77 2.65 5.59 3.40 3.49 3.75 3.75 8.22

Kaon2 6.34 5.59 5.59 2.24 1.65 1.02 1.02

OWLIM 1.83 1.83 1.30 1.48 1.20 1.05 1.07 1.01 1.03

3.4.4 Comparison among Systems on Transitive Rule

I anticipate that many ScienceWeb queries will involve transitive or recursive

chains o f inference, therefore, I next examine the behavior o f the system on such chains

of inference. Because the instance data for the LUBM and ScienceWeb ontologies may

not include sufficient long transitive chains, I created a group of separate instance files

containing different number o f individuals that are related via the transitive rule in rule

set 3.

As Fig. 6 and Fig. 7 show, Pellet only provides the results before time-out when

the length o f transitive chain is 100. Jena’s performance degrades badly when the length

is more than 200. Only Kaon2, OWLIM and Oracle 1 lg could complete inference and

querying on long transitive chains.

Kaon2 has the best performance in terms o f setup time, with OWLIM having the

second best performance. For query processing time, OWLIM and Oracle have almost

same performance in terms o f querying time. When the length of transitive chain grows

from 500 to 1000, the querying time o f Kaon2 has a dramatic increase.

2500

2000

£ 1500

E 1000

500

— *
200 400 600 800 1000

transtive chain length

e - j e n a

pellet

e - o r a c l e

*— kaon2

►—owlim

1200

Fig. 1. Setup time for transitive rule

The comparison o f different semantic reasoning systems is shown in Table VII.

58

TABLE VII
C o m p a r is o n o f D i f f e r e n t S e m a n t ic R e a s o n in g Sy s t e m s

OWLIM
Kaon2 Pellet Jena SwiftOWLIM BigOWLIM Oracle

Supported
expressive
power for
reasoning

SHIQ(D) SROIQ(D)
varies

by
reasoner

R-entailment,
OWL 2 RL

OWL:
union,

intersection
, OWL 2

RL

Reasoning
algorithm

Resolutio
n &

Datalog
Tableau Rule-

based
Rule-based Rule-based N /A

In-memory
reasoning Yes Yes Y es Yes No No

Materializati­
on No Yes Yes Yes Y es Y es

Open-source N o Y es Y es No N o No

70

60

50

40

30

20

10

0
2000 400 600 800 1000 1200

♦ jena

- • - p e l l e t

- • - o r a c le

)(kaon2

“ i—owlim

transitive chain length

Fig. 2. Query processing time after inference over transitive rule

3.5 Additional Techniques for Scalability

In this section, I explore the additional techniques for improving the scalability o f

the ontology reasoner. I will present transformation o f RDFS rules [115] and OWL Horst

fragments [116] for a given ontology such that reasoning will be more efficient. I will

59

also provide techniques o f loading RDF files by property during the reasoning process

instead o f pre-loading them all.

3.6 Specialized Rule Sets

In order to improve the scalability o f the ontology reasoning, I transform RDFS

rules and OWL Horst fragments by incorporating the semantics of the ontology into the

rules directly.

3.6.1 Description of the Transformation

An example o f a rule is:

(x i p i y i) (x 2 P2 y 2 > (p i P b 1 c i) (p 2 p b 2 c 2) - > (x i p b 1 c i)

where X i , x 2 , y i , y 2 , c i , c 2 j p i , p 2 are variables, and pb1 P b2 are known

properties.

The first step is to perform Tbox reasoning (reasoning about ontology class and

property axioms).

The second step is to specialize the premises that are related to Tbox reasoning,

such as (p i p b 1 C i) (p 2 p b 2 C 2) , which is to find all o f the facts in the knowledge

base including inferred facts that make (p i p b 1 C i) (p 2 P b 2 c2) true.

All o f the matched triples that can make (p i p b 1 C i) (p 2 p b 2 C 2) true are:

(p i 1 Pb1 C i 1) (P21 Pb2 C21)
(p i 2 Pb1 c i 2) (p 22 p b2 c 22)

(p i k Pb1 C i k) (p 2k pb2 c 2k)

where N>=k>=0 (we define N as the number o f triples in the storage).

The third step is to substitute the matched values into the original rule form to

60

specialize the rule sets and remove the redundant premises.

The rule form turns into:

(x i p i1 y i) (x 2 P21 y i) -> (x i pb1 c i1)
(x i p i2 y i) (x 2 P21 y i) -> (x i pb1 c i2)

(x i p ik y i) (x 2 P21 y 2) -> (x i pb1 c ik)

3.6.2 Proof of Soundness and Completeness o f the Specialized Rule Sets

Given the description of our method, our goal is to prove the exact same triples

will be inferred when firing the original rules and the specialized rules.

Soundness o f specialized rules: The new rule set will be sound iff all o f the triples

that could be inferred from the specialized rules will satisfy the original rules.

(p i1_pik) j (P 21-p 2k)> (C i1-Cik) and (C21-C2k) can make (p i pb1 Ci) (p 2

pb2 C2) true.

All the triples inferred by

(x i p i1 y i) (x 2 P21 y i) -> (x i pb1 c i1)
(x i p i2 y i) (X2 P22 y 2) -> (x i pb1 c i2)

(x i p ik y i) (x 2 P2k y i) -> (x i pb1 c ik)

will make (xi pi y i) (x 2 P2 y 2) true. Thus

(x i pi y i) (x 2 p2 y 2) (p i Pb1 c i) (p 2 Pb2 c 2)
is true.

Completeness of specialized ride forms: The new rule set will be complete iff all

of the triples that could be inferred from the original rules could also be inferred from the

specialized rules.

Suppose there is one triple set that makes (x i pi y i) (X2 P2 y 2) (p i Pb1

61

C i) (p 2 P b 2 C 2) true but does not satisfy any of

(x i p i 1 y i) (x 2 P 2 1 y 2)

(x i p i 2 y i) (x 2 P 2 2 yi)
n w H «

(X i P i k y i) (x 2 P 2 k y 2 >

Suppose the triple set is (x i ® p i ® y i ®) (X2 ® P2® y 2 0) (p i ® P b 1 C i ®) (P 2 0

P b 2 c 20) .

Thus, (x i ® p i ® y i ®) is true, (x 2® P 2 0 y 2 ®) is true, (p i ® p b 1 C i ®) is true and

(P 2 ® P b 2 C 2 ®) is true. Then (p i ® p b 1 C i ®) (p 2 ® P b 2 c 2 ®) is definitely true.

Because (p i 1 - p i k) , (p 2 a - p 2 k) , (c i 1 - C i k) and (C 2 1 - C 2 k) can make (p i p b 1

C i) (p 2 P b 2 C 2) true, and these are all we can find, pi ® is among (p i 1 - p i k) and P 2 0 is

among (p 2 1 - p 2 k) .

So, one of

(x i p i 1 y i) (x 2 P 2 1 y 2)

(x i p i 2 y i) (x 2 P 2 2 y i)

(x i p i k y i) (x 2 P 2 k y 2)

would be true.

This contradicts our assumption that one triple set that makes (X i p i y i) (X2

P2 y 2) (p i P b1 C i) (p 2 P b2 C 2) true but does not satisfy any o f

(x i p i 1 y i) (x 2 P 2 1 y 2)

(x i p i 2 y i) (x 2 P 2 2 y i)

(x i p i k y i) (x 2 P 2 k yi) .
Thus, all o f the triples that are inferred by the original rules will also be inferred by the

specialized rules.

3.6.3 Generalized Rule Form and Examples o f Specialized Rules

The following is a generalization o f the rule form in Section 3.6.1:

62

(Xi P i y i) (x 2 P2 y 2) — (x«, p m y „) (a i p a* b i) (a 2 pa2 b 2) — (a n p an b n)
(p i 1 Pb1 Cl) (P i 2 Pb2 C2).(pik Pbk Ck) -> (Xj Pa3/ P b 3 y j)

The same proof procedure can be applied to this general form to prove the identity

o f the original rules to the specialized rules.

Based on the description o f the transformation from original rules to specialized

rules, I present a sample o f generated specialized rules in Table VIII. The prefix defined

for namespace is “ub”.

TABLE VIII
E x a m p l e s o f S p e c ia l iz e d R u l e s

Original Rules Specialized Rules
(?x ub:worksFor ?y) -> (?x ubrmemberOf ?y)

(?x ub:undergraduateDegreeFrom ?y) -> (?x
ubrdegreeFrom ?y)

(?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a
?q?b)

(?x ubrmastersDegreeFrom ?y) -> (?x ubrdegreeFrom
?y)
(?x ub:doctoralDegreeFrom ?y) -> (?x ub:degreeFrom
?y)
(?x ub.headOf ?y) -> (?x ubrworksFor ?y)

(?a rdfs:subPropertyOf ?b), (?b
rdfs:subPropertyOf ?c) -> (?a
rdfs:subPropertyOf ?c)

(?x ub:headOf ?y) -> (?x ub:memberOf ?y)

(?x ub:memberOf ?y) -> (?y ub:member ?x)

(?P owlrinverseOf ?Q), (?X ?P ?Y) -> (?Y ?Q (?x ub:member ?y) -> (?y ub:memberOf ?x)

?X) (?x ubrhasAlumnus ?y) -> (?y ubrdegreeFrom ?x)

(?x ubrdegreeFrom ?y) -> (?y ubrhasAlumnus ?x)

(?x rdfrtype ubrTechnicalReport) -> (?x rdfrtype
ubrArticle)

(?x rdfrtype ubrUniversity) -> (?x rdfrtype
ubrOrganization)

(?x rdfsrsubClassOf ?y), (?a rdf:type ?x) -> (?a
rdf:type ?y)

(?x rdfrtype ubrFullProfessor) -> (?x rdfrtype
ub: Professor)

(?x rdfrtype ubrAdministrativeStaff) -> (?x rdfrtype
ubrEmployee)

(?x rdfrtype ubrChair) -> (?x rdfrtype ubrProfessor)

(?x rdfrtype ubrProfessor) -> (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrFaculty) -> (?x rdfrtype ubrEmployee)

(?x rdfrtype ubrManual) -> (?x rdfrtype ubrPublication)

63

TABLE VIII (C o n t in u e d)

Original Rules Specialized Rules
(?x rdfrtype ubrJoumalArticle) -> (?x rdfrtype
ubrArticle)

(?x rdfrtype ubrCourse) -> (?x rdfrtype ubrWork)

(?x rdfrtype ubrUndergraduateStudent) -> (?x rdfrtype
ub: Student)

(?x rdfrtype ubrProgram) -> (?x rdfrtype
ubrOrganization)

(?x rdfrtype ubrConferencePaper) -> (?x rdfrtype
ubrArticle)

(?x rdfrtype ubrSystemsStaff) -> (?x rdfrtype
ubrAdministrativeStafT)

(?x rdfrtype ubrResearchGroup) -> (?x rdfrtype
ubrOrganization)

(?x rdfrtype ubrBook) -> (?x rdfrtype ubrPublication)

(?x rdfrtype ubrSpecification) -> (?x rdfrtype
ubrPublication)

(?x rdfrtype ubrSoftware) -> (?x rdfrtype ubrPublication)

(?x rdfrtype ubrDepartment) -> (?x rdfrtype
ubrOrganization)

(?x rdfsrsubClassOf ?y), (?a rdfrtype ?x) -> (?a
rdfrtype ?y)

(?x rdfrtype ubrResearch) -> (?x rdfrtype ubrWork)

(?x rdfrtype ubrDean) -> (?x rdfrtype ubrProfessor)

(?x rdfrtype ubrAssociateProfessor) -> (?x rdfrtype
ubrProfessor)

(?x rdfrtype ubrLecturer) -> (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrResearchAssistant) -> (?x rdfrtype
ubrStudent)

(?x rdfrtype ubrCollege) -> (?x rdfrtype ubrOrganization)

(?x rdfrtype ubrPostDoc) -> (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrlnstitute) -> (?x rdfrtype
ubrOrganization)

(?x rdfrtype ubrArticle) -> (?x rdfrtype ubrPublication)

(?x rdfrtype ubrUnofficialPublication) -> (?x rdfrtype
ubrPublication)

(?x rdfrtype ubrVisitingProfessor) -> (?x rdfrtype
ubrProfessor)

(?x rdfrtype ubrGraduateCourse) -> (?x rdfrtype
ubrCourse)

(?x rdfrtype ubrAssistantProfessor) -> (?x rdfrtype
ubrProfessor)

(?x rdfrtype ubrGraduateStudent) -> (?x rdfrtype
ubrPerson)

64

TABLE V fll (C o n t in u e d)

Original Rules Specialized Rules

(?x rdfsrsubClassOf ?y), (?a rdfrtype ?x) -> (?a
rdf:type ?y)

(?x rdf:type ubrClericalStaff) -> (?x rdf:type
ubrAdministrativeStaff)

(?x rdfrtype ub:SystemsStaff) -> (?x rdfrtype
ubrEmployee)

(?x rdfrtype ubrClericalStaff) -> (?x rdfrtype
ubrEmployee)

(?x rdfrtype ubrFullProfessor) -> (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrChair) -> (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrDean) -> (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrAssociateProfessor) -> (?x rdfrtype
ubrFaculty)

(?x rdfrtype ubrVisitingProfessor) -> (?x rdfrtype
ubrFaculty)

(?x rdfrtype ubrAssistantProfessor) -> (?x rdfrtype
ubrFaculty)

(?x rdfrtype ubrTechnicalReport) -> (?x rdfrtype
ubrPublication)

(?x rdfrtype ubrJoumalArticle) -> (?x rdfrtype
ubrPublication)

(?x rdfrtype ubrConferencePaper) -> (?x rdfrtype
ubrPublication)

(?x rdfrtype ubrFullProfessor) -> (?x rdfrtype
ubrEmployee)

(?x rdfrtype ubrChair) -> (?x rdfrtype ubrEmployee)

(?x rdfrtype ubrDean) -> (?x rdfrtype ubrEmployee)

(?x rdfrtype ubrAssociateProfessor) -> (?x rdfrtype
ubrEmployee)

(?x rdfrtype ubrVisitingProfessor) -> (?x rdfrtype
ubrEmployee)

(?x rdfrtype ubrAssistantProfessor) -> (?x rdfrtype
ubrEmployee)

(?x rdfrtype ubrLecturer) -> (?x rdfrtype ubrEmployee)

(?x rdfrtype ubrPostDoc) -> (?x rdfrtype ubrEmployee)

(?x rdfrtype ubrGraduateCourse) -> (?x rdfrtype
ubrWork)

(?x ?p ?y), (?p rdfs:range ?c) -> (?y rdf:type
?c)]

(?x ubraffiliatedOrganizationOf ?y) -> (?y rdfrtype
ubrOrganization)

(?x ubrteacherOf ?y) -> (?y rdfrtype ubrCourse)

(?x ubradvisor ?y) -> (?y rdfrtype ubrProfessor)

(?x ubrsoftwareDocumentation ?y) -> (?y rdfrtype
ubrPublication)

(?x ubrteachingAssistantOf ?y) -> (?y rdfrtype
ubrCourse)

65

TABLE VIII (C o n t in u e d)

Original Rules Specialized Rules
(?x ub:member ?y) -> (?y rdfrtype ubrPerson)

(?x ubrresearchProject ?y) -> (?y rdfrtype ubrResearch)

(?x ubraffiliateOf ?y) -> (?y rdfrtype ubrPerson)

(?x ubrorgPublication ?y) -> (?y rdfrtype
ubrPublication)

(?x ubrmastersDegreeFrom ?y) -> (?y rdfrtype
ubrUniversity)

(?x ubrdegreeFrom ?y) -> (?y rdfrtype ubrUniversity)

(?x ubrhasAlumnus ?y) -> (?y rdfrtype ubrPerson)

(?x ?p ?y), (?p rdfs:range ?c) -> (?y rdf:type ?c)] (?x ubrsubOrganizationOf ?y) -> (?y rdfrtype
ubrOrganization)

(?x ubrpublicationResearch ?y) -> (?y rdfrtype
ubrResearch)

(?x ubrpublicationAuthor ?y) -> (?y rdfrtype
ubrPerson)

(?x ubrundergraduateDegreeFrom ?y) -> (?y rdfrtype
ubrUniversity)

(?x ubrdoctoralDegreeFrom ?y) -> (?y rdfrtype
ubrUniversity)

(?x ubrlistedCourse ?y) -> (?y rdfrtype ubrCourse)

(?x ubrpublicationAuthor ?y) -> (?x rdfrtype
ubrPublication)

(?x ubrundergraduateDegreeFrom ?y) -> (?x rdfrtype
ubrPerson)

(?x ubrtelephone ?y) -> (?x rdfrtype ubrPerson)

(?x ubrdoctoralDegreeFrom ?y) -> (?x rdfrtype
ubrPerson)

(?x ubrmastersDegreeFrom ?y) -> (?x rdfrtype
ubrPerson)

(?x ubremailAddress ?y) -> (?x rdfrtype ubrPerson)

(?x ?p ?y), (?p rdfs:domain ?c) -> (?x rdf:type (?x ubradvisor ?y) -> (?x rdfrtype ubrPerson)

?c) (?x ubrage ?y) -> (?x rdfrtype ubrPerson)

(?x ubrsoftwareVersion ?y) -> (?x rdfrtype
ubrSoftware)

(?x ubrpublicationResearch ?y) -> (?x rdfrtype
ubrPublication)

(?x ubraffiliateOf ?y) -> (?x rdfrtype ubrOrganization)

(?x ubrtitle ?y) -> (?x rdfrtype ubrPerson)

(?x ubraffiliatedOrganizationOf ?y) -> (?x rdfrtype
ubrOrganization)

(?x ubrorgPublication ?y) -> (?x rdfrtype
ubrOrganization)

66

TABLE VIII (C o n t in u e d)

Original Rules Specialized Rules

(?x ?p ?y), (?p rdfs:domain ?c) -> (?x rdf:type
?c)

(?x ubiteacherOf ?y) -> (?x rdf:type ub:Faculty)

(?x ub:degreeFrom ?y) -> (?x rdfitype ub:Person)

(?x ubilistedCourse ?y) -> (?x rdfitype ubiSchedule)

(?x ubimember ?y) -> (?x rdfitype ubiOrganization)

(?x ubihasAlumnus ?y) -> (?x rdfitype ub:University)

(?x ubitenured ?y) -> (?x rdfitype ubiProfessor)

(?x ubiresearchProject ?y) -> (?x rdfitype
ubiResearchGroup)

(?x ubisubOrganizationOf ?y) -> (?x rdfitype
ubiOrganization)

(?x ubiteachingAssistantOf ?y) -> (?x rdfitype
ubiTeachingAssistant)

(?x ubipublicationDate ?y) -> (?x rdfitype
ubiPublication)

(?P rdf:type owl:TransitiveProperty), (?A ?P
?B), (?B ?P ?C) -> (?A ?P ?C)

(?x ubisubOrganizationOf ?y) (?y
ubisubOrganizationOf ?z) -> (?x
ubisubOrganizationOf ?z)

3.6.4 Preliminary Evaluation of Jena Using the Specialized Rules

To present the effectiveness o f the specialized rules, I evaluate the 14 queries

provided by the LUBM using Jena on top o f two rule sets. One rule set contains the

original RDFS rules and OWL Horst fragments. The other rule set contains the

specialized rules that capture the semantics from the LUBM ontology. The experiments

are run in memory. So, considering the limits o f an in-memory test, I only employ two

small datasets, LUBM (01) (one department o f a university) and LUBM (1) (one

university), of size 8820 and 100844 respectively, for the experiments. Jena supports

three ways o f inferencing: forward-chaining, backward-chaining and a hybrid o f these

two methods. In this experiment, I select the hybrid mode o f Jena, since it is the default

mode and considered to be a performance tradeoff [129], The evaluation results are

67

presented in Table IX.

TABLE IX
E v a l u a t io n o f J e n a U s in g t h e S p e c ia l iz e d R u l e s a n d O r ig in a l R u l e s

Query
Response time

(ms)
Specialized

rules

Query
Response
time (ms)

Original rules

Query Response
time (ms)

Specialized rules

Query Response
time (ms)

Original rules

LUBM (01) LUBM1
Query 1 757 5394 1381 406212
Query2 1552 1659 119176 243130
Query3 4 5 20 28
Query4 11 11 16 74583
Query5 67 171 105 954703
Query6 45 47 412 432

Query7 227 20375 27310 Out o f Memory
Error

Query8 101 118 838 1465351
Query9 7182 94411 15197259 >1 hour

Query 10 3 4 31 1507150
Query 11 1 3 5 995
Query 12 1 18 2 8465
Query 13 2 12 16 198
Query 14 23 24 102 286

As Table IX shows, for LUBM (01), Jena with the specialized rules has much

better performance for query 1, query 5, query 7 and query 9. For the other queries, Jena

with the specialized rules has similar performance as the original rules. For LUBM (1),

Jena with specialized rules has much better performance for most o f the 14 queries except

for query 3, query 6, query 13 and query 14. Jena with the original rules is not able to

return answers in one hour (query 9) or terminates abnormally due to an “Out o f Memory

Error” (query 7). In general, Jena with the specialized rules outperforms Jena with the

original rules for both datasets.

All the results returned in the above experiments are sound and complete. In the

68

above experiment, I have not taken the processing time for the transformation from the

original rules into the specialized rules into account. This processing time will not affect

the dramatic difference between the performance o f the specialized rules and original

rules especially significantly, particularly, as the size o f the dataset increases. There are

two reasons. First, the transformation is a one-time job if the ontology is stable, so the

processing time can be distributed into each query response. Second, the transformation

normally can be completed within seconds for LUBM as tested.

3.7 Discussions

One of the promises o f the evolving Semantic Web is that it will enable systems

that can handle qualitative queries such as “good PhD advisors in data mining”. We have

explored in this chapter the feasibility o f developing such a system using ontologies and

reasoning system that can handle customized rules such as “validated co-author”.

When looking at more realistic models (ScienceWeb) than provided by LUBM

serious issues arise when the size approaches millions o f triplets. For the most part,

OWLIM and Oracle offer the best scalability for the kinds o f datasets anticipated for

ScienceWeb.

This scalability comes in part from heavy front-loading of the inferencing costs by

pre-computing the entailed relationships at set-up time. This, in turn, has negative

implications for evolving systems. One can tolerate high one-time costs that are needed to

set up a reasoning system for a particular ontology and an instance set. If, however, the

ontologies or rule sets evolve at a significant rate, then repeated incurrence o f these high

setup cost is likely to be prohibitively expensive.

The times we obtained for some queries indicate that real-time queries over large

69

triplet spaces will have to be limited in their scope unless one gives up on the answers

being returned in real time. The question as to how we can specify what can be asked

within a real-time system is an open one.

70

CHAPTER 4

OPTIMIZED QUERY-ANSWERING ALGORITHM

Interposing a backward chaining reasoner between a knowledge base and a query

manager yields an architecture that can support reasoning in the face o f frequent

changes. However, such an interposition o f the reasoning introduces uncertainty

regarding the size and effort measurements typically exploited during query optimization.

In this section, I present an algorithm for dynamic query optimization in such an

architecture and experimental results confirming its effectiveness.

4.1 Dynamic Query Optimization

A query is typically posed as the conjunction o f a number o f clauses. In a

traditional data base, each clause may denote a distinct probe o f the data base contents.

Easily accessible information about the anticipated size and other characteristics o f such

probes can be used to facilitate query optimization. The interposition o f a reasoner

between the query handler and the underlying knowledge base means that not all clauses

will be resolved by direct access to the knowledge base. Some will be handed off to the

reasoner, and the size and other characteristics of the responses to such clauses cannot be

easily predicted in advance. If the reasoner is associated with an ontology, however, it

may be possible to relieve this problem by exploiting knowledge about the data types

introduced in the ontology.

In this section, I describe an algorithm for resolving such queries using dynamic

optimization based, in part, upon summary information associated with the ontology. I

71

begin with the definitions o f the fundamental data types that we will be manipulating.

Then I discuss the algorithm for answering a query. A running example is provided to

make the process more understandable.

We model the knowledge base as a collection o f triples. A triple is a 3-tuple

(x , p, y) where x, p, and y are URIs or constants and where p is generally interpreted as

the identifier o f a property or predicate relating x and y. For example, a knowledge base

might contains triples

(Jones, m a jo rs ln , CS), (S m ith , m a jo rs ln , CS),
(Doe, m a jo rs ln , M a th) , (Jones, r e g is t e r e d ln , C a lc u lu s l) , (Doe,
r e g is t e r e d ln , C a lc u lu s l) .

A Q u e ry P a tte rn is a triple in which any o f the three components can be

occupied by references to one o f a pool o f entities considered to be variables. In our

examples, we will denote variables with a leading ‘? \ For example, a query pattern

denoting the idea “Which students are registered in Calculusl?” could be shown as

(? S tu d e n t , r e g is t e r e d ln ,C a lc u lu s l) .
A query is a request for information about the contents of the knowledge base.

The input to a query is modeled as a sequence of Q u e ry P a tte rn s . For example, a

query “What are the majors o f students registered in Calculusl?” could be represented as

the sequence o f two query patterns

[(PStudent, r e g is t e r e d l n ,C a l c u l u s l) ,
(PStudent, m a jo rs ln , P M a jo r)] .

The output from a query will be a QueryResponse. A QueryResponse is a set

of functions mapping variables to values in which all elements (functions) in the set share

a common domain (i.e., map the same variables onto values). Mappings from the same

variables to values can be also referred to as variable bindings. For example, the

QueryResponse of query pattern (PS tudent, m a jo rs ln , PMajor) could be the set

72

{{P S tudent => Dones, ?Major=>CS},
{PStudent => Sm ith , ?Major=>CS >,

{PStudent => Doe, ?Major=> Math } } .
The SolutionSpace is an intermediate state o f the solution during query

processing, consisting o f a sequence of (preliminary) QueryResponses, each describing

a unique domain. For example, the Solu tionSpace of the query “What are the majors

of students registered in Calculusl?” that could be represented as the sequence o f two

query patterns as described above could first contain two QueryResponses:

[{{P S tu d en t => Dones, ?Major=>CS},
{PStudent => Smith, ?Major=>CS } ,

{PStudent => Doe, ?Major=> Math } } ,
{{PStudent => D ones},{PStudent => Doe } }]

Each QueryResponse is considered to express a constraint upon the universe

of possible solutions, with the actual solution being intersection of the constrained spaces.

An equivalent SolutionSpace is therefore:

[{{P S tu d en t => Dones, ?Major=>CS},
{PMajor => Math, PStudent = > D o e }}] ,

Part o f the goal o f our algorithm is to eventually reduce the Solu tionSpace to a

single QueryResponse like this last one.

Fig. 8 describes the top-level algorithm for answering a query. A query is

answered by a process of progressively restricting the SolutionSpace by adding

variable bindings (in the form o f QueryResponses). The initial space with no bindings

O represents a completely unconstrained SolutionSpace. The input query consists o f

a sequence of query patterns.

We repeatedly estimate the response size for the remaining query patterns ©, and

choose the most restrictive pattern © to be considered next. We solve the chosen pattern

by backward chaining ©, and then merge the variable bindings obtained from backward

73

chaining into the SolutionSpace © via the r e s t r i c t T o function, which performs a

(possibly deferred) join as described later in this section.

QueryResponse answerAQuery(query: Query)
{

/ / Set up i n i t i a l SolutionSpace
SolutionSpace SolutionSpace = empty; O

/ / Repeatedly reduce SolutionSpace by applying
/ / the most r e s t r ic t iv e pa tte rn
w hile (unexplored patterns remain in the query) {

computeEstimatesOfReponseSize (unexplored p a tte rn s); ©
QueryPattern p = unexplored p a tte rn w ith sm allest estim ate; ©

/ / R e s tric t SolutionSpace v ia exp lo ra tion o f p
QueryResponse answerToP = BackwardChain(p); ©
SolutionSpace.restrictTo(answ erToP); ©

>
return so lu tio n S p ace .fin a lD o in () ; ®

>
Fig. 3. Answering a Query

When all query patterns have been processed, if the SolutionSpace has not

been reduced to a single QueryResponse, we perform a final join o f these variable

bindings into single one variable binding that contains all the variables involved in all the

query patterns ©. The f in a lD o in function is described in detail later in this section.

The estimation o f response sizes in © can be carried out by a combination o f 1)

exploiting the fact that each pattern represents that application of a predicate with known

domain and range types. If these positions in the triple are occupied by variables, we can

check to see if the variable is already bound in our SolutionSpace and to how many

values it is bound. If it is unbound, we can estimate the size o f the domain (or range)

type, 2) accumulating statistics on typical response sizes for previously encountered

74

patterns involving that predicate. The effective mixture o f these sources o f information is

a subject for future work.

For example, suppose there are 10,000 students, 500 courses, 50 faculty members

and 10 departments in the knowledgebase. For the query pattern (?S takesCourse

?C), the domain o f takesCourse is Student, while the range of takesCourse is

Course. An estimate o f the numbers o f triples matching the pattern (?S takesCourse

?C) might be 100,000 if the average number o f courses a student has taken is ten,

although the number o f possibilities is 500,000.

By using a greedy ordering © o f the patterns within a query, we hope to reduce

the average size o f the SolutionSpaces. For example, suppose that we were interested

in listing all cases where any student took multiple courses from a specific faculty

member. We can represent this query as the sequence of the following patterns, shown in

Table X with their estimated result size (the sizes are based on one o f our LUBM

benchmark prototypes).

T A B L E X
Q u e r y p a t t e n s a n d E s t im a t e d R e s u l t S ize

Clause # Query Pattern QueryResponse
1 ?S1 takesCourse ?C1 {(?S 1 =>Si,?C 1 =>q) } i= i.. i oo.ooo
2 ?S1 takesCourse ?C2 {(?Sl=>Sj, ?C2=>Cj)}j,|..ioo,o(X)
3 ?C1 taughtBy facl { (? C l= > C j)}j=,,.3

4 ?C2 taughtBy facl {(?C2=>Cj)}j=i..3

To illustrate the effect o f the greedy ordering, let us assume first that the patterns

are processed in the order given. A trace o f the answerAQuery algorithm, showing one

row for each iteration of the main loop would be in Table XI.

75

TABLE XI
T r a c e o f J o in o f C l a u s e s in t h e O r d e r G iven

Clause Being Joined Resulting SolutionSpace
(in itia l) _□

1 f{ (? S l= > s , ?C 1 =>Ci)}i»i..ioo.oool

2
[{(?S l=>Si, ?C l=>Ci, ?C2=>Ci)(,=i .1,000.000]
(based o n an av e rag e o f 10 cou rses p e r student)

3 [{(?Sl=>Sj, 7Cl=>Ci, ?C2=>c,)},= !..900]
(Jo in ing th is c lau se d isca rd s co u rses taught b y o th e r facu lty .)

4 R (?S l= > S i, ?C l=>C j, ?C2=>Cj)}j=i..6ol

The worst case in terms o f storage size and in terms o f the size o f the sets being

joined was at the join o f clause 2, when the join o f two sets o f size 100,000 yielded

1,000,000 tuples, as shown in above Table XI.

Now, consider the effect o f applying the same patterns in ascending order o f

estimated size, shown in above Table XII.

TABLE XII
T r a c e o f J o in o f C l a u s e s in A s c e n d in g O r d e r o f E s t im a t e d S i z e

Clause Being Joined Resulting SolutionSpace
(initial) []

3 [[{(?Cl=>Ci)}M..3]
4 [{(?C l=>ci, ?C2=>e,)}i-

1 [{(?Sl=>Si, I C l ^ , ?C2=>c’i)}j„..27o]

2 [{(?Sl=>Si, ?Cl=>Ci, ?C2=>c,)fi 1..60]

The worst case in terms of storage size and in terms o f the size o f the sets being

joined was at the final addition o f clause 2, when a set o f size 100,000 was joined with a

set o f 270. The reduction in space requirements and in time required to perform the join

would be about an order o f magnitude.

The output from the backward chaining reasoner will be a query response. These

76

must be merged into the current SolutionSpace as a set o f additional restrictions. Fig.

9 shows how this is done.

void S o lu tio n S p ace::res tric tT o (QueryResponse newbinding)
{

fo r each element oldBinding in SolutionSpace
{

i f (newbinding shares va ria b le s w ith o ld b ind ing){ O
bool merged = jo in (new B inding,o ldB inding, f a ls e) ;©
i f (merged) {

remove oldBinding fromsolutionSpace;
}

}
}
add newBinding to SolutionSpace;

>
Fig. 4. Restricting a SolutionSpace

Each binding already in the SolutionSpace O that shares at least one variable

with the new binding ® is applied to the new binding, updating the new binding so that

its domain is the union o f the sets o f variables in the old and new bindings and the

specific functions represent the constrained cross-product (join) of the two. Any such old

bindings so joined to the new one can then be discarded.

The join function at © returns the joined QueryResponse as an update o f its

first parameter. The join operation is carried out as a hash jo in [168] with an average

complexity 0 (nl+n2+m) where the n i are the number o f tuples in the two input sets and

m is the number o f tuples in the joined output.

The third (boolean) parameter o f the join call indicates whether the join is forced

(true) or optional (false), and the boolean return value indicates whether an optional join

was actually carried out. Our intent is to experiment in future versions with a dynamic

77

decision to defer optional joins if a partial calculation of the join reveals that the output

will far exceed the size o f the inputs, in hopes that a later query clause may significantly

restrict the tuples that need to participate in this join.

As noted earlier, our interpretation o f the SolutionSpace is that it denotes a set

of potential bindings to variables, represented as the join o f an arbitrary number o f

QueryResponses. The actual computation o f the join can be deferred, either because o f

a dynamic size-based criterion as just described, or because o f the requirement at © that

joins be carried out immediately only if the input QueryResponses share at least one

variable. In the absence o f any such sharing, a join would always result in an output size

as long as the products o f its input sizes. Deferring such joins can help reduce the size o f

the SolutionSpace and, as a consequence, the cost o f subsequent joins.

For example, suppose that we were processing a query to determine which

mathematics courses are taken by computer science majors, represented as the sequence

of the following Q ueryPatterns, shown with their estimated sizes in Table XIII.

TABLE X III
QUERYPATTERNS AND THEIR ESTIMATED SIZES

Clause QueryPattern QueryResponse
1 (?S1 takesCourse ?C1) {(?S1 =>Sj,?Cl =>C,)} M..100,000
2 (?S1 memberOf CSDept) {(?Sl=>Sj)}j=i..i,ooo
3 (?C1 taughtby ?F1) {(?Cl=>ci, ?Fl=>f,)h-i....500
4 (?F1 worksFor MathDept) o7/<—

Ny

AII'W

To illustrate the effect o f deferring joins on responses that do not share variables,

even with the greedy ordering discussed earlier, suppose, first, that we perform all joins

immediately. Assuming the greedy ordering that we have already advocated, the trace o f

78

the answerAQuery algorithm would be in Table XIV.

TABLE XIV
T r a c e o f J o in o f C l a u s e s in A s c e n d in g O r d e r o f E s t im a t e d S iz e

Clause
Being

Joined Resulting SolutionSpace

(in itia l) []
4 r{(?Fi=>fi)}=,..5oi
2 r{(?Fl=>fi, ?Sl=>Sj)li=i..5o.oool
3 [{(?F l=>fu ?S l=>Si, ?C 1 =>Ci)}i= i..i50.000I
1 [{(?Fl=>fi, ?Sl=>Si, ?Cl=>Ci)}i=i..1,000]

In the prototype from which this example is taken, the Math department teaches

150 different courses and there are 1,000 students in the CS Dept. Consequently, the

merge o f clause 3 (1,500 tuples) with the SolutionSpace then containing 50,000 tuples

yields considerably fewer tuples than the product o f the two input sizes.

The worst step in this trace was the final join, between sets o f size 100,000 and

150,000.

But consider that the join o f clause 2 in that trace was between sets that shared no

variables. If we defer such joins, then the first SolutionSpace would be retained “as

is”. The resulting trace would be shown in Table XV.

TABLE XV
T r a c e o f J o i n o f C l a u s e s w i t h D e f e r r i n g

Clause
Being

Joined Resulting SolutionSpace

(initial) []
4 f{(?Fl=>fi)li-l..5ol
2 n (?F 1 =>fi)} i= 1 ..so, 1 (?S 1 =>Si) 1 i-1.. 1 .oool
3 rU?Fl=>f„ ?C 1 =>Ci) 1 i= 1..150 , f(?Sl=>Si)}F,j.oool
1 n(?F l=>fi, ?Sl=>Si, ?C l=>c,)rm .j .oooI

79

The subsequent addition o f clause 3 results in an immediate join with only one o f

the responses in the solution space. The response involving ?S1 remains deferred, as it

shares no variables with the remaining clauses in the SolutionSpace.

The worst join performed would have been between sets of size 100,000 and 150,

a considerable improvement over the non-deferred case.

QueryResponseSolutionSpace::finalJoin ()
{

so rt the bindings in th is so lu tion space in to
descending order by number of tu p les ; O

QueryResponse re s u lt = f i r s t o f the sorted bindings;
fo r each remaining binding b in SolutionSpace {

jo in (re s u lt , b, t ru e); ©
>
re tu rn re s u lt;

}
Fig. 5. Final Join

When all clauses o f the original query have been processed (Fig. 8 ©), we may

have deferred several joins because they involved unrelated variables or because they

appeared to lead to a combinatorial explosion on their first attempt. The f in a lD o in

function shown in Fig. 10 is tasked with reducing the internal SolutionSpace to a

single QueryResponse, carrying out any join operations that were deferred by the

earlier r e s t r ic t T o calls. In many ways, f i n a l J o i n is a recap o f the answerAQuery

and r e s t r ic t T o functions, with two important differences:

• Although we still employ a greedy ordering © to reduce the join sizes, there is no need

for estimated sizes because the actual sizes o f the input QueryResponses are known.

8 0

• There is no longer an option to defer joins between QueryResponses that share no

variables. All joins must be performed in this final stage© and so the “forced”

parameter to the optional join function is set to true.

4.2 Evaluation of the Query-answering Algorithm

In this section I compare our answer AQuery algorithm of Fig. 8 against an

existing system, Jena, that also answers queries via a combination o f an in-memory

backward chaining reasoner with basic knowledge base retrievals.

The comparison was carried out using two LUBM benchmarks representing a

knowledge base describing a single university and one with 10 universities. Prior to the

application o f any reasoning, these benchmarks contained 100,839 and 1,272,871 triples,

respectively.

I evaluated these using the set o f 14 queries taken from LUBM [161]. These

queries involve properties associated with the LUBM university-world ontology, with

none o f the custom properties/rules whose support is actually our end goal (as discussed

in [5]). Answering these queries requires, in general, reasoning over rules associated with

both RDFS and OWL semantics, though some queries can be answered purely on the

basis o f the RDFS rules.

Table XVI compares our algorithm to the Jena system using a pure backward

chaining reasoner. Jena’s system cannot process all o f the rules in the OWL semantics

rule set, and was therefore run with a simpler rule set describing only the RDFS

semantics. This discrepancy accounts for the differences in result size (# o f tuples) for

several queries. Result sizes in the table are expressed as the number o f tuples returned by

the query and response times are given in seconds. An entry o f n/a means that the query

81

processing had not completed (after 1 hour).

Despite employing the larger and more complicated rule set, our algorithm

generally ran faster than Jena, sometimes by multiple orders o f magnitude. The

exceptions to this behavior are limited to queries with very small result set sizes or

queries 10-13, which rely upon OWL semantics and so could not be answered correctly

by Jena. In two queries (2 and 9), Jena timed out.

TABLE XVI
C o m p a r is o n a g a in s t J e n a w it h B a c k w a r d C h a in in g

LUBM: 1 University, 100,839 triples 10 Universities, 1,272,871 triples
answerAQuery Jena Backwd answerAQuery Jena Backwd

response
time (s)

result
size
(tuple)

response
time (s)

result
size
(tuple)

response
time (s)

result
size
(tuple)

response
time (s)

result
size
(tuple)

Query 1 0.26 4 0.32 4 25. 4 0.86 4
Query2 0.49 0 130 0 0.69 0 n/a n/a
Query3 0.056 6 0.038 6 1.5 6 1.5 6
Query4 0.47 34 0.021 34 0.034 34 0.41 34
Query5 0.033 719 0.19 678 1.1 719 1.0 678
Query6 0.18 7,790 0.49 6,463 0.023 99,566 3.2 82,507
Query7 0.19 67 45 61 1.7 67 8100 61
Query8 0.54 7,790 0.91 6463 2.2 7,790 52 6,463
Query9 0.25 208 n/a n/a 2.7 2,540 n/a n/a
Query 10 0.14 4 0.54 0 2.4 4 1.4 0
Query 11 0.19 224 0.011 0 1.7 224 0.032 0
Query 12 0.22 15 0.0020 0 0.19 15 0.016 0
Query 13 0.028 1 0.37 0 0.34 33 0.89 0
Query 14 0.024 5,916 0.58 5,916 0.026 75,547 2.6 75,547

Jena also has a hybrid mode that combines backward chaining with some

forward-style materialization. Table XVII shows a comparison of our algorithm with a

pure backward chaining reasoner against the Jena hybrid mode [4], Again, an n/a entry

indicates that the query processing had not completed within an hour, except in one case

(query 8 in the 10 Universities benchmark) in which Jena failed due to exhausted

8 2

memory space.

The times here tend to be someone closer, but the Jena system has even more

difficulties returning any answer at all when working with the larger benchmark. Given

that the difference between this and the prior table is that, in this case, some rules have

already been materialized by Jena to yield, presumably, longer lists o f tuples, steps taken

to avoid possible combinatorial explosion in the resulting joins would be increasingly

critical.

TABLE XVII
C o m p a r i s o n a g a i n s t J e n a w i t h H y b r id R e a s o n e r

LUBM 1 University, 100,839 triples 10 Universities, 1,272,871 triples
answerAQuery Jena Hybrid answerAQuery Jena Hybrid

response
time

result
size

response
time

result
size

response
time

result
size

response
time

result
size

Query 1 0.26 4 0.37 4 25. 4 0.93 4
Query2 0.49 0 1,400 0 0.69 0 n/a n/a
Query3 0.056 6 0.050 6 1.5 6 1.5 6
Query4 0.47 34 0.025 34 0.034 34 0.55 34
Query5 0.033 719 0.029 719 1.1 719 2.7 719
Query6 0.18 7,790 0.43 6,463 0.023 99,566 3.7 82,507
Query7 0.19 67 38 61 1.7 67 n/a n/a
Query8 0.54 7,790 2.3 6,463 2.2 7,790 n/a n/a
Query9 0.25 208 n/a n/a 2.7 2,540 n/a n/a

Query 10 0.14 4 0.62 0 2.4 4 1.6 0
Query 11 0.19 224 0.0010 0 1.7 224 0.08 0
Query 12 0.22 15 0.0010 0 0.19 15 0.016 0
Query 13 0.028 1 0.62 0 0.34 33 1.2 0
Query 14 0.024 5,916 0.72 5,916 0.026 75,547 2.5 75,547

83

CHAPTER 5

OPTIMIZED BACKWARD CHAINING ALGORITHM

In this chapter, I will introduce new optimization techniques to the backward-

chaining. I will show that these techniques together with the query-optimization reported

in Chapter 4, will allow us to outperform forward-chaining reasoners in scenarios where

the knowledge base is subject to frequent change. Finally, I will analyze the impact o f

these techniques on a large knowledge base that requires external storage.

5.1 Issues

When the knowledge base is small and dynamic, backward chaining is suitable

for ontology reasoning. However, as the size o f the knowledge base increases, standard

backward chaining [8] do not scale well for ontology reasoning. In this section, I discuss

issues that most standard backward chaining methods for ontology reasoning have.

5.1.1 Guaranteed Termination

Backward chaining is usually implemented by employing a depth-first search

strategy. Unless methods are used to prevent it, the depth-first search could go into an

infinite loop. For example, in the rule set we have used so far, we have rules that involve

each other when proving their heads:

r u l e l : (?P o w l: in v e rs e O f ?Q) -> (?Q o w l: in v e rs e O f ?P)

ru le 2 : (? P o w l: in v e rs e O f ?Q), (?X ?P ?Y) -> (?Y ?Q ?X)

In order to prove body clause ?P o w l: in v e rs e O f ?Q in ru le l, we need to

prove the body of rule2 first, because the head o f rule2 matches body clause ?P

84

o w l : in verseO f ?Q. In order to prove the first body clause ?P o w l : in v e rs e O f ?Q

in rule2, we also need to prove the body clause ?P o w l: in ve rseO f ?Q in ru le l,

because the head o f rulel matches body clause ?P o w l: in ve rseO f ?Q.

Even in cases where depth-first search terminates, the performance may suffer

due to time spent exploring, in depth, branches that ultimately do not lead to a proof.

5.1.2 The owl: sameAs Problem

The built-in OWL property o w l: sameAs links two equivalent individuals. An

o w l: sameAs triple indicates that two linked individuals have the same “identity”. [169]

An example of a rule in the OWL-Horst rule set that involves the o w l: sameAs relations

is the ru le:“ (?x ow l: sameAs ?y) (?x ?p ?z) -> (?y ?p ? z)”. Consider a

triple, which has m ow l: sameAs equivalents o f its subject, n ow l: sameAs equivalents

o f its predicate, and k o w l: sameAs equivalents o f its object, Then m*n*k triples would

be derivable from that triple.

Reasoning with the o w l: sameAs relation can result in a multiplication o f the

number o f instances o f variables during backward-chaining and expanded patterns in the

result. As long as that triple is in the result set, all o f its equivalents would be in the result

set as well. This adds cost to the reasoning process in both time and space.

5.2 The Algorithm

The purpose o f this algorithm is to generate a query response for a given query

pattern based on a specific rule set. I use the following terminology.

The main algorithm calls the function BackwardChaining which finds a set of

triples that can be unified with pattern with bindings in v a r L is t , any bindings to

85

variables appearing in headClause from the head of an applied rule, b o d y l is t and

level that are reserved for solving the recursive problem. Given a Goal and corresponding

matched triples, a QueryResponse is created and returned in the end.

The optimized BackwardChaining algorithm, described in Fig. 11, is based on

conventional backward chaining algorithms [8].The s o lu t io n L is t is a partial list o f

solutions already found for a goal. For a goal that has already been resolved, we simply

get the results from s o lu t io n L is t O. For a goal that has not been resolved yet, we will

seek a resolution by applying the rules © .W e initially search in the knowledge base to

find triples that match the goal (triples in which the subject, predicate and object are

compatible with the query pattern) ©. Then, we find rules with heads that match the

input pattern ©. For each such rule we attempt to prove it by proving the body clauses

(new goals) subject to bindings from already-resolved goals from the same body ©. The

process o f proving one rule is explained below. The method o f “OLDT” [170] is adopted

to solve the non-termination issue I mentioned in Section 5.3.3. Finally, we apply any

“same as” relations to c a n d id a te T r ip le s to solve the owl: sameAs problem®.

During this process of “SameAsTripleSearch”, we add all equivalent triples to the

existing results to produce complete results.

Fig. 12 shows how to prove one rule, which is a step in Fig. 11. The heart o f the

algorithm is the loop through the clauses o f a rule body, attempting to prove each clause.

Some form o f selection function is implied that selects the next unproven clause for

consideration on each iteration. Traditionally, this would be left-to-right as the clauses are

written in the rule. Instead, we order the body clauses by the number o f free variables.

The rationale for this ordering will be discussed in the following Section 5.3.1.

86

BackwardChaining(pattern, h e a d C la u s e ,b o d y lis t,le v e l,v a rL is t)
{

i f (p a tte rn not in s o lu t io n L is t){ ®
candidateTriples+= matches to p attern th a t are found in

knowledge base; ©
so lu tionL is t+= mapping from patte rn to candidateTrip les;
relatedRules = a l l rules from ru le L is t where the head matches

the p a tte rn ; O
realizedR ules = a l l the ru les in re latedR ules w ith variab les

substitu ted w ith values from the p a tte rn ;
backupvarList = back up clone o f v a rL is t;
fo r (each oneRule in rea lized R u les){ ®

if(attem ptToProveRule(oneRule, v a rL is t , le v e l)) {
re s u ltL is t= unify(headClause, v a rL is t) ;
candidateTriples+= re s u ltL is t ;

}
oldCandidateTriples = t r ip le s in mappings from so lu tio n L is t

such th a t headClause matches goal;
i f (oldCandidateTriples not contain cand id a teT rip les){

update so lu tio n L is t w ith cand idateTrip les;
if(U pdateafterU n ificationofH ead(headC lause, r e s u ltL is t))
{

newCandidateTriples = t r ip le s in mappings from
so lu tio n L is t such th a t headClause matches goal;

candidateTriples+= newCandidateTriples;
}

}
}

}
else / * i f (s o lu tio n L is t.c o n ta in s (p a tte rn)) * / O

{
candidateTriples+= t r ip le s in mappings from so lu tio n L is t

such th a t pattern matches goal;
Add reasoning context, inc lud ing head and bodyRest to lookupList;

>
SameAsT ripleSearch(candidateT r ip le s) © ;
re turn candidateTrip les;
>

Fig. 6. Process o f BackwardChaining

The process of proving one goal (a body clause from a rule) is given in Fig. 13.

Before we prove the body clauses (new goals) in each rule, the value o f a calculated

87

dynamic threshold decides whether we perform the substitution or not. We substitute the

free variables in the body clause with bindings from previously resolved goals from the

same body. The step helps to improve the reasoning efficiency in terms o f response time

and scalability and will be discussed in Section 5.3.2. We call the BackwardChaining

function to find a set of triples that can be unified with body clause (new goal) with

substituted variables. Bindings will also be updated gradually following the proof o f body

clauses.

attem ptToP roveR ule(oneR ule,varL ist,level) {
body = ru le body o f oneRule;
sort body by ascending number o f f re e va riab les ;
head = ru le head o f oneRule;
fo r (each bodyClause in body)
{

canBeProven = attemptToProveBodyClause (
bodyClause, body, head, v a rL is t , le v e l) ;

i f (! canBeProven) break;
>
return canBeProven;

}
Fig. 7. Process o f proving one rule

5.3 Optimization Details and Discussion

There are four optimizations that have been introduced in the algorithm for

backward chaining. These optimizations are: 1) the implementation o f the selection

function, which implements the ordering o f the body clauses in one rule by the number of

free variables, 2) the upgraded substitute function, which implements the substitution o f

the free variables in the body clauses in one rule based on calculating a threshold that

88

switches resolution methods, 3) the application o f OLDT and 4) solving o f the

“owl:sameAs” problem. O f these, optimization 1 is an adaptation o f techniques employed

in other reasoning contexts [171, 172] and optimizations 3 and 4 have appeared in [169,

170] whereas technique 2 is new. 1 will describe the implementation details o f these

optimizations below. A preliminary evaluation o f these techniques is reported in Section

5.4. More extensive evaluations are reported in Section 5.5 and 5.6.

attemptToProveBodyClause(goal, body, head, v a rL is t , le v e l)
{

canBeProven = tru e ;
dthreshold = C alcu late dynamic threshold;
p a tte rn L is t = get u n ified patterns by rep lac ing variab les in bodyClause

from v a rL is t fo r current le v e l w ith ca lcu la ted dthreshold;
fo r(each u n ified P atte rn in p a tte rn L is t) {

if (!u n if ie d P a tte rn .is G ro u n d ()) {
bodyRest = unprocessedPartOf(body, g o a l);
triplesFrom Resolution+= BackwardChaining(u n ifie d P a tte rn , head,

bodyRest, leve l+ 1 , v a rL is t) ;
>
else if(u n ifie d P a tte rn .is G ro u n d Q) {

i f (knowledgeBase contains u n ifie d P a tte rn){
triplesFrom Resolution+= u n ified P a tte rn ;

}
}

>
if(tr ip le s F ro m R e s o lu tio n .s ize ()> 0) {

update_varList w ith v a rL is t, trip lesFrom R esolution, goal, and le v e l;
i f (v a rL is t= = n u ll) {

canBeProven = fa ls e ;
>

}
e lse {

canBeProven = fa ls e ;
}
return canBeProven;

}
Fig. 8. Process o f proving one goal

89

5.3.1 Ordered Selection Function

SLD resolution (Selective Linear Definite clause resolution) [173] is a variant o f

linear resolution that is complete for Horn clauses and is commonly used in Prolog-like

systems. It is also called "top-down" or "goal-directed". Rule based ontology reasoners

involving backward chaining are mostly based on SLD Resolution [173], An example is

QueryPIE [165] which performs backward chaining reasoning on large RDF databases

with a hybrid algorithm and pre-computation. A second example is Jena [98] with a

backward chaining engine that evaluates rules in a top-to-bottom, lefit-to-right order, as in

SLD resolution. A third example is IRIS [174] which is a Datalog reasoner supporting

top-down strategies like SLDNF (Selective Linear Definite-clause with Negation as

Failure) with optimizations.

The selection function [175] in SLD resolution chooses which goal to prove next

which impacts the size o f the search space and the efficiency of evaluation [176], In the

simplest case, the selection function can be specified by the order in which literals are

written (left-to-right order), such as Prolog. Several reordering techniques can be found in

related literature. In Inductive Logic Programming (ILP), two selection functions for

SLD resolution have been implemented [172]: Smallest Predicate Domain (SPD-

resolution for simplicity) and Smallest Variable Domain (SVD-resolution). SPD selects

the literal with the fewest number o f solutions at each moment first. SVD binds the

variable with the smallest domain with one o f its possible values. Reordering has also

been applied in CLP program[171] and ASP Instantiation [177] to improve the

efficiency. . The IRIS reasoner [174] re-orders the literals in a rule body to let the most

restrictive literals appear first. The preferred order is: positive literals, built-ins, and

90

negated literals. Reordering techniques has also been applied in query optimization [178-

180]. The authors claim "A consequence o f the top-down strategy is that a query

optimizer for first order queries should place literals that ground many variables as early

as possible. Grounding variables decreases the non-determinacy of the literals that

follow, which decreases execution time" [180].

What I focus on is backward reasoning for OWL Horst rules over a large

knowledge base facing changes. The number o f solutions o f a goal is not directly

available in the knowledge base. The timer to resolve each goal will depend on the size o f

knowledge base and there are no obvious ways to estimate a-priori the time to resolve

goals. Therefore, the reordering techniques discussed above cannot be applied to our

backward reasoning directly. I propose a simple way o f implementing the selection

function to support backward ontology reasoning on a large, changing knowledge base. I

propose to select the next goal to be evaluated on the basis o f the number o f variables. To

be specific, we choose to evaluate next the goal with the minimal number o f bound

arguments.

The body o f a rule consists o f a conjunction o f multiple clauses. Traditional SLD

(Selective Linear Definite) clause resolution systems such as Prolog would normally

attempt these in left-to-right order, but, logically, we are free to attempt them in any

order.

We expect that, given a rule under proof, ordering the body clauses into ascending

order by the number o f free variables will help to decrease the reasoning time. For

example, let us resolve the goal "?y n d f : typ e S tudent" , and consider the rule:

[rd fs 3 : (?x ?p ?y) (?p rd fs :ra n g e ?c) -> (?y r d f : t y p e ?c)]

91

The goal "?y r d f : ty p e S tudent” matches the head o f rule "?y r d f : ty p e

?c” , and ?c is unified with Student.

If we select body clause "?x ?p ?y" to prove first, it will yield more than 5

million (using LUBM(40) [161]) instances o f clauses. The proof o f body clause " ? x ? p

?y” in backward chaining would take up to hours. Result bindings o f "?p” will be

propagated to the next body clause “ ?p r d f S : range ?c” to yield new clauses (p i

rd fs :ra n g e S tu d e n t) , (p2 rd fs :ra n g e S tu d e n t) , ..., (p32 rd fs r ra n g e

Student), and then a separate proof would be attempted for each o f these specialized

forms.

If we select body clause "?p rd fs : range S tu d en t” (?c is unified with

Student) to prove first, it will yield zero (using LUBM(40)) instances o f clauses. The

proof o f body clause "?p r d f s : range S tudent” would take up to seconds. No result

bindings would be propagated to body clause "?x ?p ?y” . The process o f proof

terminates.

The body clause “ ?p r d f s : range ?c” has one free variable ?p while the body

clause “ ?x ?p ?y” has three free variables. It is reasonable to prove body clause with

fewer free variables first, and then propagate the result bindings to ?p to next body clause

"?x ?p ?y” . Mostly, goals with fewer free variables cost less time to be resolved than

goals with more free variables, since fewer free variables means more bindings and body

clauses with fewer free variables will match fewer triples.

5.3.2 Switching between Binding Propagation and Free Variable Resolution

Binding propagation and free variable resolution are two modes o f for dealing

with conjunctions o f multiple goals. I claim that dynamic selection o f these two modes

92

during the reasoning process will increase the efficiency in terms o f response time and

scalability.

These modes differ in how they handle shared variables in successive clauses

encountered while attempting to prove the body o f a rule. Suppose that we have a rule

body containing clauses (?x p i ? y) a n d (? y p2 ?z) (other patterns o f common

variables are, o f course, also possible) and that we have already proven that the first

clause can be satisfied using value pairs { (x i, y i) , (X2 , y 2) ,...(x n,yn)} .

In the binding propagation mode, the bindings from the earlier solutions are

substituted into the upcoming clause to yield multiple instances of that clause as goals for

subsequent proof. In the example given above, the value pairs from the proof o f the first

clause would be applied to the second clause to yield new clauses (y l p2 ? z) , (y2

p2 ? z) , . . . , (yn p2 ? z) , and then a separate proof would be attempted for each o f

these specialized forms. Any (y., z) pairs obtained from these proofs would then be

joined to the (x ,y) pairs from the first clause.

In the free variable resolution mode, a single proof is attempted o f the upcoming

clause in its original form, with no restriction upon the free variables in that clause. In the

example above, a single proof would be attempted o f (?y p2 ?z), yielding a set o f

pairs {(yn, Z i) , (yn+i,Z2) , . . .(y n+kJ Zk)}. The join o f this with the set {(Xi, y i) ,

(X2 ̂y i) }...(xn , yn)} would then be computed to describe the common solution o f both

body clauses.

The binding propagation mode is used for most backward chaining systems [98].

There is a direct tradeoff o f multiple proofs o f narrower goals in binding propagation

against a single proof o f a more general goal in free variable resolution. As the number of

93

tuples that solve the first body clause grows, the number o f new specialized forms o f the

subsequent clauses will grow, leading to higher time and space cost overall. If the number

of tuples from the earlier clauses is large enough, free variable resolution mode will be

more efficient. (In the experimental results in Section 5.5 and Section 5 .6 ,1 will

demonstrate that neither mode is uniformly faster across all problems.)

Following is an example (using LUBM(40)) showing one common way of

handling shared variables between body clauses.

Suppose we have an earlier body clause 1: “ ?y ty p e Course" and a

subsequent body clause 2: "?x takesCourse ?y". These two clauses have the

common variable ?y. In our experiments, it took 1.749 seconds to prove body clause 1

while it took an average o f 0.235 seconds to prove body clause 2 for a given value o f ?y

from the proof o f body clause 1. However, there were 86,361 students satisfying variable

?x, which means it would take 0.235 *86,361=20,295 seconds to finish proof o f 86,361

new clauses after applying value pairs from the proof of body clause 1. 20,295 seconds is

not acceptable as query response time. We need to address this problem to improve

reasoning efficiency in terms o f response time and scalability.

I propose to dynamically switch between modes based upon the size o f the partial

solutions obtained so far. Let n denote the number o f solutions that satisfy an already

proven clause. Let t denote the threshold used to dynamically select between modes. If n

< t , then the binding propagation mode will be selected. If n> t, then the free variable

resolution mode will be selected. The larger the threshold is, the more likely binding

propagation mode will be selected.

Suppose that we have a rule body containing clauses (a l p i b l) (a2 p2

94

b2). Let (a l p i b l) be the first clause, and (a2 b2 c 2) be the second clause, a i ,

b i and c i (i £ [1,2]) could be free variable or concrete value. Assume that there is at

least one common variable between two clauses.

In the binding propagation mode, the value pairs from the proof o f the first clause

would be applied to the second clause to yield new clauses (a 2 i p2i b 2 i) , (a 22 p22

b22) , . . . , (a 2n p2n c2n), and then a separate proof would be attempted for each o f

these specialized forms. Any value sets obtained from these proofs would then be joined

to the value sets from the first clause. Let j o i n i denote the time spent on the join

operations. Let proo f i 1 denote the time o f proving first clause with i free variables and

proo f 2 ̂be the average time o f proving new specialized form with j free variables, (i

E [l , 3] , j £[0,2])

In the free variable resolution mode, a single proof is attempted of the upcoming

clause in its original form, with no restriction upon the free variables in that clause. A

single proof would be attempted o f (a2 p2 b2), yielding a set of value sets. The join o f

the value sets yielded from the first clause and the values sets yielded from the second

clause would then be computed to describe the common solution o f both body clauses.

Let join2 denote the time spent on the join operations. Let proof3k denote the time of

proving second clause with k free variables (k £ [1,3]).

Determining t is critical to switching between two modes. Let us compare the

time spent on binding propagation mode and free variable resolution mode to determine

t . Binding propagation is favored when

proofi1 + proof2j * n + jo in i < proofi1 + pnoof3k + join2

Isolating the term involving n,

95

pro o f2 j *n < p ro o f i1 + p ro o f3 k + jo in 2 - p r o o f s - j o i n i

p ro o f 2:i *n < p ro o f3 k + j o i n 2 - j o i n i

j o i n i is less than or equal to j o i n 2 , because the value sets from the second

clause in the binding propagation mode have already been filtered by the value sets from

the first clause first. The join operations in binding propagation mode are therefore a

subset o f the join operations in free variable resolution mode. Let t be the largest integer

value such that

p ro o f2 ̂ * t < proof3k.

Then,

p ro o f 2? * t <= p r o o f 2j *n < p ro o f3 k + j o i n 2 - j o i n i .

We conclude that:

t = f l o o r (proof3k/ p ro o f2;i) (1)

Formula (1) provides thus a method for calculating the threshold t that

determines when to employ binding propagation. In that formula, k denotes the number

o f free variables in the second clause (a2 p2 b2), j denotes the number o f free

variables o f the new specialized forms (a 2 i p2i b2i) , (a 22 p22 b2 2), (a l n p2n

c2n) of the second clause with (k e [1,3], j G [0,2]).The specialized form o f the second

clause has one or two less free variables than the original form. Hence the possible

combinations o f (k , j) are {(3,2),(3,1),(2,1),(2,0),(1,0)}.

To estimate p ro o f3k and p ro o f 2j , we record the time spent on proving goals

with different numbers o f free variables. We separately keep a record o f the number o f

goals that have one free variable, two free variables and three free variables after we start

calling the optimized backwardChaining algorithm. We also record the time spent on

96

proving these goals. After we have recorded a sufficient number of proof times

(experiments will give us an insight into what constitutes a ‘sufficient’ number), we

compute the average time spent on goals with k free variables and j free variables

respectively to obtain an estimate o f p ro o f 3k and proo f 2 .̂

In order to adopt accurate threshold to help improve the efficiency, we apply

different thresholds to different situations with corresponding number o f free variable set

(k , j) .

We assign the initial value to t from previous experiments in a particular

knowledge base/query environment if they exist or zero otherwise.

We update the threshold several times when answering a particular query. The

threshold will change as different queries are being answered. For each query, we will

call the optimized backward chaining algorithm recursively several times. Each call o f

backwardChaining is given a specific goal as an input. During the running o f

backwardChaining, the average time o f proving a goal as a function o f the number o f

free variables will be updated after a goal has been proven. During the running of

backwardChaining, every time before making selection between two modes the

estimate threshold is updated before making the decision.

5.3.3 How to Avoid Repetition and Non-Termination

Given RDFS Rules [115], Horst rules [116] and custom rules [5] in the rule set

and queries for answering, backward chaining for ontology reasoning may hit the same

goals for several times. Some body clauses such as ?a r d f s : subClassOf ?b and ?x

r d f s : subPropertyOf ?y appear in multiple rules in the Horst rule set that is used in

many reasoning systems. During the process o f answering a given query, these rules

97

containing the same body clauses might be necessary to be proved to answer the query.

During the process o f answering a given query, some rules may be repeatedly called for

more than one time, leading to proving the same body clause like

?a r d f s : subClassOf ?b more than one time. Within the process o f answering one

query, such a repetition decreases the efficiency in terms o f response time. Backward

chaining with memorization will help to avoid repetition.

Backward chaining is implemented in Logic Programming [181] by SLD

resolution [173], When we apply conventional backward chaining process to ontology

reasoning, it has the same non-termination problem as SLD resolution does. During the

proving process, the rule body needs to be satisfied to prove the goal. In some cases, the

rule body requires proving goals that have the same property as the goal, resulting

possibly in an infinite loop unless steps are taken to ensure termination.

For example:

[r d fs 8 : (?a r d f s : subClassOf ? b), (?b rd fs :s u b C lass O f ?c) -> (?a

rd fs :subC lassO f ? c)]

is one rule in the RDFS rule set used for ontology reasoning. When we apply standard

backward chaining to ontology reasoning, proving the head (?a r d f s : subClassOf

?c) requires proving of the body (?a r d f s : subClassOf ?b) and (?b

r d f s : subClassOf ? c). This loop will be infinite without applying any techniques.

I use an adaptation of the OLDT algorithm to solve this non-termination problem.

The OLDT algorithm is an extension of the SLD-resolution [173] with a left to right

computation rule. OLDT maintains a solution table and lookup table to solve the non­

termination problem.

98

5.3.4 owl: sameAs Optimization

The “owl: sameAs” relation poses a problem [169] for almost all the reasoning

systems including forward chaining. In the reasoning system, we first pre-compute all

possible o w l: sameAs pairs and save them to a sameAs table. Second, we select a

representative node to represent an equivalence class of o w l: sameAs URIs. Third, we

replace the equivalence class o f o w l: sameAs URIs with the representative node. At last,

if users want to return all the identical results, we populate the query response using the

sameAs table by replacing the representative node with the URIs in the equivalence

class.

As I described in Section 5.1, reasoning with the o w l: sameAs relation can result

in a multiplication o f the number of instances o f variables during backward-chaining and

expanded patterns in the result. As long as that triple is in the result set, all o f the

members in its equivalence class would be in the result set as well. This adds cost to the

reasoning process in both time and space. The optimization that applies pre-computation

and selects a representative node improves the performance in terms o f time and space.

This optimization is a novel adaptation o f o w l: sameAs optimization from

forward chaining reasoning systems, such as OWLIM-SE [90] and Oracle [91], to

backward chaining reasoning systems.

5.4 Evaluation of Optimized Backward Chaining

In the previous section, I discussed four optimizations that have been introduced

in the optimized backward chaining algorithm: optimized selection function, dynamic

switching between binding propagation mode and free variable resolution mode,

avoidance o f repetition and non-termination (application o f OLDT) and “owl: sameAs”

optimization. In this section, I present experimental evidence of the effectiveness o f the

first two optimizations. I do not explore the effectiveness o f OLDT as this is now well-

established [170] although I apply the same idea o f this optimization to the backward

chaining algorithm to avoid the explosion o f the size o f the search space. The benchmark

I am using for the experiments in this thesis exclude all the “owl:sameAs” semantics.

The owl:sameAs optimization technique would work well with UOBM which includes

the “owl:sameAs” semantics; experimentation on the use the technique is left for future

work.

All the experiments in this section were performed on a PC with a 2.80 GHz Intel

Core i7 processor and 8 G memory, running Windows 7 Enterprise. Sun Java 1.6.0 was

used for Java-based tools. The maximum heap size was set to 512M. I checked all o f our

results for being complete and sound. All the timing results I present in this thesis except

Section 5.5 are CPU times as the knowledge base is entirely in memory.

To evaluate the performance o f the clause selection function and the dynamic

propagation selection, I evaluate the optimized backward chaining by turning these

optimizations on and off individually and comparing runs with a technique turned on

against runs with the technique turned off. In this section, I only present the scalability

and response time of the optimized backward chaining algorithm when it runs in memory

without any support o f external storage. I am aware that working in memory has

limitations with respect to the size o f the knowledge base and the retrieved data. I will

explore the efficiency of the optimized backward chaining algorithm with external triple

storage in Section 5.5.

100

5.4.1 Selection Function

Table XVIII compares the backward chaining algorithm with the clause selection

based on free variable count to the traditional left-to-right selection on a relatively small

knowledge base (100,839 triples), LUBM (l) [161]. Backward chaining with the ordered

selection function yields considerably smaller query response times for all the queries

than left-to-right.

TABLE XVIII
E v a l u a t i o n o f C l a u s e S e l e c t i o n O p t i m i z a t i o n o n LUBM(l)

Time (ms),
Ordered

Time (ms),
Left-to right

Result Size
(triples)

Query 1 93 605,907 4
Query2 280 2,316,178 0
Query3 0 417,396 6
Query4 452 2,137,151 34
Query5 80 262,924 719
Query6 374 434,665 7,790
Query7 187 1,083,114 67
Query 8 514 2,032,895 7,790
Query9 171 1,322,701 208

Query 10 78 676,498 4
Query 11 213 571,540 224
Query 12 250 1,582,130 15
Query 13 24 424,931 1
Query 14 15 404,884 5,916

The difference becomes even more dramatic for a larger knowledge base

(1,272,871 triples), LUBM(IO), as shown in Table XIX. With left-to-right selection, we

are unable to answer any query within 30 minutes, and out-of-memory errors occur for

almost half o f the queries. Were the knowledge base moved to external triple storage, the

I/O time o f accessing the external triple storage would magnify the problem o f left-to-

right selection.

101

TABLE XIX
E v a l u a t io n o f C l a u s e S e l e c t io n O p t im iz a t io n o n LUBM (IO)

Tim e (m s),
Ordered

Tim e (ms),
Left-to right

Result Size
(triples)

Query 1 343
OutOfMemoryError: Java

heap space
4

Query2 1,060 >1.8*106 28
Query3 15 >1.8*106 6
Query4 858 >1.8*106 34
Query5 15 >1.8*106 719
Query6 1,170 OutOfMemoryError 99,566
Query7 1,341 OutOfMemoryError 67
Query8 1,684 OutOfMemoryError 7,790
Query9 1,591 OutOfMemoryError 2,540

Query 10 982 OutOfMemoryError 4
Query 11 93 >1.8*106 224
Query 12 109 >1.8*106 15
Query 13 0 >1.8*106 33
Query 14 156 >1.8*106 75,547

5.4.2 Dynamic Selection of Propagation Mode

I compare the backward chaining algorithm with three different modes o f

resolving goals on LUBM(10) in Table XX. The first mode uses dynamic selection

between binding propagation mode and free variable resolution mode. The second mode

uses binding propagation mode only. The third mode uses free variable resolution mode

only.

Table XX shows that neither binding propagation mode nor free variable

resolution mode is uniformly better than the other on all cases. From query 1 to query5

and query 11 to query 14, dynamic mode performs almost same as binding propagation

mode. From query5 to query9, dynamic mode performs dramatically better than binding

propagation mode with much less query response time. For query 1, query3 and queryl4

only, dynamic mode performs almost same as free variable resolution mode. For the

other queries, dynamic mode performs dramatically better than free variable resolution

102

mode with much less query response time.

TABLE XX
E v a l u a t io n o f D y n a m ic S e l e c t io n v e r s u s B in d in g P r o p a g a t io n a n d F r e e V a r ia b l e M o d e s

ON LUBM(IO)

Time (ms),
Dynamic
selection

Time (ms),
Binding propagation

only

Time (ms),
Free variable

resolution only
Query 1 343 343 296
Query2 1,060 1,341 21,278
Query3 15 20 15
Query4 858 961 42,572
Query 5 15 16 22,323
Query6 1,170 592,944 19,968
Query7 1,341 551,822 20,217
Query8 1,684 513,773 40,061
Query9 1,591 524,787 20,841

Query 10 982 509,078 19,734
Query 11 93 109 19,141
Query 12 109 156 38,313
Query 13 0 10 21,528
Query 14 156 140 140

The query response times o f query6 to query 10 are less by orders o f magnitude

when running our algorithm with the dynamic selection mode in comparison compared to

running with binding propagation mode only and free variable resolution mode only. In

all cases the optimized version finishes faster than the better o f the other two versions.

Overall, the results in Table XX confirm the advantage of dynamically selecting between

propagation modes.

5.4.3 Overall Performance

In the semantic web, frequent changes in the underlying knowledge base happen

because o f continuous harvesting o f new facts such as papers published. Less frequent

will be changes in the underlying ontology or the rule set that governs the reasoning.

103

Individuals might be changing rules rather frequently when they are trying to develop the

best rules to describe a new concept they want to measure, or instance, ‘ground­

breaking’. Queries may be posted during the frequent changes. A backward chaining

reasoner can handle a change to the knowledgebase without recourse to materialization as

a forward chaining reasoner will have to do unless it is willing to provide potentially

incomplete or simply wrong answers.

We are exploring the scenario o f responding to a query after a change to the

knowledge base has occurred and that a forward chaining reasoner will do a new

materialization to accommodate the change. I understand that different knowledge bases

will encounter this scenario at different frequencies, depending on the rate at which

changes occur. I also understand that forward chaining reasoners might be willing to wait

and batch individual changes at the prize o f incomplete answers for some queries (which

may not happen during the period o f accumulating the changes), However, for simplicity

sake, we will perform the experiments under the assumption of immediate materialization

and leave the modeling the dynamic nature o f queries and changes over time for future

work.

I compare the optimized backward chaining reasoner with OWLIM-SE [90],

which is considered to be among the best performers on both scalability and response

time. OWLIM-SE is a semantic reasoner that adopts the materialization (forward

chaining) mechanism [90], I use the LUBM Benchmark dataset scaling from one

university to 40 universities. The size of the benchmark dataset scales from 100,839 to

5,307,754. There are altogether 14 queries in the benchmark. A semantic reasoner that

adopts the materialization (forward chaining) mechanism would load datasets every time

104

when a change occurs in the system.

TABLE XXI
O v e r a l l C o m p a r i s o n b e t w e e n t h e B a c k w a r d C h a in i n g R e a s o n e r a n d OWLIM-SE

LU B M H) LUBM (40)
Time (m s),

Opt.
Backwd

Time (ms),
OWLIM-

SE

Time (ms),
Opt.

Backwd

Time (ms),
OWLIM-

SE
Loading

time 2,900 9,600 95,000 350,000

Query 1 260 27 1,400 26
Query2 490 3.4 9,100 5,100
Query3 56 1.0 36 2.5
Query4 470 8.4 5,900 14
Query5 33 59 15 41
Query6 180 240 43,000 5,300
Query7 190 4.4 51,000 54
Query8 540 460 57,000 3,000
Query9 250 63 87,000 4,400

QuerylO 140 0.10 51,000 0.60
Query 11 190 4.9 200 5.4
Query 12 220 1.0 3,600 11
Query 13 28 0.20 33 17
Query 14 24 23 1,200 2,500

In the Table XXI, for LUBM(l), we can see that the optimized backward

chaining reasoner is close to the response time of OWLIM-SE, however, our loading

time (initializing the knowledge base - in memory) is only about 1/3 o f that o f OWLIM-

SE’s loading time (initialization and materialization). Thus, the backward chaining

reasoner performs better than OWLIM-SE on LUBM(l) in cases where we anticipate

frequent changes. For LUBM(40), from query6 to querylO, the response time o f the

optimized backward chaining reasoner is far more than OWLIM-SE, however, if we take

loading time for OWLIM-SE into consideration, the optimized reasoner still has a better

performance.

105

5.5 Evaluation with External Storage

In Section 5.3 and 5.4, assessing the effectiveness o f the optimized reasoner

[182], all our experiments were performed ‘in-memory’ which limited the study to a

knowledge base o f less than 10 Million triples.

In this section, I switch to implementations that use external storage for the

knowledge base. I consider Jena SDB [183], Jena TDB [142] and OWLIM-SE [90]. I

extend our study based on a knowledge base o f more than 10 Million triples.

The employment o f external storage introduces new factors and has implications

on how to improve the scalability o f the backward chaining reasoner. First, any

optimization technique needs to balance the number o f accesses to data and the size o f

the retrieved data against the size o f in-memory cache and its use. Second, the algorithm

has to take now into account that it will take longer to access a triple (or a set o f triples)

due to having to perform I/O. In-memory reasoners typically have a ‘model’ o f the

knowledge base in which they store the facts and an API to access them. When an

external storage is used they would provide transparent connections from the model to

the external databases that would allow the reasoner to use the same API for accessing

the model. This leads to a third factor effecting the scalability and performance o f the

reasoner: the middleware that realizes the transparent linking.

Jena SDB provides persistent triple stores using relational databases. An SQL

database is required for the storage and query o f triples for SDB. In this section, I use

MySQL and PostgreSQL as the relational database for SDB. Jena TDB is claimed as a

more scalable and faster triple store than SDB [183].A special Jena adapter permits

access to OWLIM-SE repositories [90]. Reasoners can access all three storage systems

106

via a common Jena API.

5.5. I Preliminary A nalysis

I begin by exploring the relative impact on overall performance o f the three major

components o f the backward chaining reasoner, the middleware, and the storage system

itself. The purpose of this analysis is to determine how much time we can save by

improving any one of these subsystems in isolation.

I employed Jena SDB + MySQL as the external storage for the backward

chaining reasoner in the experiment, evaluating the query response time o f 14 queries

from LUMB [161] using LUBM(30).

A single function in the backward chaining algorithm implementation is

responsible for all data retrievals from the triple store. We refer to this function as “the

Data-retrieval function” in the remainder o f this section. We recorded the clock time Tf

and CPU time t f spent within the Data-retrieval function and in the whole query

processing (T t o t and t t o t , respectively) in Table XXII.

The portion of the CPU and clock times spent in answering the query but not

spent in the Data-retrieval function is attributable to the backward chaining reasoner:

Tbw — T to t - T f

Tbw = t t o t _ t f

The clock time observed during the Data-retrieval function includes actual input

operations on the underlying triple store, together with the CPU-intensive manipulation

of the input data by the middleware layer. Assuming that the ratio, P =ttot/T tot, of CPU

time to clock time observed over the processing o f an entire query would remain

approximately constant during the middleware CPU, we were able to estimate the portion

107

o f the Data-retrieval function clock time that was attributable to the middleware:

Tmid = P tm id

and can attribute the remaining clock time as the actual time spent doing I/O:

T io = T f - Tmid

Then we can estimate a minimal clock time to answer the query, assuming 100%

CPU utilization, as

Tittin — tb w + P Tmid + T io

TABLE XXII
C l o c k T im e , CPU T im e a n d I/O T im e f r o m E x p e r i m e n t s w i t h J e n a SDB u s i n g LUBM(30)

Total
Clock
time,

Ttot (ms)

Total
CPU
Time,

ttot (ms)

Clock
time in
Data-

retrieval
function,

Tt(ms)

CPU
time in

I/O
function,

ti(ms)

Query 1 1405.00 951.00 920.00 546.00

Query2 9631.00 6084.00 5058.00 2293.00

Query3 203.00 78.00 109.00 31.00

Query4 35354.00 8096.00 31140.00 5070.00

Query5 173.00 78.00 94.00 15.00

Query6 23744.00 7035.00 19984.00 3712.00

Query7 24058.00 9984.00 18659.00 6333.00

Query8 28694.00 11029.00 22680.00 5896.00

Query9 29598.00 11700.00 23899.00 6988.00

QuerylO 18612.00 6630.00 15040.00 3572.00

Query 11 3636.00 561.00 2964.00 124.00

Query 12 7567.00 1903.00 5226.00 405.00

Query 13 187.00 46.00 95.00 0.00
Query 14 1873.00 811.00 1451.00 452.00

Table XXIII shows the values o f these estimates, together with the percentage o f

that value attributable to each o f the three components. In Table XXIII, the percentage of

time spent in I/O operations ranges from 22% to 75%, a considerable variation. This

might be because some retrievals from triple store retrieve huge numbers o f triples while

others are far more focused and process much less data.

TABLE XXIII
E s t im a t e d I/O T i m e a n d I d e a l P e r c e n t a g e s f r o m E x p e r im e n t s w it h J e n a SDB U s in g

LUBM(30)

M in possible
clock tim e to

answer a
query,Tmin

(m s)

% o f
Tmin

spent
in I/O

% o f
Tm in

spent in
B W chaining

% o f
Tmin tim e
spent in

m iddleware

Query 1 1217.15 0.22 0.33 0.45

Query2 8376.00 0.27 0.45 0.27

Query3 125.00 0.38 0.38 0.25

Query4 32175.53 0.75 0.09 0.16

Query5 153.19 0.49 0.41 0.10
Query6 22818.84 0.69 0.15 0.16

Query7 19277.93 0.48 0.19 0.33

Query8 26801.04 0.59 0.19 0.22
Query9 27147.26 0.57 0.17 0.26

QuerylO 17497.60 0.62 0.17 0.20
Query 11 3334.32 0.83 0.13 0.04

Query 12 6496.09 0.71 0.23 0.06

Query 13 141.00 0.67 0.33 0.00
Query 14 1730.68 0.53 0.21 0.26

The percentage of the time devoted to the middleware ranges from 0% to 44%,

with an average around 20%, indicating that the triple storage layer adds a significant

component o f CPU time. The backward chaining code running on top o f that accounts for

13 to 45% of minimal processing time, and the average is 25%.

109

These percentages are surprisingly balanced, suggesting that improvements to any

one of the three major components o f the system can have only modest effect on the total

time. Significant improvements will be possible only by improvement in all three areas.

One possible avenue of exploration is changes to the reasoner that would not only speed

up the reasoner but would affect the number and size of requests for input from the

underlying store. Indirectly, at least, several o f the optimizations I have proposed in

Section 5.3 could have such an effect. Caching, an effect not explored in this experiment,

could also have a major impact across all three areas.

5.5.2 Evaluation of the Optimization Techniques

In this section, I examine the impact o f the two major optimizations proposed in

Section 5.3.

Ordered Selection Function

I replace the traditional left-to-right processing o f clauses within rule bodies by

ordering by ascending number of free variables.

Table XXIV compares the backward chaining algorithm with the clause selection

based on free variable count to the traditional left-to-right selection on a relatively small

knowledge base (100,839 triples), LUBM (l) [161], stored in Jena TDB. Backward

chaining with the ordered selection function yields considerably smaller query response

times for all the queries than left-to-right. The I/O time o f accessing the external triple

storage magnifies the problem of left-to-right selection compared to [182] because the

knowledge base is in external triple storage TDB now.

110

TABLE XXIV
E v a l u a t i o n o f C l a u s e S e l e c t i o n O p t i m i z a t i o n o n LUBM(l) U s in g TDB a s E x t e r n a l

St o r a g e

Time (m s),
Ordered

Time (m s),
Left-to right

Result Size
(triples)

Query 1 296 >6.0*105 4
Query 2 811 >6.0*105 0
Query3 46 >6.0*105 6
Query4 1419 >6.0*105 34
Query5 31 >6.0*105 719
Query6 265 >6.0*105 7,790
Query7 234 >6.0*105 67
Query8 483 >6.0*105 7,790
Query9 202 >6.0*105 208

QuerylO 156 >6.0*105 4
Query 11 218 >6.0*105 224
Query 12 202 >6.0*105 15
Query 13 15 >6.0*105 1
Query 14 31 >6.0*105 5,916

The difference becomes even more dramatic for a larger knowledge base

(1,272,871 triples), LUBM(IO) stored in Jena TDB, as shown in Table XXV. With left-

to-right selection, we are unable to answer any query within 30 minutes, and out-of-

memory errors occur for almost half o f the queries. The I/O time o f accessing the

external triple storage magnifies the problem of left-to-right selection compared to [182]

because the knowledge base is in external triple storage TDB now.

Switching between Binding Propagation and Free Variable Resolution

Binding propagation and free variable resolution are two modes for dealing with

conjunctions o f multiple goals. I have proposed dynamic selection o f these two modes

during the reasoning process to increase the efficiency in terms of response time and

scalability.

I compare the backward chaining algorithm with three different modes of

resolving goals on LUBM(IO) stored in Jena TDB in Table XXVI. The first mode uses

I l l

dynamic selection between binding propagation mode and free variable resolution mode.

The second mode uses binding propagation mode only. The third mode uses free variable

resolution mode only.

TABLE XXV
E v a l u a t i o n o f C l a u s e S e l e c t i o n O p t i m i z a t i o n o n LUBM(IO) U s in g TDB a s E x t e r n a l

St o r a g e

Time (ms),
Ordered

Time (ms),
Left-to right

Result
Size

(triples)
Query 1 1045 OutOfMemoryError:

Java heap space
4

Query2 2433 >2.0*106 28
Query3 31 >2.0*106 6
Query4 3744 >2.0*106 34
Query5 15 >2.0*106 719
Query6 1435 OutOfMemoryError 99,566
Query7 1903 OutOfMemoryError 67
Query8 2106 OutOfMemoryError 7,790
Query9 1918 OutOfMemoryError 2,540

QuerylO 1138 OutOfMemoryError 4
Query 11 140 >2.0*106 224
Query 12 358 >2.0*106 15
Query 13 15 >2.0*106 33
Query 14 187 >2.0*106 75,547

Table XXVI shows that neither binding propagation mode nor free variable

resolution mode is uniformly better than the other on all cases. From query 1 to query 5

and in query 13, dynamic mode performs almost same as binding propagation mode.

From query 6 to query 10, dynamic mode performs dramatically better than binding

propagation mode with much less query response time. For query 11, query 12 and query

14, dynamic mode performs better than binding propagation mode with less query

response time. For query 1, query3 and query 14 only, dynamic mode performs almost

same as free variable resolution mode. For the other queries, dynamic mode performs

dramatically better than free variable resolution mode with much less query response

time. The query response times o f query6 to querylO are less by orders o f magnitude

when running the algorithm with the dynamic selection mode in comparison compared to

running with binding propagation mode only and free variable resolution mode only. In

all cases the optimized version finishes faster than the better o f the other two versions.

TABLE XXVI
E v a l u a t i o n o f D y n a m ic S e l e c t i o n v e r s u s B in d in g P r o p a g a t i o n a n d F r e e V a r i a b l e M o d e s

o n LUBM(IO) U s in g T D B a s E x t e r n a l S t o r a g e

Time (ms),
Dynamic
selection

Time (ms),
Binding

propagation
only

Time (ms),
Free

variable
resolution

only
Query 1 1045 904 904
Query2 2433 2683 26535
Query3 31 15 15
Query4 3744 4149 41605
Query5 15 15 2244810
Query6 1435 >6.0*105 20514
Query7 1903 >6.0*105 20763
Query8 2106 >6.0*105 42831
Query9 1918 >6.0*105 21512

QuerylO 1138 >6.0*105 19921
Query 11 140 904 19094
Query 12 358 1435 41745
Query 13 15 31 24117
Query 14 187 1154 187

Overall, the results in Table XXVI confirm the advantage o f dynamically

selecting between propagation modes. The I/O time o f accessing the external triple

storage magnifies the problem of binding propagation mode only and free variable

resolution mode only compared to [182] because the knowledge base are in external

triple storage TDB now. The selection o f the threshold in dynamic mode is affected by

the employment o f external storage and affects the number o f accesses to store.

113

Storage System Impact

To explore the effect o f switching the underlying storage manager, I compared

three external storage methods employed in the optimized backward chaining reasoner

with regard to I/O time. For all 14 queries from LUBM, the three storage managers SDB,

TDB and OWLIM-SE, all have the same number o f accesses (calls to the Data-retrieval

function) to the underlying store.

I show in Table XXVII the I/O time per access for SDB, TDB and OWLIM-SE

using LUBM(50) which has 6,890,640 triples. The I/O time per store access o f SDB is

dramatically longer than both TDB and OWLIM-SE through all 14 queries in LUBM.

From query 1 to 5 and query 13, the I/O time per store access of TDB is slightly longer

than OWLIM-SE. For the other queries, TDB has shorter I/O time per store access. In

general, TDB and OWLIM-SE have similar performance in terms o f I/O time.

TABLE XXVII
C o m p a r i s o n a m o n g SDB, TDB a n d OWLIM-SE a s E x t e r n a l S t o r a g e o n I/O T im e p e r S t o r e

A c c e s s o n LUBM(50)

Time
(ms),
SDB+

PostgreS
QL

Time
(ms),
TDB

Time
(ms),

OWLIM-
SE

#of
Number
of access
to store

Query 1 41.42 2.32 0.70 132
Query2 50.76 0.48 0.35 353
Query3 1.63 0.42 0.28 65
Query4 82.38 0.38 0.14 455
Query5 1.57 0.36 0.20 81
Query6 298.74 0.67 5.12 153
Query7 237.69 0.13 0.52 286
Query 8 72.24 0.07 0.43 917
Query9 221.45 0.02 0.17 351

QuerylO 223.33 0.07 0.14 218
Query 11 2.08 0.05 0.12 616
Query 12 2.07 0.03 0.10 2792
Query 13 1.28 0.21 0.13 86
Query 14 111.76 0.03 0.22 67

114

Overall Performance

Finally, I consider the overall performance o f the optimized backward chaining

reasoner when using three different storage managers. 1 use SDB, TDB and OWLIM-SE

respectively when running the optimized backward chaining reasoner for all 14 queries

from LUBM, and I measure query response time using LUBM(50) in Table XXVIII.

Query 1, query2, query3 and query6, OWLIM-SE has the fastest response time. Jena SDB

+ PostgreSQL performs fastest only for query4, because the I/O time o f Jena SDB is the

longest out o f three stores. For the rest o f the queries, Jena TDB is fastest.

TABLE XXVIII
C o m p a r i s o n b e t w e e n SDB, TDB a n d OWLIM-SE a s E x t e r n a l S t o r a g e o n Q u e r y

R e s p o n s e T im e o n LUBM(50)

Clock Time
Time (ms),

SDB+Postgr
eSQL

Time
(ms),
TDB

Time (ms),
OWLIM-

SE
Query 1 6430 13440 3549
Query2 24960 36102 17046
Query3 406 58 61
Query4 46400 71298 45680
Query 5 533 78 156
Query6 59144 32590 30470
Query7 83799 34580 45527
Query8 85563 48307 53013
Query9 95992 34583 49566

Query 10 63100 20191 27916
Query 11 3466 528 876
Query 12 16253 2403 3199
Query 13 374 39 37
Query 14 8581 4731 5364

In Table XXIX I show a similar comparison of TDB and OWLIM-SE on query

response time using LUBM(IOO). SDB was omitted from this comparison because the

loading time o f SDB is prohibitively long. In both Table XXVIII and Table XXIX, Jena

TDB has the better performance through all 14 queries. In general, the optimized

backward chaining reasoner and external storage Jena TDB has the best performance

especially when the size o f the knowledge base increases.

TA BLE X X rx
C o m p a r is o n b e t w e e n TD B a n d O W LIM -SE a s E x t e r n a l St o r a g e on Q u e r y R e s p o n s e T i m e o n

LUBM(IOO)

C lock Tim e
Time (ms),

TDB
Time (ms),

OWLIM-SE
Query 1 2652 5085
Query2 13884 29657
Query3 31 46
Query4 49109 82664
QueryS 46 78
Query6 26020 51277
Query7 39873 76752
Query8 58609 98343
Query9 46925 85456

Query 10 26894 52821
Query 11 452 826
Query 12 920 1716
Query 13 15 31
Query 14 7222 11263

5.6 Evaluation with Custom Rule Sets and Queries

5.6.1 Ontology Data, Custom Rule Sets and Queries

TA BLE XXX
Size Range o f Datasets (in Triples)

Dataset 1 Dataset2 Dataset3 Dataset4 D ataset5 Dataset6

ScienceWeb 3511 6728 13244 166163 332248 1327573
LUBM 8814 15438 34845 100838 624827 1272870

Dataset7 Dataset8 D ataset9 DataSetlO DataSet 11

ScienceWeb 2656491 3653071 3983538

LUBM 2522900 4109311 6890949 13880279 27643953

1 1 6

The size range o f the datasets in our experiments is listed in Table XXX. I

generate 11 datasets for LUBM and 9 datasets for ScienceWeb, both ranges from

thousand to millions for our experiments. I have added 4 more datasets from LUBM to

the ontology data in Chapter 3 for the experiments in this section.

Below I will give the 5 rule sets and 3 corresponding query sets that I will use in

the experiments. I have made some changes to the rule sets and queries that I have

introduced in section3. Rule sets were defined to test basic reasoning to allow for

validation, such as allowing for transitivity and recursion. Rule set 1 for the co-authorship

relation, mle set two is for collaborator relation, rule set three is used in queries for the

genealogy o f PhD advisors (transitive) and rule set 4 is to enable queries for “good”

advisors. Rule set 5 is a combination o f the first 4 sets.

Rule set 1: Co-author
au th o rO f(? x , ? p)A au th orO f(?y, ?p) => coAuthor^Px, ?y)
Rule set 2: Collaborator
adv iso rO f (? x , ?y) => c o l la b o r a to r O f (?x , ?y)
Rule set 3: Research ancestor (transitive)
ad v is o rO f(? x , ?y) ==» research A n cesto r(?x, ?y)
researchA n cesto r(? x , ?y)A res earch A n ces to r(? y , ?z) =>
researchA n cesto r(? x , ?z)
Rule set 4: Distinguished advisor (recursive)
a d v is o rO f(?x, ? y)A a d v iso rO f(?x, ? z)A n o tE q u a l(? y ,? z)
AworksFor(?Xj?u) => d is t in g u is h A d v is o r (? x , ?u)
a d v is o rO f (? x ,? y)A d is t in g u is h A d v is o r (? y ,? u)A w o rk s F o r (? x ,? d)
= * d is t in g u is h A d v is o r (? x , ?d)
Rule set 5: combination of above 4 rule sets.

I have composed 3 query sets to use in the tests, expressed in SPARQL notation:

Query setl:

Query 1: Co-author
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to lo g ies .co m /O n to lo g y lln ive rs ityR es earch M o d e l.o w lf^
SELECT ?x ?y

http://www.owl-

WHERE {?x un i:coA uthor ? y . } ;
Query 2: Collaborator
PREFIX u n i : < h t tp : / /w w w .o w l-
o n to lo g ie s . com /O n to logyU nivers ityR esearchM odel. owl#>
SELECT ?x ?y
WHERE {?x u n i :c o l la b o r a to r O f? y . } ;
Query 3: Research ancestor
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to lo g ie s . com /O nto logyU nivers ityResearchM odel.ow l#>
SELECT ?x ?y
WHERE {?x un i:re search A n ce s to r ? y . } ;
Query 4: Distinguished advisor
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to lo g ie s . com /OntologyUnivensityResearchM odel.owl#>
SELECT ?x ?y
WHERE {?x u n i :d is t in g u is h A d v is o r ?y. } ;
Query set2:

Query 1: Co-author
PREFIX u n i :< h t tp : / /w w w .o w l-
o n to log ies .com /O nto lo gyU n ive rs ityR esearchM od el.ow l#>
SELECT ?x ?y
WHERE {?x un i:coA uthor ?y. ?x uni:hasName
\ ”F u llP ro fe s s o r0 _ d 0 _ u 0 \" }
Query 2: Collaborator
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to log ies .com /O nto lo gyU n ive rs ityR esearchM od el.ow l#>
SELECT ?x ?y
WHERE {?x u n i: c o l la b o ra to rO f ?y. ?x uni:hasName
\ "F u llP ro fe s s o r0 _ d 0 _ u 0 \" >;
Query 3: Research ancestor
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to lo g ies .com /O nto logyl)n ivers ityR esearchM odel.ow l#>
SELECT ?x ?y
WHERE {?x u n i:research A n cesto r ?y. ?x uni:hasName
\ " F u llP ro fe s s o r0 _ d 0 _ u 0 \" } ;
Query 4: Distinguished advisor
PREFIX u n i :< h t tp : / /w w w .o w l-
o n to lo g ie s . com /O nto logyU nivers ityR esearchM odel. owl#>
SELECT ?x ?y
WHERE {?x u n i :d is t in g u is h A d v is o r ?y. ?y u n i : h a s T i t le
\"d epartm ent0u0 \" } ;

http://www.owl-
http://www.owl-
http://www.owl-
http://www.owl-
http://www.owl-
http://www.owl-
http://www.owl-

118

Query set3:

Query 1: Co-author
PREFIX u n i :< h t tp : / /w w w .o w l-
o n to lo g ies .co m /O n to lo g yU n ive rs ityR esearch M o d e l.o w l#>
SELECT ?x ?y
WHERE { < h t tp : / /w w w .d 0 .u 0 .e d u /~ F u llP ro fe s s o n 0 _ d 0 _ u 0 > u n ircoA uth or
?y. >
Query 2: Collaborator
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to lo g ie s . com /O nto logyU nivers ityR esearchM odel. owl#>
SELECT ?x ?y
WHERE { < h t tp : / /w w w .d 0 .u 0 .e d u /~ F u l lP ro fe s s o r0 _ d 0 _ u 0 > u n i:
c o l la b o r a to r O f ?y. } ;
Query 3: Research ancestor
PREFIX u n i :< h t tp : / /w w w .o w l-
on to log ies .com /O nto lo gyU n ive rs ityR esearchM od e l.ow l#>
SELECT ?x ?y
WHERE { < h t t p : / / www. d 0 . u0 . e d u /~ F u llP ro fe s s o r0 _ d 0 _ u 0 >
un i:re search A n ce s to r ?y. } ;
Query 4: Distinguished advisor
PREFIX u n i :< h t tp : / /w w w .o w l-
o n to lo g ies .co m /O n to lo g y lln ive rs ityR es earch M o d e l.owl#>
SELECT ?x ?y
WHERE {?x u n i :d is t in g u is h A d v is o r <h t tp : / /w w w .d 0 .u 0 .e d u > . } j

There are minor differences among the above three query sets. Query set 1 is

intended to retrieve all the pairs of relationships, for example, all the co-authors in the

knowledge base. Query set 2 is intended to retrieve partial pairs of relationships, for

example, all the co-authors o f researchers whose name is “FullProfessorOdOuO”. Query

set 3 is intended to retrieve pairs o f relationships for a specific researcher/department, for

example, all the co-authors o f researcher

<h t tp : / /w w w .d 0 .u 0 .e d u /~ F u llP ro fe s s o r0 _ d 0 _ u 0 >.

Query set 2 is the query form we used in paper [5]. For query set 2, the optimized

backward chaining reasoner answers two separate queries and then applies a join

operation resulting in a cross product. For query set 1 and 3, the optimized backward

http://www.owl-
http://www.d0.u0.edu/~FullProfesson0_d0_u0
http://www.owl-
http://www.d0.u0.edu/~FullProfessor0_d0_u0
http://www.owl-
http://www.d0.u0.edu/~FullProfessor0_d0_u0
http://www.owl-
http://www.d0.u0.edu
http://www.d0.u0.edu/~FullProfessor0_d0_u0

119

chaining reasoner only need to answer one single query respectively.

Queries are used with the rules sets that define the properties employed in the

queries. Each rule set is tested with corresponding queries in different query sets. Rule set

5 is tested with all queries.

5.6.2 Experimental Environment and Metrics

I have chosen Jena TDB as our external storage support for the optimized

backward chaining reasoner. The latest version systems have been chosen: Jena (2.11.0,

2013-09-18 release), and Jena TDB (1.0.0, 2013-09-18 release). Consider that a

backward chaining system does not require expensive up front closure computation every

time the knowledge base changes, I have taken scalability and query processing time

from [5] as the main metrics.

• Query processing time: This stage starts with parsing and executing the query and

ends when all the results have been saved in the result set. It includes the time o f

traversing the result set sequentially.

All the experiments in this section were performed on a PC with a 2.80 GHz Intel

Core i7 processor and 8 G memory, running Windows 7 Enterprise. Sun Java 1.6.0 was

used for Java-based tools. The maximum heap size was set to 512M. I checked all o f our

results for being complete and sound. All the timing results I present in this section are

CPU times as the knowledge base is entirely in memory.

5.6.3 Evaluation Procedure

Our goal is to evaluate the performance o f the optimized backward chaining

reasoner in terms of reasoning and querying time using custom rules. I am interested in

two aspects o f performance. One aspect is scalability, which means the size o f data and

120

the complexity o f reasoning. The second aspect is query processing time. I am interested

in the query processing time as the size o f the knowledge base changes from small toy

size to realistic sizes of millions.

5.6.4 Results and Discussion

Evaluation on top of LUBM

With rule sets and query sets described in Section 5 .6 .1 ,1 evaluate the backward

chaining reasoner on 11 datasets generated from LUBM. In this section, all the datasets

are stored in external storage using Jena TDB as our support. The evaluation results o f

the backward chaining reasoner on top of LUBM is shown in Table XXXI focus on two

aspects o f evaluation on supporting reasoning of customized rules. The first aspect is

scalability. With support o f external storage, the optimized backward chaining reasoner

can handle up to about 30 million size dataset in our experimental environment. The

second aspect is performance in terms of query processing time. As the size o f dataset

increases, the query processing time scales from less than 1 second to about half minute.

As shown in Table XXXI, for all the datasets, query processing time o f all queries

from query set 1 are slightly better than query set 2 because o f the minor difference that I

have discussed in Section 5.2.6. The optimized backward chaining reasoner applies join

operation to answer queries from query set 2. We believe that the other ontology

reasoning systems may employ different methods in query processing to answer multi­

queries.

For all the datasets, query processing time o f all queries from query set 3 is less

than 1 seconds. I do not present the evaluation results o f query set 3 in this thesis.

Compared with results in paper [5] for query set 2, the optimized backward chaining

reasoner has better scalability than Jena, Kaon2 and Pellet. From dataset 1 to dataset 6,

we can see that the optimized backward chaining reasoner has almost the same query

processing time as OWLIM and Oracle. The backward chaining reasoner performs

reasoning at query time. Thus, as the size o f dataset increases, Oracle and OWLIM

requires less time in query processing than the backward chaining reasoner. However,

both Oracle and OWLIM requires expensive up front closure computation when

knowledge base changes. Thus, the backward chaining reasoner performs better than

OWLIM and Oracle in cases where we anticipate frequent changes.

TABLE XXXI
Q u e r y P r o c e s s i n g T im e (m s) f o r Q u e r y S e t I a n d Q u e r y S e t2 o n LUBM

Query
setl

Query
set2

Query
setl

Query
set2

Query
setl

Query
set2

Query
setl

Query
set2

Query 1 Query2 Query3 Query4
Datasetl 171 249 124 171 109 156 156 249

Dataset2 234 265 159 187 140 187 249 327

Dataset3 421 468 171 249 171 265 374 452

Dataset4 733 889 265 452 421 452 592 764

Dataset5 1669 1778 811 951 858 1029 1591 1606

Dataset6 2823 2979 1232 1435 1388 1497 2293 2386

Dataset7 4570 4836 1934 2168 2308 2324 3447 3478

DatasetS 6115 6832 2808 2839 2917 3244 4602 4655

Dataset9 10233 11044 4258 4586 4664 5116 6848 6879
Dataset

10 19012 19671 7534 7960 8938 9250 11793 12074

Dataset
11 37034 37752 15241 16536 18064 18392 21902 22932

Evaluation Using the ScienceWeb Ontology

With rule sets and query sets described in Section 5 .2 .6 ,1 evaluate the backward

chaining reasoner on 9 datasets generated from ScienceWeb ontology. In this section, all

122

the datasets are stored in external storage using Jena TDB as our support. The evaluation

results o f the backward chaining reasoner on top o f ScienceWeb ontology is shown in

Table XXXII. For scalability, with support o f external storage, the optimized backward

chaining reasoner can handle all o f 9 datasets in our experimental environment. For

performance in terms of query processing time, as the size o f dataset increases, the query

processing time scales from less than 1 second to about 10 seconds.

As shown in Table XXXII, for all the datasets, query processing time o f all

queries from query set 1 are slightly better than query set 2 because o f the minor

difference that I have discussed in Section 5.2.6. The optimized backward chaining

reasoner applies join operation to answer queries from query set 2.

TABLE XXXII
Q u e r y P r o c e s s in g T im e f o r Q u e r y S e t I a n d Q u e r y S e t 2 o n S c ie n c e O n t o l o g y U n i t : m s)

Query
setl

Query
set2

Quer
y setl

Quer
y set2

Query
setl

Quer
y set2

Query
setl

Query
set2

Query 1 Query2 Query3 Query4
Dataset 1 124 156 93 109 296 358 93 156
Dataset2 140 187 109 124 436 483 109 171
Dataset3 187 280 124 171 156 249 124 202
Dataset4 780 811 358 499 873 967 530 717

Dataset5 1107 1232 639 670 1404 1450 982 1201
Dataset6 2090 2449 1014 1092 3104 3603 1435 1887

Dataset7 3806 4040 1466 1716 4976 5116 2574 2683

Dataset8 5288 5382 1887 1903 8767 8798 3744 3822

Dataset9 5834 6115 2168 2449 10483 10670 4851 4929

Similar to the discussion in previous section, for all the datasets, query processing

time o f all queries from query set 3 is less than 1 seconds. I do not present the evaluation

results o f query set 3 in this thesis.

123

Compared with results in paper [5] for query set 2, the optimized backward

chaining reasoner has better scalability than Jena, Kaon2 and Pellet. From dataset 1 to

dataset 5, we can see that the optimized backward chaining reasoner has almost the same

query processing time as OWLIM and Oracle. The backward chaining reasoner performs

reasoning at query time. Thus, as the size o f dataset increases, Oracle and OWLIM

requires less time in query processing than the backward chaining reasoner. However,

both Oracle and OWLIM requires expensive up front closure computation when

knowledge base changes. Thus, the backward chaining reasoner performs better than

OWLIM and Oracle in cases where we anticipate frequent changes.

Comparison between In-memory Store and External Storage on LUBM

I employed Jena TDB for the support o f external storage in order to increase the

scalability o f the optimized backward chaining reasoner. We anticipate that some

applications might want to balance performance and scalability. For example, for some

mobile applications, performance is more important than scalability.

In this section, I compare the performance o f the optimized backward chaining

reasoner with and without support o f external storage on all the queries from query setl

and query set2. The evaluation results are presented in Table XXXIII.

When the optimized backward chaining reasoner runs in memory without any

support o f external storage, it can only handle up to 7 data sets from LUBM. Thus I only

compared performance on 7 data sets. I am aware that working in memory has limitations

with respect to the size o f the knowledge base and the retrieved data. As Table XXXIII

shows, our reasoner running with support o f Jena TDB has twice the processing time as

much as running entirely in memory, that is, running entirely in memory performs better

124

than running with support o f Jena TDB. For light applications like mobile applications,

in-memory version would be a better choice.

TABLE XXXIII
C o m p a r is o n o f Q u e r y P r o c e s s in g T i m e b e t w e e n In -m e m o r y St o r e a n d E x t e r n a l St o r a g e o n

LUBM(Unit: m s)

Query Type Query
set

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Dataset
6

Dataset
7

Query 1

TDB setl 171 234 421 733 1669 2823 4570
set2 249 265 468 889 1778 2979 4836

In
memory

setl 93 109 124 358 748 1107 2059

set2 109 140 171 363 858 1232 2199

Query2

TDB
setl 124 159 171 265 811 1232 1934

set2 171 187 249 452 951 1435 2168

In
memory

setl 46 46 62 93 249 296 421
set2 78 93 98 140 296 374 530

Query3

TDB
setl 109 140 171 421 858 1388 2308
set2 156 187 265 452 1029 1497 2324

In
memory

setl 56 62 78 124 296 390 639
set2 78 109 113 171 358 483 733

Query4

TDB
setl 156 249 374 592 1591 2293 3447
set2 249 327 452 764 1606 2386 3478

In
memory

setl 93 140 202 327 1107 1263 1887
set2 156 202 296 343 1154 1279 1905

125

CHAPTER 6

TRUST-BASED HYBRID REASONING

In this chapter, I explore the idea o f “trust” , where each change to the knowledge

base is analyzed as to what subset o f the knowledge base is impacted by the change and

could therefore contribute to incorrect inferences. I will present algorithms that adapt the

reasoner such that, when proving a goal, it does a simple retrieval when it encounters

trusted items and performs backward chaining over untrusted items. I will provide an

evaluation of my proposed modifications that shows that my algorithm is conservative

and that it provides significant gains in performance for certain queries.

6.1 Change Classification

The goal o f this thesis is to design a hybrid reasoning architecture and develop a

scalable reasoning system whose efficiency is able to meet the interaction requirements in

a ScienceWeb system when facing a large knowledge base subject to changes. These

changes could occur in the ontology, in the custom rule set, in instances already present

in the knowledge base, or in the addition o f new instances harvested from the web.

Changes to an ontology could include adding, removing or modifying classes or

properties in the ontology. An example o f modifying a property in an ontology would be

a user changing the domain o f the property “p u b lic a t io n A u th o r” from class

“P u b l ic a t io n ” to “A r t i c l e ”. The “p u b lic a t io n A u th o r” triples whose objects are

not “A r t i c l e ” type will be removed for the consistency. After the changes, if someone

were to then pose a query “Who are coauthors of Professor X?” , such a query could not

126

be answered without reasoning about the publication authors, which have been affected

by these changes. By contrast, if someone were to pose a query “Who are the advisors of

Student X?” , this query could be answered by direct lookup in the knowledge base. No

reasoning would be required, and the answer would be unaffected by the changes.

Changes to custom rules include adding, removing or modifying definition o f

custom rules such as modifying the rule to define “groundbreaking re s e a rc h ”. An

example o f modifying a custom rule would be a user locating the existing qualitative

descriptors for “groundbreaking professor” and changing the rule definition. After the

change, now if someone were to pose the query “Who are coauthors o f Professor X?”,

this query could be answered by direct lookup in the knowledge base. No reasoning

would be required. By contrast, if the query were posed “Who are groundbreaking

researchers in University X?”, such a query could not be answered without reasoning

about the implications o f the changed rule.

Changes to instances include adding, removing or modifying instances in the

storage, such as updating publication list o f a professor. Table XXXIV shows the

description of the changes to the ontology, instances and custom rules based on [184],

The column labeled “Operation Description” lists the descriptions o f the operations.

6.2 A Trust-based Hybrid Reasoning Algorithm

Let us assume that the knowledge base contains all known and derived facts such

that any query can be directly answered by retrieving the corresponding truths. In such an

environment I now introduce a change and analyze the impact of that change. We

consider three categories o f changes: changes to the ontology, changes to custom rules

and changes to instances.

127

TABLE XXXIV
D e s c r ip t io n o f t h e C h a n g e s t o t h e O n t o l o g y , I n s t a n c e s an d C u s t o m R u l e s

Operation Description
Add a Class
Rem ove a Class
M odify a Class
Add a Subclass
M odify a Subclass
Rem ove a Subclass
Add a Superclass
M odify a Superclass
Rem ove a Superclass
Add a EquivalentClass
Remove a EquivalentClass
M odify a EquivalentClass
Add a Property
Rem ove a Property
M odify a property
Add a Domain
Rem ove a Domain
M odify a Domain
Add a Range
Remove a Range
M odify a Range
Set Functionality
Unset Functionality
Add Symmetry

Ontology
Rem ove Symmetry
Set Transitivity
Unset Transitivity
Set InverseFunctionality
Unset InverseFunctionality
Add a Superproperty
Remove a Superproperty
M odify a Superproperty
Add a Subproperty
Rem ove a Subproperty
M odify a Subproperty
Add an Equivalent Property
Remove an Equivalent Property
M odify an Equivalent Property
Add an Inverse Property
Remove an Inverse Property
M odify an Inverse Property
Change to a DatatypeProperty
Change to a ObiectProperty
Add an Individual
Remove an Individual
Add a SameAs Individual
Rem ove a SameAs Individual
M odify a SameAs Individual
Add Type
M odify Type

128

TABLE XXXIV (CONTINUED)

Operation Description
Ontology Rem ove Type

Instance

Add a Datatype Property instance
Modify a Datatype property instance
Remove a Datatype property instance
Add an Object Property instance
M odify an Object Property instance
Remove an Object Property instance

Custom Rules
Add a custom rule
M odify a custom rule
Rem ove a custom rule

In a knowledge base that relies on materialization via forward-chaining, all

derivable conclusions from known facts and rules are assumed to have been written into

the knowledge base. This leads to fast responses to queries because all queries can be

answered by direct search and retrieval. No reasoning is required at the time o f the query.

The same queries could presumably be answered in a non-materialized knowledge

base containing only harvested facts and rules via backward chaining from the properties

mentioned in the query. This would typically be considerably slower than a direct lookup

in a materialized knowledge base.

The drawback o f relying on materialization is a loss o f agility in responding to

changes. Materialization o f a large knowledge base is potentially time-consuming. It may

require deferring queries for many hours or, alternatively, issuing results that are

incomplete or incorrect.

Consider the following example. A student, student© has enrolled in a course,

Course©. This piece o f information has been discovered by a harvester and added to the

knowledge base. Now if someone were to pose a query “Who is enrolled in Course©?”,

this query could be answered immediately by direct lookup in the knowledge base. No

reasoning would be required. However let us also posit that the knowledge base already

129

contains the fact that P ro f0 teaches Course©. If a query were immediately posed “Who

is being taught by P ro f 0?”, such a query could not be answered without reasoning about

the implications o f a rule

e n ro l le d In (? S tu d e n t jP C o u rs e ?) , te ach e s (P F ac u lty ,P C o u rse)

is T a u g h tB y (P S tu d e n t ,P fa c u lty)

But a search for materialized isTaughtBy instances in the knowledge base will fail to

turn up the relationship between Professor© and the newly enrolled Student0 , until

the knowledge base is re-materialized to incorporate this and all other recent changes.

A hybrid reasoning algorithm can use backward chaining over “untrusted”

portions o f a knowledge base while using direct lookup to recover previously

materialized conclusions from the “trusted” portion. Such an algorithm is shown in Fig.

14.

S ubstitu tions prove (Goal g)
{

i f (g is tru s ted)
re tr ie v e Substitu tions M from knowledge base by d ire c t lookup o f g;
return M;

else {
Substitu tions M = emptyj
fo r each ru le R and S u b s titu tio n oa such th a t

the head of R Oi matches g {
Ml = proveTheRuleBody (R.body, o i) j
i f (Ml is not empty) / / proof o f ru le succeeded

{
S ubstitu tions M2 = a l l Substitu tions in Ml

fo r v a riab les in the head o f R;
M += M2;

}
>

re turn M;

>

Fig. 9. A hybrid reasoning algorithm

130

In the algorithm shown in Fig. 14, R denotes a rule, consisting o f a rule body

(premises) and a rule head (conclusion), the rule head is true only when the rule body is

true.

The prove function returns all substitutions for the variables in the goal for

which that goal is provable. It does this by consulting each rule matching the goal and

attempting to find substitutions satisfying the body o f that rule. A key step is the test to

see if the proof goal is “trusted.” The results o f this test determine whether we simply

look up previously materialized instances or engage in a backward-chaining proof.

When we need to prove the rule body, we attempt to recursively prove each goal

in the rule body one by one. The process o f proving the rule body is shown in Fig. 15. In

my actual implementation [182], I employed OLDT [170] and memorization to avoid

deep recursion. The bindings from earlier goals would be substituted into the current goal

for subsequent proof. After we prove the current goal, we join the new substitutions from

that proof with the prior substitutions. In jo in S u b s t i tu t io n s , we iterate over two sets

o f substitutions and compose every pair o f substitutions in the cross product with

common values.

bool, Substitu tions proveTheRuleBody (body. S ubstitu tio n)
{

Substitu tions M = empty;
fo r each goal g in body from S u b s titu tio n {

Ml = prove(g);
i f (M is empty)

return fa lse,em pty;
M = jo in S u b s titu tio n s (M ,M l);

}
return tru e , M;

}
Fig. 10. Process o f proving the rule body

131

The advantage o f such a hybrid algorithm is that it allows the knowledge base

maintainers to defer expensive re-materializations for long periods o f time (long, at least,

compared to the frequency o f changes) while still permitting accurate and timely

responses to incoming queries.

6.3 Conservative Trust Assessment and Experiments

6.3.1 Conservative Trust Assessment

The preceding hybrid algorithm depends upon the idea of knowing when the

currently materialized instances corresponding to a proof goal can be trusted to be correct

and complete.

We will say that a proof goal p (?X, ?Y) is trustworthy if all instances o f that goal

derivable from facts and rules in the knowledge base are present in that knowledge base

as instances. Trustworthy goals can be safely resolved by direct lookup in the knowledge

base.

In practice, we are unlikely to be able to identify precisely all goals that are

trustworthy except by materializing the knowledge base, which, by definition, forces all

goals to be trustworthy. We therefore seek less expensive options to approximate the set

o f trustworthy goals, a less expensive option for dividing the set of possible proof goals

into trusted and untrusted sets.

A partition into trusted and untrusted sets is called conservative i f no

untrustworthy goals are trusted. If we are conservative in such an approximation to the

collection o f trustworthy goals, then my hybrid reasoner can be relied upon to give

accurate responses.

An apparently plausible approach to a conservative trust rule would be property-

132

based trust, assume that any property P that was involved in a change (e.g., if a new

instance P (x©, y 0) was added to the knowledge base) is itself untrusted and then to

take the closure o f the “is used as a premise o f ’ relation, that is, if an untrusted property

Q occurs in the body o f a rule used to prove R

Q (x * y) ; ••• R (w ,z)

then R is also untrusted.
For example, suppose that a student, studentO has enrolled in a course, Course©,

taught by Prof0. The addition o f a new fact e n ro lle d ln (S tu d e n t© ,C o u rs e ©) to the

knowledge base would cause the property e n ro l le d In to be untrusted. In addition,

given the rule presented earlier deriving isTaughtB y(PStudent, P F acu lty) from (in

part) e n r o l le d ln instances, the property isTaughtBy would also untrusted.

The attraction of this definition o f “untrusted” is that it requires analysis of only

the rules in the knowledge base without consulting with the far more numerous instances.

A knowledge base o f many millions o f triples might be expressed in terms o f a few

hundreds o f properties and a comparable number o f rules, making this definition o f trust

far easier to compute than the true trustworthy set.

Unfortunately, this simple procedure breaks down in the face o f “meta-rules” in

the knowledge base, rules that permit reasoning about properties themselves. For

example, suppose that student, Student©, just got his degree from U n iv e rs i ty © , and

that the instance “degreeFrom (student©, U n iv e r s i ty ©)” is added to the

knowledge base. We will posit that there are rules such that the property degreeFrom is

an inverse property o f hasAlumnus. The inverse rule implies that

?P(?X, ?Y), in verse (? P ,? Q) ?Q(?Y,?X)

133

Immediately after adding the new fact to the knowledge base, queries such as

“what alumni/alumnae does u n iv e r s i ty 0 have?” would not respond with Student©.

The hasAlumnus property is not trustworthy, but it would actually be left as trusted by

the initial trust approximation. A more sophisticated definition of trust is required.

One possibility would be to expand the set o f untrusted properties via special

handling o f the meta-rules common to RDF and OWL. As I will show, however, in my

experimental results below, prototypes o f such an expanded definition o f property-based

trust demonstrated that simple changes to a knowledge base could then result in

significant fractions o f the knowledge base being marked as untrusted. I concluded that

properties do not offer a detailed enough discrimination to serve as a practical basis for

trust.

I propose instead a concept o f pattern-based trust: a pattern P(X, Y) (where X and

Y could be ground instances or free variables) is untrusted if it matches a change to the

knowledge base or if it can be derived from a rule with an untrusted pattern as a premise.

For example, suppose again that a student, student© has enrolled in a course,

Course©, taught by Prof©. The addition of a new fact

e n ro lled ln (S tu d en t© ,C o u rse ©) to the knowledge base would cause the pattern

en ro lled ln (S tu d en t© ,C o u rse ©) to be untrusted. In addition, given the rule

presented earlier deriving isTaughtBy(PStudent, PF acu lty), the pattern

isTaughtB y(S tudent© ,Prof©) would also be untrusted.

In my hybrid prove algorithm, presented in the prior section, the test to see if a

goal g is trusted is now interpreted as “if g cannot be unified with any untrusted pattern”.

Hence queries and proof goals involving patterns such as isTaughtBy (PS, P ro f©) and

134

isTaughtB y(?S, ?P) would also be treated as untrusted.

O f importance is the fact that patterns (and therefore potential queries and proofs)

involving other students and other faculty (e.g., “who is taught by P r o f 1?”) remain

trusted and so could be answered by direct lookup with no reasoning.

setO fPatterns propagateUntrustForward (premises, conclusion, s u b s titu tio n S e t,
existingU ntrustedS et)
{

untrustedSet = { } ;
fo r each premise p in premises

{
patternS et = { } ;
g o a lL is t = get u n ifie d goals by rep lacing variab les

in p from su b s titu tio n S et;
fo r each goal g in g o a lL is t

{
re tr ie v e instances r from knowledge base by d ire c t lookup o f g;
re tr ie v e resu lts r l from re a liz e d patterns in

existingUntrustedSet by d ire c t lookup of g;
r += r l ;
i f (r is empty)

return empty;
i f (th e s ize o f r c threshold)

untrustedpatternSet + = r;
else i f (th e s ize o f r >=threshold)

untrustedpatternSet + = g;
}

S ubstitu tions M = u n ify p w ith untrustedpatternSet;
substitu tionS et = jo in S u b s titu tio n s (s u b s titu tio n S e t,M);

>
untrustedSet = su b stitu te variab les in conclusion with su b s titu tio n S e t;
return untrustedSet;

>
Fig. 11. The pattern-based trust marking algorithm

The pattern-based trust marking algorithm shown in Fig. 16 will work with these

meta-rules as well as customized rules. We accumulate a set o f already untrusted patterns

135

by running the co llec tU n tru s ted D u eT o algorithm iteratively on each new change.

The c o llec tU n trus tedD u eTo function is shown in Fig. 17.

setO fPatterns collectUntrustedDueTo
(oneChange, ex is tingU ntrustedS et)

{
untrustedSet = {oneChange};
fo r each ru le R (P iaP2 . . . AP i . . . Apn => q) and

each pi matching oneChange
{

re tr ie v e S ubstitu tions M from knowledge base by
d ire c t lookup of pi;

untrustSet+= propagateUntrustForward
([Pe- • Pi-ijP i+i• • • P n] i q.> M}, existingU ntrustedSet)

>
existingU ntrustedSet += untrustS et;
discard from existingU ntrustedSet any patterns

th a t are s p e c ia liza tio n s o f o ther elements,
return existingU ntrustedSet;

>
Fig. 12. The collectUntrustedDueTo function

The co llec tU n trus tedD u eTo function collects untrusted patterns for one

single change to the knowledge base, assuming we have already had an existing untrusted

pattern set. The first time this algorithm runs after materialization that set will be empty.

The one single change would be added to the untrusted set first. Then we check each rule

in the rule set to see if we can propagate the “untrust” forward by a limited, specialized

analogue o f forward chaining. At last, we add our untrusted set produced from the above

one change to the existing untrusted set, discarding any patterns that are specializations of

other elements.

The propagateUntrustForw ard function goes through each premise o f the

136

rule to compose and propagate the untrusted substitutions. The untrusted substitutions

from the earlier solutions are substituted into the upcoming premise to yield multiple

instances o f that clause as goals for subsequent proof. When we prove a premise, we need

to prove each unified goal produced from untrusted substitutions by replacing variables in

the premise. Upon proving a unified goal, we retrieve matched instances from the

knowledge base and e x is t in g U n tru s te d S e t by a direct lookup o f the unified goal.

I use a threshold to determine whether the actual matched results or the unified

goal itself should be added to the untrusted substitutions. If the number o f matched

instances is comparatively large, I use a pattern that can represent the whole set o f

matched instances in the untrusted substitutions instead o f the large set o f matched

instances itself. Including all the untrusted instances in the untrusted set would make it

inefficient when we determine if a goal is trusted or not in this marking algorithm. Finally,

the rule’s conclusion (head), with appropriate substitution, is added to the untrusted set.

For example, consider a scenario, based on LUBM, in which a university,

U n iv e rs ity © , has hired professor, Fu llp ro fes so rB . This piece o f information

w o rk s F o r(F u llp ro fe s s o r© , U n iv e rs i ty ©) has been discovered by a harvester

and added to the knowledge base. Given the OWL Horst rule set, according to my

pattern-based marking algorithm, the untrusted patterns are:

worksFor (F u l lp ro fe s s o r© , U n iv e rs ity ©)
member (U n iv e r s i ty © , F u l lp ro fe s s o r©)
memberOf (F u l lp ro fe s s o r© , U n iv e rs ity ©)

Now if someone were to pose a query “Who are members o f U n iv e rs ity © ? ”,

given that pattern memberOf (F u l lp ro fe s s o r© , U n iv e rs i ty ©)” is untrusted, we

need to reason using backward chaining.

On the other hand, if someone were to pose a query “Who are members o f

137

U n iv e r s i t y l? ”, given that the pattern memberOf (?x, U n iv e rs i ty ! .) is trusted, all

the members o f U n iv e r s i t y l can still be retrieved by a direct look up in the knowledge

base.

6.3.2 Experiments

In this Section, I further explore the impact o f trust rules on reasoning by

conducting and presenting reports involving two sets of benchmarking experiments. I

also describe preliminary experiments that explore how the percentage o f trusted facts in

the knowledge base affects the performance o f the hybrid algorithm.

First, I compare the number o f objects in the knowledge base marked as untrusted

by my property-based algorithm to what should be really untrusted. This provides an

indication o f how many unnecessary reasoning steps the hybrid algorithm would have to

go through.

TA BLE XXXV
R e s u l t s f o r P r o p e r t y -b a s e d M a r k in g A l g o r it h m

Changes Actual A ctual #
new # new untrusted

properties facts propertie
s

Adding a new class 2 3 12
Add a subclass relationship between two new classes 2 6 12
Add new Class as subClass o f existing class 2 5 12
Adding a new Property 2 2 12
Add a new Property as subPropertyOf o f another new Property 2 4 12
Add new Property as subPropertyOf o f existing Property 2 3 12
Add new Class as domain to a new Property 3 5 13
Add new Class as range to a new Property 3 5 13

Table XXXV shows that property-based marking greatly exaggerates the

number o f untrusted properties. It compares the number o f properties that should be

138

untrusted after a change vs. the numbers the property-based algorithm produces. Even in

a knowledge base with many millions o f triples, the number o f distinct properties is likely

to be counted in the tens to (very) low hundreds, so the increase shown there in the

number o f properties marked as untrusted would likely have a significant effect on query

processing. This is made worse by the fact that the experiments showed that many

properties marked as untrusted were ontological meta-rules such as all subclass relations.

As an example, under LUBM(l) the properties marked as untrusted match an average o f

97,300 triples out o f 149,894, which is about 65% o f the knowledge base. These results

led us to set aside property-based trust marking in favor o f the finer discrimination

afforded by pattern-based marking.

In contrast the average number o f patterns added by the pattern-based marking

algorithm for the same changes as in produces the same number of properties as the

‘actual’ columns show.

The second set o f experiments provides a comparison of performance o f my

hybrid pattern-based proof algorithm against the regular, optimized backward chaining

algorithm [182] and against the OWLIM forward chaining algorithm using benchmark

knowledge bases LUBM1, LUBM10, and LUBM40, of size 100,839, 1,272,871, and

5,307,754 objects respectively. Table XXXVI shows the comparison o f response times

for LUBM query 2 for these three algorithms after adding an existing student as a

member o f an existing department to the knowledge base.

Table XXXVII shows the comparison o f response times for LUBM query 6 for

these three algorithms after adding a new undergraduate student.

139

TABLE XXXVI
Q u e r y R e s p o n s e T im e (m s) a f t e r A d d in g S t u d e n t

Hybrid Backward Forward (load +query)
LUBM1 93 490 960+3.4

LUBM10 546 1,060 7,800+150

LUBM40 2,548 9,100 350,000+5,100

TABLE XXXVII
Q u e r y R e s p o n s e T im e (m s) a f t e r A d d in g U n d e r g r a d u a t e S t u d e n t

Hybrid Backward Forward Goad +query)

LUBM1 452 180 960+240

LUBM10 1,575 1,170 7,800+1,200

LUBM40 3,525 43,000 350,000+5,300

Both tables show that the hybrid algorithm, though slower on a query-by-query

basis than forward chaining, is faster than backward chaining and at least an order o f

magnitude faster than re-materializing the knowledge base (which is the time that would

be required to re-materialize a knowledge base after a change). I have performed

preliminary experiments on determining the factors that affect the performance o f the

hybrid algorithm. I investigated the ratio o f trusted to untrusted facts in the knowledge

base after a set o f changes and compared the performance o f the three algorithms

(backward chaining, forward chaining and hybrid) for different sizes o f the knowledge

base and selected queries. The following sample scenarios in Table XXXVIII illustrate

the results o f the preliminary experiments.

The percentage o f untrusted facts in the knowledge base after executing the

pattern-based marking algorithm ranges from close to 0 to a high of 10% in all

experiments. The percentage o f untrusted patterns ranges from close to zero to 5%. For

140

scenarios 1 and 2, the hybrid algorithm outperforms the backward chaining algorithm in

terms o f query response time significantly. For LUBM(50), the query response times in

scenario 1 are 1,887ms and 3,229ms respectively. The query response times in scenario 2

are 9,937ms and 11,216ms, respectively. In scenario 3 the backward chaining algorithm

outperforms the hybrid algorithm in terms o f query response time (7,238ms and 5,054ms

respectively). The reason for this is that, in scenario 3, the percentage o f untrusted triples

in the whole knowledge base is about 10% and the queries require resolving patterns

mostly located in the untrusted list. For the queries selected, the hybrid algorithm

outperforms the regular backward chaining algorithm by 30 percent on the average for

the selected set o f experiments.

TABLE XXXVIII
S a m p l e Sc e n a r io s

Scenario Adding Changes Query
Scenario 1 MiddleWork rdf:type rdfs:Class

MiddleWork rdfs:subciassOf Work
Course rdfs:subclassOf MiddleWork

?x rdf:type Work

Scenario 2 SupermemberOf rdf:type rdf:Property
memberOf rdfs: subPropertyOf SupermemberOf

?x SupermemberOf
?y

Scenario 3 MiddledegreeFrom rdf:type rdf:Property
MiddledegreeFrom rdfs: subPropertyOf degreeFrom
undergraduateDegreeFromrdfs: subPropertyOf
MiddledegreeFrom

?x degreeFrom ?y

The experiments reported here suggest that a hybrid reasoner based on trust can

be effective on some moderately sized knowledge bases. In considering the likely

scalability of this approach, we may consider scaling to both larger knowledge bases and

to bases subject to more increasingly frequently change.

141

Because the pattern-based trust markup is similar in structure to forward chaining,

as the size o f the knowledge base increases, the time to assess trust should grow at a rate

no higher than, and possibly lower than, the increase in time to re-instantiate. An

important contributory factor will be the overall degree o f inter-connection within the

knowledge base semantics. A loosely connected network will lead to faster termination of

the trust marking algorithm. The experiments reported here may actually understate the

potential savings, as I expect that LUBM is more tightly inter-connected than many

practical knowledge bases.

6.4 Evaluation of the Trust-based Hybrid Reasoning

In this section, I further explore how the percentage o f untrusted facts in the

knowledge base affects the performance of the hybrid algorithm, that is, explore the

relationship between the percentage o f untrusted facts in the knowledge base and query

response time (clock time).

Experim ental design

The ontology data consist o f the benchmark knowledge bases LUBM (10) and

LUBM (30), o f size 2,240,657 and 6,449,543 triples respectively. I use as test queries the

14 queries from LUBM. Jena TDB has been adopted for the external storage o f the

knowledge base. The percentages o f untrusted facts in the knowledge base are generated

by making changes to the knowledge base. In this experiment, the changes to the

knowledge base are removing different number o f students in the knowledge base

together with any impacted triples.

Results and discussion

Table XXXIX shows the number o f students removed and the generated untrusted

142

percentage.

TABLE XXXIX
The Number of Students Removed and the Generated Untrusted Percentage

LUBM
(10)

Untrusted
Percentage 8% 16% 24% 32% 40% 47% 54%

Number o f
Students 10,000 20,000 30,000 40,000 50,000 60,000 70,000

LUBM
(30)

Untrusted
Percentage 5% 12% 16% 26% 31% 41% 55%

Number o f
Students 20,000 40,000 60,000 100,000 120,000 160,000 220,000

Table XL shows the response times (unit: ms) for the LUBM 14 queries as a

function of different percentages o f untrusted facts in the knowledge base LUBM (10).

TABLE XL
T h e R e s p o n s e T im e s (m s) f o r t h e LUBM 14 Q u e r i e s w i t h D i f f e r e n t P e r c e n t a g e s o f

U n t r u s t e d F a c t s in K n o w l e d g e B a s e LUBM (10)

0% 8% 16% 24% 32% 40% 47% 54%
queryl 775. 1412. 2138. 2594. 3217. 3409. 3911. 5128.

query2 1649. 3493. 4283. 5196. 5317. 5940. 7441. 7672.

query3 3. 272. 530. 805. 1061. 1307. 1531. 1999.

query4 31. 323. 593. 915. 1167. 2000. 1827. 2931.

query5 5. 385. 1115. 1259. 2109. 1881. 3164. 3986.

query6 404. 2133. 2739. 3483. 4047. 5238. 6374. 7326.

query7 1331. 2930. 3408. 4052. 4721. 5412. 6228. 7166.

query8 1616. 4181. 5006. 5555. 6342. 7513. 9336. 10243.

query9 640. 2621. 3585. 4372. 4805. 5381. 6464. 8453.

query 10 79. 1845. 2029. 2793. 3292. 4415. 5799. 6087.

queryl1 9. 281. 574. 876. 1190. 1408. 1663. 2009.

query 12 16. 296. 591. 933. 1410. 1446. 2130. 2338.

queryl 3 3. 401. 731. 1270. 1662. 2288. 2435. 3004.

query 14 158. 689. 1015. 1532. 1995. 2194. 3061. 3217.

In order to show the trend o f query response time as the percentage o f untrusted

143

facts change, I normalized the query response time to:

re la tiv e tim e (x) = (query response times x) / (query response tim e w ith 100%
tru s ted fa c ts) where x is the % o f untrusted fa c ts .

Table XLI shows the variations o f response times for LUBM 14 queries with

different percentages o f untrusted facts in knowledge base LUBM (10).

TABLE XLI
T h e R e l a t i v e R e s p o n s e T im e s (m s) f o r t h e LUBM 14 Q u e r i e s w i t h D i f f e r e n t P e r c e n t a g e s o f

U n t r u s t e d F a c t s in K n o w l e d g e B a s e LUBM (10)

8% 16% 24% 32% 40% 47% 54%

queryl 1.82 2.76 3.35 4.15 4.40 5.05 6.62

query2 2.118 2.597 3.151 3.224 3.60 4.512 4.652

query3 90 200 300 400 400 500 700

query4 10. 19. 30. 38. 60. 59. 94.

query5 80 200 200 400 400 600 800

query6 5.28 6.78 8.62 10.0 13.0 15.8 18.1

query7 2.201 2.560 3.044 3.547 4.066 4.679 5.384

query8 2.587 3.098 3.438 3.924 4.649 5.777 6.338

query9 4.10 5.60 6.83 7.51 8.41 10.1 13.2

queryl0 23. 26. 35. 42. 56. 73. 77.

queryl 1 30 60 l.*102 100 200 200 200

queryl2 18. 37. 58. 88. 90. 130 150

queryl 3 100 200 400 600 800 800 1000

query 14 4.36 6.42 9.70 12.6 13.9 19.4 20.4

I have calculated the Pearson product-moment correlation coefficient between the

query response time and the untrusted percentage. All the correlation coefficient values

for the 14 queries are between 0.957 and 0.998. And the probability o f significance p-

value [185] (one-tailed) are all below significance level 0.01 (using Student's t

distribution), showing the correlation coefficient values are statistically significant. A

strong and positive relationship between the query response time and the untrusted

percentage are shown in Table XLI and confirmed by the above correlation coefficient

values. I fit curves to the data in Table XLI using exponential regression for query 7 . 1

present the trend lines with equation and coefficient of determination in Fig. 1 8 .1 fit

curves to the data in Table XLI using linear regression for query 13.1 present the trend

lines with equation and coefficient o f determination in o f Fig. 19. The x-axis on the

figures represents the untrusted percentage while y-axis represents the query response

time.

6

query7 (query response tim e)

5 ; y = 1.8918619345x
R2 = 0 .9 9 9 4

* ;

3
2 : » -

i ■

0
0% 10% 20% 30% 40% 50% 60%

Fig. 18. An example o f curve fitting using exponential regression for Query7 in LUBM (10)

Table XLII shows the Pearson product-moment correlation coefficients o f linear,

exponential and power curves for the data from Table XLI. As Table XLII shows, the

difference among the liner, exponential and power correlation coefficients is between

0.0072 and 0.0469 for the 14 queries. There is no one correlation coefficient value that is

145

significantly larger than the others for each query. So we are not able to tell if the growth

is linear or exponential or power due to the close correlation coefficient values.

TABLE XLII
T h e C o r r e l a t io n C o e f f ic ie n t s o f L in e a r , E x p o n e n t ia l a n d Po w e r C u r v e f o r Q u e r y

R e s p o n s e T im e a n d t h e U n t r u s t e d P e r c e n t a g e in K n o w l e d g e B a s e LU B M (10)

Query Linear Exponential Pow er
queryl 0.9784 0.9769 0.9854
query 2 0.9796 0.9819 0.9695
query 3 0.9926 0.9730 0.9980
query 4 0.9596 0.9795 0.9835
query 5 0.9574 0.9461 0.9758
query 6 0.9884 0.9982 0.9713
query 7 0.9927 0.9997 0.9672
query 8 0.9794 0.9945 0.9476
query 9 0.9659 0.9848 0.9665
query 10 0.9768 0.9913 0.9461
query 11 0.9984 0.9624 0.9994
query 12 0.9875 0.9660 0.9949
query 13 0.9959 0.9679 0.9971
query 14 0.9892 0.9822 0.9894

1200

1000

800

600

400

200

0
0%

q u e ry l3 (q u e ry response t im e)

y = 1 8 8 8 .6x - 3 4 .7 8 8
R2 = 0 .9 9 1 9

10% 20% 30% 40% 50% 60%

Fig. 19. An example o f curve fitting using linear regression for Queryl 3 in LUBM (10)

Table XLIII shows the response times for LUBM 14 queries with different

percentages of untrusted facts using the knowledge base LUBM (30).In order to show the

146

trend o f query response time as the percentage o f untrusted facts change, I also did

normalization to the original query response time. Table XLIV shows the normalized

response times for the LUBM 14 queries with different percentages o f untrusted facts in

knowledge base LUBM (30).

TABLE XLIO
Response Times (ms) for LUBM 14 Queries with Different Percentages of Untrusted Facts in

Knowledge Base LUBM (30)

0% 5% 12% 16% 26% 31% 41% 55%
queryl 4858. 6345. 4445. 5893. 10055. 12741. 14581. 20641.

query2 23622. 25975. 12576. 13446. 23669. 33979. 34361. 42458.
query3 25. 562. 1155. 1740. 3031. 3565. 7939. 9416.
query4 546. 935. 1365. 3116. 4479. 6021. 7384. 11848.
query5 16. 887. 1534. 2471. 5206. 6714. 8627. 11781.
query6 5659. 12074. 7867. 10156. 15302. 21988. 23184. 32498.
query7 8216. 9559. 10093. 11942. 15823. 20997. 24054. 30402.

query8 9590. 13380. 15244. 16914. 21406. 23186. 28721. 37282.
query9 6073. 11687. 11542. 15634. 17752. 21313. 24462. 32695.

queryl0 290. 3991. 6093. 8074. 10901. 13405. 17355. 22698.
queryl 1 312. 704. 1272. 1984. 4002. 5052. 5034. 7881.
queryl2 270. 635. 1271. 2651. 3168. 4006. 6123. 8637.

queryl 3 16. 852. 1723. 2652. 4960. 6249. 7135. 13212.
query 14 1562. 1763. 2593. 4277. 4991. 6143. 8060. 10747.

I have again calculated the Pearson product-moment correlation coefficient

between the query response time and the untrusted percentage. All the correlation

coefficient value for the 14 queries are between 0.818 and 0.998, and 13 probability o f

significance p-values [185] (one-tailed) are all below significance level 0.01 (using

Student's t distribution), showing all these 13 correlation coefficient values are

statistically significant except for one. Only one probability o f significance p-value (one­

tailed) is 0.012, which is a little greater than significance level 0.01, but still less than

147

0.05. A strong and positive relationship between the query response time and the

untrusted percentage are shown in Table XLIV and confirmed by the above correlation

coefficient values. I fit curves to the data in Table XLIV using exponential regression for

query 7 .1 present the trend lines with equation and coefficient of determination in Fig.

2 0 .1 fit curves to the data in Table XLIV using linear regression for query 13.1 present

the trend lines with equation and coefficient o f determination in o f Fig. 21.

TABLE XLIV
T h e R e l a t i v e R e s p o n s e T im e s f o r LUBM 14 Q u e r i e s w i t h D i f f e r e n t P e r c e n t a g e s o f

U n t r u s t e d F a c t s in K n o w l e d g e B a s e LUBM (30)

0.05 0.12 0.16 0.26 0.31 0.41 0.55
queryl 1.306 0.9150 1.213 2.070 2.623 3.001 4.249

query2 1.0996 0.53238 0.56922 1.0020 1.4384 1.4546 1.7974

query3 22. 46. 70. 120 140 320 380

query4 1.71 2.50 5.71 8.20 11.0 13.5 21.7

query5 55. 96. 150 320 420 540 740

query6 2.134 1.390 1.795 2.704 3.885 4.097 5.743

query7 1.163 1.228 1.454 1.926 2.556 2.928 3.700

query8 1.395 1.590 1.764 2.232 2.418 2.995 3.888

query9 1.924 1.900 2.574 2.923 3.509 4.028 5.384

query 10 13.8 21.0 27.8 37.6 46.2 59.8 78.3

queryl 1 2.26 4.08 6.36 12.8 16.2 16.1 25.2

queryl 2 2.35 4.71 9.82 11.7 14.8 22.7 32.0

query 13 53 110 160 310 390 440 820

query 14 1.129 1.660 2.738 3.195 3.933 5.16 6.880

Table XLV shows the Pearson product-moment correlation coefficients o f linear,

exponential and power curves for the data from Table XLIV. As Table XLV shows, the

difference among the liner, exponential and power correlation coefficients is between

0.0133 and 0.1720 for the 14 queries. There is no one correlation coefficient value that is

significantly larger than the others for each query. So we are not able to tell if the growth

is linear or exponential or power due to the close correlation coefficient values.

TABLE XLV
The Correlation Coefficients of Linear, Exponential and Power Curve for Query Response Time and the

Untrusted Percentage in Knowledge Base LUBM (30)

Q uery Linear E xponential Pow er
query 1 0.9666 0.9357 0.8411
query 2 0.8176 0.7452 0.5732
query 3 0.9695 0.9700 0.9833
query 4 0.9887 0.9516 0.9778
query 5 0.9959 0.9529 0.9869
query 6 0.9451 0.9107 0.7941
query 7 0.9883 0.9820 0.9380
query 8 0.9925 0.9990 0.9471
query 9 0.9857 0.9825 0.9296
query 10 0.9986 0.9747 0.9900
query 11 0.9822 0.9363 0.9863
query 12 0.9889 0.9447 0.9875
query 13 0.9791 0.9608 0.9916
query 14 0.9935 0.9608 0.9842

query7

4 .5
4

3.5

3

2.5

2

1.5

1
0 .5

0

V = 0 .9 9 9 2 e 2S3i8x
R2 = 0 .9 6 4 5 ■

0% 10% 20% 30% 40% 50% 60%

Fig. 20. An example o f curve fitting using exponential regression for Query7 in LUBM (30)

149

q u e ry l3 (query response tim e)

1000

800 y = 1478.4X - 64.415 *
R2 = 0.9587

600

400 “* "
200 -

0 - - ---------------------------

0% 10% 20% 30% 40% 50% 60%

Fig. 21. An example o f curve fitting using linear regression for Queryl 3 in LUBM (30)

Based on these experiments, there is a positive relationship between the query

response time and the untrusted percentage, however the rate of growth is never much

worse than linear for untrusted percentages below 50%, indicating that the data point at

which we need to run forward chaining to improve the query response time has not

explicitly appeared before half o f the knowledge base is untrusted, and that the trust-

based hybrid reasoning algorithm works fine when the untrusted percentages are below

50%. I was actually expecting a faster-than-linear growth to help me to find the point at

which we need to run forward chaining. However, I have not observed this faster-than-

linear growth in this experiment. The nearly-linear behavior observed in these

experiments suggests that the hybrid reasoner’s performance may degrade only smoothly

and robustly after substantial numbers o f changes.

150

CHAPTER 7

CONTRIBUTIONS AND FUTURE WORK

7.1 Conclusions

ScienceWeb is a system that collects information about a research community and

allows users to ask qualitative and quantitative questions related to that information using

a reasoning engine. The more complete the knowledge base is, the more helpful answers

the system will provide. As the size o f knowledge base increases, scalability becomes a

challenge for the reasoning system. It may handle millions even hundreds o f millions o f

items in the knowledge base. As users make changes to the knowledge base and/or new

information is collected, providing fast enough response time (ranging from seconds to a

few minutes) is one o f the core challenges for the reasoning system.

In this thesis I researched the issues involved in designing a hybrid reasoning

architecture and developing a scalable reasoning system whose scalability and efficiency

are able to meet the requirements o f query and answering in a semantic web system when

facing both a fixed knowledge base and an evolving knowledge base.

The objectives o f my thesis were:

• Support scalable reasoning o f ScienceWeb to answer qualitative questions

effectively when facing a fixed knowledge base

• Support scalable reasoning o f ScienceWeb to answer qualitative questions

effectively when facing an evolving knowledge base

My research has met these objectives. Interposing a backward chaining reasoner

151

between an evolving knowledge base and a query manager with support o f “trust” yields

an architecture that can support reasoning in the face of frequent changes. An optimized

query-answering algorithm, an optimized backward chaining algorithm and a trust-based

hybrid reasoning algorithm are three key algorithms in such an architecture. I described

these three algorithms and the corresponding evaluations in Chapter 4, 5 and 6

respectively. Collectively, these three algorithms are significant contributions to the field

o f backward chaining reasoners over ontologies.

When comparing to a traditional backward-chaining reasoner, the implementation

o f the optimized query answering algorithm is better in: 1) handling much larger

knowledge base; 2) working with more complete rule sets (including all o f the OWL

rules); 3) responding to queries significantly faster in most cases.

When comparing the results with and without optimization techniques, the

optimization techniques improved the efficiency o f the backward chaining algorithm

significantly in terms of time and space when compared to standard backward-chaining

reasoners. When comparing the results with the forward-chaining reasoner in scenarios

where the knowledge base is subject to frequent change, the optimized algorithm

outperformed the forward-chaining reasoner.

When comparing the performance o f a forward chaining algorithm to that o f a

pure backward chaining algorithm, the trust-based hybrid reasoning algorithm is better in

almost all the cases tested.

With the support o f rule-based reasoning, the ScienceWeb is able to answer

qualitative questions. With the support o f external storage, I extended our study to a

knowledge base o f more than 10 Million triples, increasing the scalability o f the

152

backward chaining reasoning system. With the concept o f “trust” and optimization

techniques, I increased the efficiency o f the reasoning system that we have proposed. In

short, I have designed a hybrid reasoning architecture and developed a scalable reasoning

system whose scalability and efficiency are able to meet the requirements o f query and

answering in a semantic web system when facing both a fixed knowledge base and an

evolving knowledge base.

7.2 Future Work

In the future I will attempt to scale the knowledge base to the billion-triple level

using further algorithm optimization and will design a new external storage management

system.

I have not yet explored the impact o f long sequences o f individual changes on the

marking algorithm time nor subsequently on the hybrid reasoner. In future work, I plan to

explore the performance o f the trust marking algorithm and o f the hybrid reasoner as a

function o f the fraction o f the knowledge base that is untrusted, a measure that would

combine both the number of changes and the extent o f their impact throughout the

semantic graph.

Finally, I would like to explore the dynamic aspects o f the queries over time and

to assess the impact o f the distribution o f the queries and o f the number o f changes and

the type o f changes in the same period.

153

REFERENCES

[1] Microsoft. "Microsoft Academic Search" March 18, 2014 [online] Available:

http://academic.research.microsoft.com/.

[2] Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma, “Object-level ranking: bringing

order to web objects,” in Proc. WWW '05, Chiba, Japan, 2005, pp. 567-574.

[3] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, R. McCann, M.

Sayyadian, and W. Shen, “Community Information Management,” Bulletin of the

IEEE Computer Society Technical Committee on Data Engineering, vol. 29, no.

1, pp. 64-72, March, 2006.

[4] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Ametminer: Extraction and

mining o f academic social networks,” in Proc. KDD '08, Las Vegas, NV, USA,

2008, pp. 990-998.

[5] H. Shi, K. Maly, S. Zeil, and M. Zubair, “Comparison of Ontology Reasoning

Systems Using Custom Rules,” in Proc. WIMS '11, Sogndal, Norway, 2011.

[6] A. Yaseen, K. Maly, S. J. Zeil, and M. Zubair, “Performance Evaluation o f Oracle

Semantic Technologies with Respect to User Defined Rules,” in Proc.

DEXA2011, Toulouse, France, 2011, pp. 252-256.

[7] K. Maly, S. Zeil, and M. Zubair. "ScienceWebpre-survey," December 3, 2010

[online] Available: http://www.cs.odu.edu/~zeil/scienceWeb/surveyl 0/.

[8] S. J. Russell, and P. Norvig, Artificial intelligence: a modern approach, 1st ed.,

Upper Saddle River, New Jersey: Prentice hall, 1995.

http://academic.research.microsoft.com/
http://www.cs.odu.edu/~zeil/scienceWeb/surveyl

154

[9] IEEE. "lEEE-The world's largest professional association for the advancement of

technology," March 18, 2014 [online] Available: http://www.ieee.org/index.html.

[10] ACM Inc. "ACM Digital Library," March 18, 2014 [online] Available:

http://portal.acm.org/.

[11] Springer. "Springer-International Publisher Science, Technology,Medicine,"

March 18, 2014 [online] Available: http://www.springer.com.

[12] Google. "Google Scholar," March 18, 2014 [online] Available:

http:// scholar, google, com/.

[13] M. Ley. "DBLP Bibliography," March 18, 2014 [online] Available:

http://www.informatik.uni-trier.de/~ley/db/.

[14] M. Ley, "The DBLP Computer Science Bibliography: Evolution, Research Issues,

Perspectives," String Processing and Information Retrieval, A. H. F. Laender and

A. L. Oliveira, eds., pp. 1-10, Heidelberg Germany: Springer, 2002.

[15] The Pennsylvania State University. "CiteSeerX ," March 18, 2014 [online]

Available: http://citeseerx.ist.psu.edu/.

[16] C. L. Giles, K. D. Bollacker, and S. Lawrence, “CiteSeer: An automatic citation

indexing system,” in Proc. DL '98, Pittsburgh, PA, USA, 1998, pp. 89-98.

[17] getCITED Inc. "getCITED:Academic Research, citation reports and discussion

lists," March 18, 2014 [online] Available: http://www.getcited.org/.

[18] H. Bast, A. Chitea, F. Suchanek, and I. Weber, “ESTER: Efficient Search on

Text, Entities, and Relations,” in Proc. SIGIR '07, Amsterdam, The Netherlands,

2007, pp. 671-678.

http://www.ieee.org/index.html
http://portal.acm.org/
http://www.springer.com
http://www.informatik.uni-trier.de/~ley/db/
http://citeseerx.ist.psu.edu/
http://www.getcited.org/

[19] M. J. Cafarella, C. Re, D. Suciu, O. Etzioni, and M. Banko, “Structured querying

o f web text,” in Proc. CIDR2007, Asilomar, California, USA, 2007, pp. 225-234.

[20] T. Cheng, X. Yan, and K. C.-C. Chang, “EntityRank: searching entities directly

and holistically,” in Proc. VLDB '07, Vienna,Austria, 2007, pp. 387-398.

[21] P. DeRose, W. Shen, F. Chen, A. Doan, and R. Ramakrishnan, “Building

structured web community portals: A top-down, compositional, and incremental

approach,” in Proc. VLDB '07, Vienna, Austria, 2007, pp. 399-410.

[22] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum, “Naga:

Searching and ranking knowledge,” in Proc. ICDE2008, Cancun, Mexico, 2008,

pp. 953-962.

[23] D. N. Milne, I. H. Witten, and D. M. Nichols, “A knowledge-based search engine

powered by wikipedia,” in Proc. CIKM '07, Lisbon, Portugal 2007, pp. 445-454.

[24] P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick, A. Doan, and R.

Ramakrishnan, “DBLife: A community information management platform for the

database research community,” in Proc. CIDR2007, Asilomar, CA, USA, 2007,

pp. 169-172.

[25] Department o f Mathematics North Dakota State University. " The Mathematics

Genealogy Project," March 18, 2014 [online] Available:

http://genealogy.math.ndsu.nodak.edu/.

[26] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S.

Hellmann, “DBpedia-A crystallization point for the Web of Data,” Web

Semantics: Science, Services and Agents on the World Wide Web, vol. 7, no. 3,

pp. 154-165, September, 2009.

http://genealogy.math.ndsu.nodak.edu/

[27] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A large ontology from

wikipedia and wordnet,” Web Semantics: Science, Services and Agents on the

World Wide Web, vol. 6, no. 3, pp. 203-217, September, 2008.

[28] B. Aleman-Meza, F. Hakimpour, I. B. Arpinar, and A. P. Sheth, “SwetoDblp

ontology o f Computer Science publications,” Web Semantics: Science, Services

and Agents on the World Wide Web, vol. 5, no. 3, pp. 151-155, September, 2007.

[29] H. Glaser, I. C. Millard, and A. Jaffri, "Rkbexplorer. com: a knowledge driven

infrastructure for linked data providers," The Semantic Web: Research and

Applications, S. Bechhofer, M. Hauswirth, J. Hoffmann and M. Koubarakis, eds.,

pp. 797-801, Heidelberg, Germany: Springer, 2008.

[30] Wikipedia. "Wiki-Wikipedia,the free encyclopedia," March 18, 2014 [online]

Available: http://en.wikipedia.org/wikiAViki.

[31] Princeton University. "About Word.Net" March 18, 2014 [online] Available:

http://wordnet.princeton.edu/.

[32] I. Niskanen, and J. Kantorovitch, “Ontology driven data mining and information

visualization for the networked home,” in Proc. RCIS2010, Nice, France 2010,

pp. 147-156.

[33] M. Zeman, M. Ralbovsky, V. Svatek, and J. Rauch, “Ontology-Driven Data

Preparation for Association Mining,” in Proc. Znalosti2009, Brno, Czech

Republic, 2009, pp. 270-283.

[34] Y.-T. Kuo, A. Lonie, L. Sonenberg, and K. Paizis, “Domain ontology driven data

mining: a medical case study,” in Proc. DDDM '07, San Jose, CA, USA, 2007,

pp. 11-17.

http://en.wikipedia.org/wikiAViki
http://wordnet.princeton.edu/

157

[35] S. Singh, P. Vajirkar, and Y. Lee, "Context-aware Data Mining using

Ontologies," Conceptual Modeling - ER 2003,1.-Y. Song, S. W. Liddle, T.-W.

Ling and P. Scheuermann, eds., pp. 405-418, Heidelberg, Germany: Springer,

2003.

[36] H.-J. Happel, and a. S. Seedorf, “Applications of ontologies in software

engineering,” in Proc. SWESE2006, Athens,GA, USA, 2006.

[37] V. Lopez, M. Pasin, and E. Motta, "Aqualog: An ontology-portable question

answering system for the semantic web," The Semantic Web: Research and

Applications, A. Gomez-Perez and J. Euzenat, eds., pp. 546-562, Heidelberg,

Germany: Springer, 2005.

[38] V. Tablan, D. Damljanovic, and K. Bontcheva, "A natural language query

interface to structured information," The Semantic Web: Research and

Applications, S. Bechhofer, M. Hauswirth, J. Hoffmann and M. Koubarakis, eds.,

pp. 361-375, Heidelberg, Germany: Springer, 2008.

[39] G. Zenz, X. Zhou, E. Minack, W. Siberski, and W. Nejdl, “From keywords to

semantic queries—Incremental query construction on the semantic web,” Web

Semantics: Science, Services and Agents on the World Wide Web, vol. 7, no. 3,

pp. 166-176, September, 2009.

[40] A. Diaz, and G. Baldo, “Co-protege: A groupware tool for supporting

collaborative ontology design with divergence,” in Proc. Eighth International

Protege Conference Madrid, Spain, 2005, pp. 32-32.

158

[41] T. R. Gruber, Ontolingua: A mechanism to support portable ontologies, Technical

Report KSL-91-66. Knowledge Systems Laboratory, Stanford University,

Stanford, California, 1992.

[42] B. Swartout, R. Patil, K. Knight, and T. Russ, “Ontosaurus: a tool for browsing

and editing ontologies,” in Proc. KA W96, Banff, Canada, 1996.

[43] Y. Sure, J. Angele, and S. Staab, "OntoEdit: Guiding ontology development by

methodology and inferencing," On the Move to Meaningful Internet Systems

2002: CoopIS, DOA, and ODBASE, R. Meersman and Z. Tari, eds., pp. 1205-

1222, Heidelberg, Germany: Springer, 2010.

[44] O. Corcho, M. Femandez-Lopez, A. Gomez-Perez, and O. Vicente, "WebODE:

An integrated workbench for ontology representation, reasoning, and exchange,"

Knowledge Engineering and Knowledge Management: Ontologies and the

Semantic Web, A. Gomez-Perez and V. R. Benjamins, eds., pp. 295-310,

Heidelberg, Germany: Springer, 2002.

[45] R. Volz, D. Oberle, S. Staab, and B. Motik, “Kaon server-a semantic web

management system,” in Proc. WWW2003, Budapest, Hungary, 2003, pp. 20-24.

[46] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens, "OilEd: a reason-able

ontology editor for the semantic web," K I2001: Advances in Artificial

Intelligence, F. Baader, G. Brewka and T. Eiter, eds., pp. 396-408, Heidelberg,

Germany: Springer, 2001.

[47] T. Jie, Z. Jing, Y. Limin, L. Juanzi, Z. Li, and S. Zhong, “AmetMiner: extraction

and mining of academic social networks,” in Proc. Proceeding o f the 14th ACM

159

SIGKDD international conference on Knowledge discovery and data mining, Las

Vegas, Nevada, USA, 2008.

[48] W3C. "W3C Semantic Web Activity," March,18, 2014 [online] Available:

http://www.w3.org/2001/sw/.

[49] M. Baziz, M. Boughanem, and S. Traboulsi, “A concept-based approach for

indexing documents in IR,” in Proc. INFORSID2005, Grenoble, France, 2005, pp.

489-504.

[50] L. Khan, D. McLeod, and E. Hovy, “Retrieval effectiveness o f an ontology-based

model for information selection,” The VLDB Journal—The International Journal

on Very Large Data Bases, vol. 13, no. 1, pp. 71-85, January, 2004.

[51] H. Mosteghanemi, and H. Drias, “Bees Swarm Optimization for Real Time

Ontology Based Information Retrieval,” in Proc. WI-IAT '12, Macau, China,

2012, pp. 154-158.

[52] R. Mihalcea, and D. Moldovan, “Semantic indexing using WordNet senses,” in

Proc. ACL '2000, Hong Kong, China, 2000, pp. 35-45.

[53] S. Kara, 0 . Alan, O. Sabuncu, S. Akpinar, N. K. Cicekli, and F. N. Alpaslan, “An

ontology-based retrieval system using semantic indexing,” Information Systems,

vol. 37, no. 4, pp. 294-305, June, 2012.

[54] D. Vallet, M. Fernandez, and P. Castells, "An ontology-based information

retrieval model," The Semantic Web: Research and Applications, A. Gomez-Perez

and J. Euzenat, eds., pp. 455-470, Heidelberg, Germany: Springer, 2005.

[55] A. Ferrara, L. A. Ludovico, S. Montanelli, S. Castano, and G. Haus, “A semantic

web ontology for context-based classification and retrieval o f music resources,”

http://www.w3.org/2001/sw/

1 6 0

ACM Transactions on Multimedia Computing, Communications, and Applications

(TOMCCAP), vol. 2, no. 3, pp. 177-198, August, 2006.

[56] A. Maedche, G. Neumann, and S. Staab, "Bootstrapping an ontology-based

information extraction system," Intelligent exploration of the web, P. S.

Szczepaniak, J. Segovia and L. A. Zadeh, eds., pp. 345-359, Heidelberg,

Germany: Physica-Verlag GmbH, 2003.

[57] A. Bawakid, and M. Oussalah, “A semantic-based text classification system,” in

Proc. CIS2010, Reading, UK, 2010, pp. 1-6.

[58] P. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C.

Goble, and L. Stein, "Applying semantic web services to bioinformatics:

Experiences gained, lessons learnt," The Semantic Web -IS WC 2004, S. A.

Mcllraith, D. Plexousakis and F. v. Harmelen, eds., pp. 350-364, Heidelberg,

Germany: Springer, 2004.

[59] K. Wolstencroft, A. Brass, I. Horrocks, P. Lord, U. Sattler, D. Turi, and R.

Stevens, "A little semantic web goes a long way in biology," The Semantic Web­

lSWC 2005, Y. Gil, E. Motta, V. R. Benjamins and M. A. Musen, eds., pp. 786-

800, Heidelberg, Germany: Springer, 2005.

[60] N. Bamickel, J. Bottcher, and A. Paschke, “Incorporating semantic bridges into

information flow o f cross-organizational business process models,” in Proc. I-

SEMANTICS '10, Graz, Austria, 2010.

[61] J. Davies, D. Fensel, and F. v. Harmelen, Towards the Semantic Web: Ontology-

driven Knowledge Management, 1st ed., Hoboken, NJ: Wiley, 2003.

[62] D. Brickley, and L. Miller. "The Friend of a Friend (FOAF) project," March 18,

2014 [online] Available: http://www.foaf-project.org/.

[63] J. G. Breslin, A. Harth, U. Bojars, and S. Decker, "Towards semantically-

interlinked online communities," The Semantic Web: Research and Applications,

A. Gomez-Perez and J. Euzenat, eds., pp. 500-514, Heidelberg, Germany:

Springer, 2005.

[64] A. Dorns, and M. Schroeder, “GoPubMed: exploring PubMed with the gene

ontology,” Nucleic acids research, vol. 33, no. suppl 2, pp. W783-W786, 2005.

[65] NIH. "PubMed Central," March 18, 2014 [online] Available:

http://www.ncbi.nlm.nih.gov/pmc/.

[66] National Academy of Sciences. "The National Academies: Advisers to the Nation

on Science, Engineering, and Medicine," March 18, 2014 [online] Available:

http://www.nationalacademies.org/.

[67] D. Nardi, and R. J. Brachman, "An introduction to description logics," The

description logic handbook: theory, implementation, and applications, F. Baader,

D. Calvanese, D. McGuinness, D. Nardi and P. Patel-Schneider, eds., pp. 5-44,

New York, NY: Cambridge University Press, 2002.

[68] M. Minsky, “A framework for representing knowledge,” The Psychology of

Computer Vision, pp. 211-277, 1975.

[69] M. R. Quillian, "Semantic memory," Semantic information processing, M.

Minsky, ed., pp. 227-270, Cambridge, MA: MIT press, 1968.

http://www.foaf-project.org/
http://www.ncbi.nlm.nih.gov/pmc/
http://www.nationalacademies.org/

[70] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,

The description logic handbook: theory, implementation, and applications, 2nd

ed., New York, NY: Cambridge University Press, 2007.

[71] F. Baader, I. Horrocks, and U. Sattler, "Description logics," Foundations o f

Artificial Intelligence. Handbook o f Knowledge Representation, F. v. Harmelen,

V. Lifschitz and B. Porter, eds., pp. 135-179, Amsterdam: Elsevier, 2008.

[72] Wikipedia. "Discription Logic," March 18, 2014 [online] Available:

http://en.wikipedia.org/wiki/Description_logic.

[73] D. Nardi, and R. J. Brachman, "An Introduction to Description Logics," The

description logic handbook F. Baader, D. Calvanese, D. McGuinness, D. Nardi

and P. Patel-Schneider, eds., pp. 1-40, New York, NY, USA: Cambridge

University Press, 2003.

[74] T. R. Gruber, “A translation approach to portable ontology specifications,”

Knowledge Acquisition - Special issue: Current issues in knowledge modeling

vol. 5, no. 2, pp. 199-220, June, 1993.

[75] E. Mays, R. Dionne, and R. Weida, “K-Rep system overview,” A CM SIGART

Bulletin, vol. 2, no. 3, pp. 93-97, June, 1991.

[76] C. Areces, H. D. Nivelle, and M. D. Rijke, “Resolution in modal, description and

hybrid logic,” Journal of Logic and Computation, vol. 11, no. 5, pp. 717-736,

2001 .

[77] U. Hustadt, B. Motik, and U. Sattler, “Reducing SHIQ- description logic to

disjunctive datalog programs,” in Proc. KR2004, Morgan Kaufmann, Los Altos,

2004, pp. 152-162.

http://en.wikipedia.org/wiki/Description_logic

163

[78] U. Hustadt, and R. A. Schmidt, “On the relation o f resolution and tableaux proof

systems for description logics,” in Proc. IJCAI '99, Stockholm, Sweden, 1999, pp.

110-117.

[79] U. Hustadt, and R. A. Schmidt, "Issues o f decidability for description logics in the

framework o f resolution," Automated Deduction in Classical and Non-Classical

Logics, R. Caferra and G. Salzer, eds., pp. 191-205, Heidelberg, Germany:

Springer, 2000.

[80] Y. Kazakov, and B. Motik, “A Resolution-Based Decision Procedure for

SHOIQ,” Journal of Automated Reasoning, vol. 40, no. 2-3, pp. 89-116, March,

2008.

[81] F. Baader, J. Hladik, and C. Lutz, “From tableaux to automata for description

logics,” Fundamenta Informaticae, vol. 57, pp. 1-33, 2003.

[82] C. Lutz, “Interval-based temporal reasoning with general TBoxes,” in Proc. IJCAI

'01, Seattle, Washington, USA, 2001, pp. 85-96.

[83] C. Lutz, and U. Sattler, “Mary likes all cats,” in Proc. DL2000, Aachen,

Germany, 2000, pp. 213-226.

[84] F. Baader, and U. Sattler, “An overview of tableau algorithms for description

logics,” Studia Logica, vol. 69, no. 1, pp. 5-40, October, 2001.

[85] M. Fitting, “Tableau methods o f proof for modal logics,” Notre Dame Journal of

Formal Logic, vol. 13, no. 2, pp. 237-247, 1972.

[86] M. Schmidt-SchaubB, and G. Smolka, “Attributive concept descriptions with

complements,” Artificial intelligence, vol. 48, no. 1, pp. 1-26, February, 1991.

164

[87] I. Horrocks, O. Kutz, and U. Sattler, “The even more irresistible SROIQ,” in

Proc. KR2006, Lake District, UK, 2006, pp. 57-67.

[88] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object pattern

match problem,’' Artificial intelligence, vol. 19, no. 1, pp. 17-37, September,

1982.

[89] A. Kiryakov, D. Ognyanov, and D. Manov, "OWLIM-a pragmatic semantic

repository for OWL," Web Information Systems Engineering - WISE 2005

Workshops, M. Dean, Y. Guo, W. Jun, R. Kaschek, S. Krishnaswamy, Z. Pan and

Q. Z. Sheng, eds., pp. 182-192, Heidelberg, Germany: Springer, 2005.

[90] Ontotext. "OWLIM-SE," March 18, 2014 [online] Available:

http://owlim.ontotext.com/display/OWLIMv43/OWLIM-SE

[91] Oracle Corporation. "Oracle Database l l g R2 " March 18, 2014 [online]

Available: http://www.oracle.com/technetwork/database/database-

technologies/express-edition/overview/

[92] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan, "Minerva: A scalable OWL

ontology storage and inference system," The Semantic Web ASWC 2006, R.

Mizoguchi, Z. Shi and F. Giunchiglia, eds., pp. 429-443, Heidelberg, Germany:

Springer, 2006.

[93] Z. Pan, and J. Heflin, “DLDB: Extending Relational Databases to Support

Semantic Web Queries,” in Proc. ISWC2003, Sanibel Island, Florida, USA, 2003.

[94] O. Erling, and I. Mikhailov, "RDF Support in the Virtuoso DBMS," Networked

Knowledge-Networked Media, T. Pellegrini, S. Auer, K. Tochtermann and S.

Schaffert, eds., pp. 7-24, Heidelberg, Germany: Springer, 2009.

http://owlim.ontotext.com/display/OWLIMv43/OWLIM-SE
http://www.oracle.com/technetwork/database/database-

[95] Franz Inc. "AllegroGraph RDFStore Web 3.0's Database," March 18, 2014

[online] Available: http://www.franz.com/agraph/allegrograph/.

[96] J. Dolby, A. Fokoue, A. Kalyanpur, E. Schonberg, and K. Srinivas, “Scalable

highly expressive reasoner (SHER),” Web Semantics: Science, Services and

Agents on the World Wide Web, vol. 7, no. 4, pp. 357-361, December, 2009.

[97] Y. Chen, J. Ou, Y. Jiang, and X. Meng, "HStar-a semantic repository for large

scale OWL documents," The Semantic Web ASWC 2006, R. Mizoguchi, Z. Shi

and F. Giunchiglia, eds., pp. 415-428, Heidelberg, Germany: Springer, 2006.

[98] The Apache Software Foundation. "Apache Jena," March 18, 2014 [online]

Available: http://jena.apache.org.

[99] T. Bemers-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific

American, vol. 284, no. 5, pp. 34-43, May, 2001.

[100] G. Antoniou, C. V. Damasio, B. Grosof, I. Horrocks, M. Kifer, J. Maluszynski,

and P. F. Patel-Schneider, Combining Rules and Ontologies-A survey, FP6 NoE

REWERSE, Deliverable I3-D3., 2005.

[101] J. Mei, Z. Lin, and H. Boley, “ALC: an integration o f description logic and

general rules,” in Proc. RR '07, Innsbruck, Austria, 2007, pp. 163-177.

[102] R. Rosati, "Semantic and computational advantages o f the safe integration of

ontologies and rules," Principles and Practice of Semantic Web Reasoning, F.

Fages and S. Soliman, eds., pp. 50-64, Heidelberg, Germany: Springer, 2005.

[103] R. Rosati, “DL+ log: Tight integration of description logics and disjunctive

datalog,” in Proc. KR2006, Lake District o f the United Kingdom, 2006, pp. 68-

78.

http://www.franz.com/agraph/allegrograph/
http://jena.apache.org

[104] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.

"SWRL: A semantic web rule language combining OWL and RuleML, W3C

Member submission, World Wide Web Consortium," March 18, 2014 [online]

Available: http://www.w3.org/Submission/SWRL/.

[105] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, “Description logic programs:

Combining logic programs with description logic,” in Proc. WWW2003,

Budapest, Hungary, 2003, pp. 48-57.

[106] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf, “AL-log: Integrating

datalog and description logics,” Journal o f Intelligent Information Systems, vol.

10, no. 3, pp. 227-252, May, 1998.

[107] R. Rosati, “Towards expressive KR systems integrating datalog and description

logics: Preliminary report,” in Proc. DL'99, Linkoping, Sweden, 1999, pp. 160-

164.

[108] W. Drabent, J. Henriksson, and J. Maluszynski, “HD-rules: a hybrid system

interfacing Prolog with DL-reasoners,” in Proc. ALPSWS2007, Porto, Portugal

2007, pp. 76-90.

[109] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits, “NLP-DL: A Knowledge-

Representation System for Coupling Nonmonotonic Logic Programs with

Description Logics,” in Proc. ISWC2005, Galway, Ireland, 2005.

[110] A. Y. Levy, and M.-C. Rousset, “Combining Horn rules and description logics in

CARIN,” Artificial intelligence, vol. 104, no. 1-2, pp. 165-209, September, 1998.

http://www.w3.org/Submission/SWRL/

[111] T. Eiter, G. Ianni, T. Lukasiewicz, R Schindlauer, andH. Tompits, “Combining

answer set programming with description logics for the semantic web,” Artificial

intelligence, vol. 172, no. 12-13, pp. 1495-1539, August, 2008.

[112] R. Rosati, “On the decidability and complexity o f integrating ontologies and

rules,” Web Semantics: Science, Services and Agents on the World Wide Web, vol.

3, no. 1, pp. 61-73, July, 2005.

[113] J. Mei, H. Boley, J. Li, V. C. Bhavsar, and Z. Lin, "DatalogDL: Datalog Rules

Parameterized by Description Logics," Canadian Semantic Web, M. T. Kone and

D. Lemire, eds., pp. 171-187, New York, NY, USA: Springer, 2010.

[114] J. Grant, and D. Beckett. "RDF test cases," March 18, 2014 [online] Available:

http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/.

[115] P. Hayes, and B. McBride. "RDFsemantics," March 18, 2014 [online] Available:

http://www.w3 ,org/TR/2004/REC-rdf-mt-20040210/.

[116] H. J. t. Horst, "Combining RDF and part o f OWL with rules: Semantics,

decidability, complexity," The Semantic Web - ISWC2005, Y. Gil, E. Motta, V. R.

Benjamins and M. A. Musen, eds., pp. 668-684, Heidelberg Germany: Springer,

2005.

[117] H. J. t. Horst, "Extending the RDFS entailment lemma," The Semantic Web ISWC

2004, S. A. Mcllraith, D. Plexousakis and F. v. Harmelen, eds., pp. 77-91,

Heidelberg, Germany: Springer, 2004.

[118] H. J. t. Horst, “Completeness, decidability and complexity o f entailment for RDF

Schema and a semantic extension involving the OWL vocabulary,” Web

http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/
http://www.w3

168

Semantics: Science, Services and Agents on the World Wide Web, vol. 3, no. 2-3,

pp. 79-115, October, 2005.

[119] V. Haarslev, and R. Moller, “Racer: A core inference engine for the semantic

web,” in Proc. EON2003, Sanibel Island, Florida, USA, 2003, pp. 27-36.

[120] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical

owl-dl reasoner,” Web Semantics: Science, Services and Agents on the World

Wide Web, vol. 5, no. 2, pp. 51-53, June, 2007.

[121] Clark & Parsia. "Pellet:The Open Source OWL2 Reasoner," March 18, 2014

[online] Available: http://clarkparsia.com/pellet/.

[122] D. Tsarkov, and I. Horrocks, "FaCT++ description logic reasoner: System

description," Automated Reasoning, U. Furbach and N. Shankar, eds., pp. 292-

297, Heidelberg, Germany: Springer, 2006.

[123] B. Motik, R. Shearer, and I. Horrocks, “Hypertableau reasoning for description

logics,” Journal o f Artificial Intelligence Research, vol. 36, no. 1, pp. 165-228,

September, 2009.

[124] J. Kopena. "OWLJessKB: a semantic web reasoning tool," March 18, 2014

[online] Available: http://edge.cs.drexel.edu/assemblies/software/owljesskb/.

[125] C. J. Matheus, R. Dionne, D. F. Parent, K. Baclawski, and M. M. Kokar,

“BaseVISor: A Forward-Chaining Inference Engine Optimized for RDF/OWL

Triples,” in Proc. ISWC2006, Athens, GA, 2006.

[126] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K.

Wilkinson, “Jena: implementing the semantic web recommendations,” in Proc.

WWW Alt. '04, New York, NY, USA, 2004, pp. 74-83.

http://clarkparsia.com/pellet/
http://edge.cs.drexel.edu/assemblies/software/owljesskb/

169

[127] M. Jang, and J.-C. Sohn, "Bossam: an extended rule engine for OWL

inferencing," Rules and Rule Markup Languages for the Semantic Web, G.

Antoniou and H. Boley, eds., pp. 128-138, Heidelberg, Germany: Springer, 2004.

[128] B. Grosof, and C. Neogy. "SweetRules Project," March 18, 2014 [online]

Avail able: http ://sweetrules. semwebcentral.org/.

[129] The Apache Software Foundation. "Reasoners and rule engines: Jena inference

support," March 18, 2014 [online] Available:

http://jena.apache.org/documentation/inference/.

[130] B. Motik, and R. Studer, “KAON2-A Scalable Reasoning Tool for the Semantic

Web,” in Proc. ESWC2005, Heraklion, Greece, 2005.

[131] Information Process Engineering (IPE), Institute o f Applied Informatics and

Formal Description Methods (AIFB), and Information Management Group

(IMG). "KAON2-Ontology Management for the Semantic Web," March 18, 2014

[online] Available: http://kaon2.semanticweb.org/.

[132] Y. Zou, T. Finin, and H. Chen, "F-owl: An inference engine for semantic web,"

Formal Approaches to Agent-Based Systems, M. G. Hinchey, J. L. Rash, W. F.

Truszkowski and C. A. Rouff, eds., pp. 238-248, Heidelberg, Germany: Springer,

2005.

[133] G. Meditskos, and N. Bassiliades, "Combining a DL reasoner and a rule engine

for improving entailment-Based OWL reasoning," The Semantic Web-ISWC

2008, A. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. Finin and K.

Thirunarayan, eds., pp. 277-292, Heidelberg, Germany: Springer, 2010.

http://jena.apache.org/documentation/inference/
http://kaon2.semanticweb.org/

[134] G. Meditskos, and N. Bassiliades, “DLEJena: A practical forward-chaining OWL

2 RL reasoner combining Jena and Pellet,” Web Semantics: Science, Services and

Agents on the World Wide Web, vol. 8, no. 1, pp. 89-94, March, 2010.

[135] V. Haarslev, and R. Moller, “An empirical evaluation of optimization strategies

for ABox reasoning in expressive description logics,” in Proc. DL'99, Linkoping,

Sweden, 1999, pp. 115-119.

[136] I. Horrocks, L. Li, D. Turi, and S. Bechhofer, “The instance store: DL reasoning

with large numbers o f individuals,” in Proc. DL2004, Whistler, British Columbia,

Canada, 2004.

[137] B. Motik, and U. Sattler, “A comparison o f reasoning techniques for querying

large description logic aboxes,” in Proc. LPAR '06, Phnom Penh, Cambodia,

2006, pp. 227-241.

[138] H. Li, Y. Wang, Y. Qu, and J. Z. Pan, "A Reasoning Algorithm for pD*," The

Semantic Web ASWC 2006, R. Mizoguchi, Z. Shi and F. Giunchiglia, eds., pp.

293-299, Heidelberg, Germany: Springer, 2006.

[139] S. Heymans, L. Ma, D. Anicic, Z. Ma, N. Steinmetz, Y. Pan, J. Mei, A. Fokoue,

A. Kalyanpur, A. Kershenbaum, E. Schonberg, K. Srinivas, C. Feier, G. Hench,

B. Wetzstein, and U. K. hide, "Ontology reasoning with large data repositories,"

Ontology Management, M. Hepp, P. D. Leenheer, A. D. Moor and Y. Sure, eds.,

pp. 89-128, New York, NY, USA: Springer, 2008.

[140] J. Broekstra, A. Kampman, and F. v. Harmelen, "Sesame: A generic architecture

for storing and querying rdf and rdf schema," The Semantic Web — ISWC 2002,1.

Horrocks and J. Hendler, eds., pp. 54-68, Heidelberg, Germany: Springer, 2002.

[141] Franz Inc. "lntrocuction ofAllegroGraph 4.2," March 18, 2014 [online]

Available: http://www.franz.com/agraph/support/documentation/v4/agraph-

introduction.html.

[142] The Apache Software Foundation. "TDB," March 18, 2014 [online] Available:

http://jena.apache.org/documentation/tdb/.

[143] O. Erling, and I. Mikhailov, “Towards web scale RDF,” in Proc. SSWS2008,

Karlsruhe, Germany, 2008.

[144] O. Erling. "Advances in Virtuoso RDF Triple Storage (Bitmap Indexing)," March

18, 2014 [online] Available:

http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSBitmapIndexing.

[145] B. Motik, “Reasoning in description logics using resolution and deductive

databases,” University o f Karlsruhe, University o f Karlsruhe, Karlsruhe,

Germany, 2006.

[146] B. Motik, U. Sattler, and R. Studer, “Query answering for OWL-DL with rules,”

Web Semantics: Science, Services and Agents on the World Wide Web, vol. 3, no.

1, pp. 41-60, July, 2005.

[147] A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg, and K. Srinivas, "The

summary abox: Cutting ontologies down to size," The Semantic Web - ISWC

2006,1. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M.

Uschold and L. M. Aroyo, eds., pp. 343-356, Heidelberg, Germany: Springer,

2006.

http://www.franz.com/agraph/support/documentation/v4/agraph-
http://jena.apache.org/documentation/tdb/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSBitmapIndexing

[148] J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershenbaum, E. Schonberg, K. Srinivas,

and L. Ma, “Scalable semantic retrieval through summarization and refinement,”

in Proc. AAAI '07, Vancouver, British Columbia, Canada, 2007, pp. 299-304.

[149] Y. Guo, and J. Heflin, “A scalable approach for partitioning owl knowledge

bases,” in Proc. SSWS2006, Athens, GA, USA, 2006, pp. 47-60.

[150] S. Wandelt, and R. Moller, "Scalability o f OWL reasoning: role condensates," On

the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops, R.

Meersman, Z. Tari and P. Herrero, eds., pp. 1145-1154, Heidelberg, Germany:

Springer, 2007.

[151] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati, “DL-Lite:

Tractable description logics for ontologies,” in Proc. AAAI2005, Pittsburgh,

Pennsylvania, USA, 2005, pp. 602-607.

[152] D. Calvanese, D. Lembo, M. Lenzerini, and R. Rosati, “Data complexity o f query

answering in description logics,” in Proc. KR2006, Lake District, UK, 2006, pp.

260-270.

[153] U. Hustadt, B. Motik, and U. Sattler, “Data complexity of reasoning in very

expressive description logics,” in Proc. IJCAI'05, Edinburgh, Scotland, UK, 2005,

pp. 466-471.

[154] T. Eiter, G. Gottlob, M. Ortiz, and M. Simkus, "Query answering in the

description logic Hom-SHIQ," Logics in Artificial Intelligence, S. Holldobler, C.

Lutz and H. Wansing, eds., pp. 166-179, Heidelberg, Germany: Springer, 2008.

[155] M. Schmidt, T. Homung, M. Meier, C. Pinkel, and G. Lausen, "SP2Bench: A

SPARQL Performance Benchmark," Semantic Web Information Management, R.

d. Virgilio, F. Giunchiglia and L. Tanca, eds., pp. 371-393, Berlin, Heidelberg:

Springer-Verlag, 2010.

[156] The Apache Software Foundation. "ARQ - A SPARQL Processor for Jena,"

March 18, 2014 [online] Available:

https://jena.apache.org/documentation/query/.

[157] C. Bizer, and A. Schultz, “The berlin sparql benchmark,” International Journal

on Semantic Web & Information Systems, vol. 5, no. 2, pp. 1-24, 2009.

[158] semanticweb.org. "SPARQL endpoint," March 18, 2014 [online] Available:

http://semanticweb.org/wiki/SPARQL_endpoint.

[159] W3C. "SparqlEndpoints," March 18, 2014 [online] Available:

http://www.w3.org/wiki/SparqlEndpoints.

[160] S. Harris, N. Lamb, and N. Shadbolt, “4store: The Design and Implementation o f

a Clustered RDF store,” in Proc. SSWS2009, Washington DC, USA, 2009, pp. 81-

96.

[161] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL knowledge base

systems,” Web Semantics: Science, Services and Agents on the World Wide Web,

vol. 3, no. 2-3, pp. 158-182, October, 2005.

[162] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu, "Towards a complete OWL

ontology benchmark," The Semantic Web: Research and Applications, Y. Sure

and J. Domingue, eds., pp. 125-139, Heidelberg, Germany: Springer, 2006.

[163] T. Weithoner, T. Liebig, M. Luther, and S. Bohm, “W hat’s wrong with OWL

benchmarks,” in Proc. SSWS2006, Athens, GA, USA, 2006, pp. 101-114.

https://jena.apache.org/documentation/query/
http://semanticweb.org/wiki/SPARQL_endpoint
http://www.w3.org/wiki/SparqlEndpoints

[164] T. Weithoner, T. Liebig, M. Luther, S. Bohm, F. v. Henke, and O. Noppens,

"Real-world reasoning with OWL," The Semantic Web: Research and

Applications, E. Franconi, M. Kifer and W. May, eds., pp. 296-310, Heidelberg,

Germany: Springer, 2007.

[165] J. Urbani, F. v. Harmelen, S. Schlobach, and H. Bal, "QueryPIE: Backward

reasoning for OWL Horst over very large knowledge bases," The Semantic Web-

ISWC 2011, L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N.

Noy and E. Blomqvist, eds., pp. 730-745, Heidelberg, Germany: Springer, 2011.

[166] A. Yaseen, K. Maly, S. Zeil, and M. Zubair, “Performance Evaluation o f Oracle

Semantic Technologies With Respect To User Defined Rules,” in Proc. (in

preparation for) International conference on Intelligent Semantic Web-Services

and Applications, Amman, Jordan, 2011.

[167] T. Weith' oner, T. Liebig, M. Luther, and S. B'ohm, “What's wrong with OWL

benchmarks,” in Proc. Proceedings of the Second International Workshop on

Scalable Semantic Web Knowledge Base Systems, 2006, pp. 101-114.

[168] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, “Application o f hash to data base

machine and its architecture,” New Generation Computing, vol. 1, no. 1, pp. 63-

74, March, 1983.

[169] Ontotext. "owl-sameAs-optimization," March 18, 2014 [online] Available:

http://www.ontotext.com/owlim/owl-sameas-optimisation.

[170] H. Tamaki, and T. Sato, “OLD resolution with tabulation,” in Proc. ICLP1986,

London, United Kingdom, 1986, pp. 84-98.

http://www.ontotext.com/owlim/owl-sameas-optimisation

175

[171] K. Marriott, and P. J. Stuckey, Programming with constraints: an introduction,

Cambridge, Massachusetts: MIT press, 1998.

[172] J. Santos, and S. Muggleton, "When does it pay off to use sophisticated

entailment engines in ILP?," Inductive Logic Programming, P. Frasconi and F. A.

Lisi, eds., pp. 214-221, Heidelberg, Germany: Springer, 2011.

[173] R. Kowalski, and D. Kuehner, “Linear resolution with selection function,”

Artificial Intelligence, vol. 2, no. 3-4, pp. 227-260, Winter, 1972.

[174] B. Bishop, and F. Fischer, “Iris-integrated rule inference system,” in Proc.

ARea2008, Tenerife, Spain, 2008.

[175] J. Lobo, J. Minker, and A. Rajasekar, Foundations o f disjunctive logic

programming, Cambridge, Massachusetts: MIT press, 1992.

[176] F. Bry, N. Eisinger, T. Eiter, T. Furche, G. Gottlob, C. Ley, B. Linse, R. Pichler,

and F. Wei, "Foundations o f rule-based query answering," Reasoning Web, G.

Antoniou, U. ABmann, C. Baroglio, S. Decker, N. Henze, P.-L. Patranjan and R.

Tolksdorf, eds., pp. 1-153, Heidelberg, Germany: Springer-Verlag, 2007.

[177] N. Leone, S. Perri, and F. Scarcello, "Improving ASP instantiators by join-

ordering methods," Logic Programming and Nonmotonic Reasoning, T. Eiter, W.

Faber and M. 1. Truszczynski, eds., pp. 280-294, Heidelberg, Germany: Springer,

2001 .

[178] J. Wielemaker, "An optimised semantic web query language implementation in

prolog," Logic Programming, M. Gabbrielli and G. Gupta, eds., pp. 128-142,

Heidelberg, Germany: Springer, 2005.

176

[179] I. Kollia, B, Glimm, and I. Horrocks. "Answering queries over owl ontologies

with sparql," March 18, 2014 [online] Available:

http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2011 /KoGH 11 c.pdf.

[180] J. Struyf, and H. Blockeel, "Query optimization in inductive logic programming

by reordering literals," Inductive Logic Programming, T. Horvath and A.

Yamamoto, eds., pp. 329-346, Heidelberg, Germany: Springer, 2003.

[181] J. W. Lloyd, Foundations of Logic Programming, 2nd ed., Heidelberg, Germany:

Springer, 1987.

[182] H. Shi, K. Maly, and S. Zeil, “Optimized Backward Chaining Reasoning System

for a Semantic Web,” in Proc. WIMS '14, Thessaloniki, Greece, 2014.

[183] The Apache Software Foundation. "SDB - persistent triple stores using relational

databases," March 18, 2014 [online] Available:

http://j ena. apache.org/documentation/ sdb.

[184] M. Klein, “Change management for distributed ontologies,” Vrije Universiteit

Amsterdam, 2004.

[185] S. N. Goodman, “Toward evidence-based medical statistics. 1: The P value

fallacy,” Annals o f internal medicine, vol. 130, no. 12, pp. 995-1004, June, 1999.

http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2011
http://j

177

VITA

Hui Shi

E&CS building, Department o f Computer Science, Old Dominion University, Norfolk,

VA 23529

Education

Sep. 1999 - July 2003 B.S., major in Computer Science and Technology

School o f Computer & Information

Hefei University o f Technology, China

Sep.2003 - June 2006 M.S., major in Computer Application Technique

School o f Computer & Information

Hefei University o f Technology, China

Aug.2009 - Aug.2014 Ph.D., major in Computer Science

Department o f Computer Science, Old Dominion University

Professional Experience: Teaching Experience:

2013.09- 2013.12: Instructor, Department o f Computer Science, Old Dominion

University, Norfolk, VA

2009.09- 2014.05: Teaching Assistant, Department o f Computer Science, Old Dominion

University, Norfolk, VA

2011.09- 2011.12: Lab Instructor, Department o f Computer Science, Old Dominion

University, Norfolk, VA

2006.06- 2009.08: Teaching Assistant, Hefei University o f Technology, Hefei, Anhui,

China

	Old Dominion University
	ODU Digital Commons
	Summer 2014

	Scalable Reasoning for Knowledge Bases Subject to Changes
	Hui Shi
	Recommended Citation

	00001.tif

