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ABSTRACT

SCALABLE REASONING FOR KNOWLEDGE BASES SUBJECT TO CHANGES

Hui Shi
Old Dominion University, 2014 

Co-Directors: Dr. Kurt Maly
Dr. Steven J. Zeil

ScienceWeb is a semantic web system that collects information about a research 

community and allows users to ask qualitative and quantitative questions related to that 

information using a reasoning engine. The more complete the knowledge base is, the 

more helpful answers the system will provide. As the size o f  knowledge base increases, 

scalability becomes a challenge for the reasoning system. As users make changes to the 

knowledge base and/or new information is collected, providing fast enough response time 

(ranging from seconds to a few minutes) is one o f the core challenges for the reasoning 

system.

There are two basic inference methods commonly used in first order logic: 

forward chaining and backward chaining. As a general mle, forward chaining is a good 

method for a static knowledge base and backward chaining is good for the more dynamic 

cases. The goal o f  this thesis was to design a hybrid reasoning architecture and develop a 

scalable reasoning system whose efficiency is able to meet the interaction requirements in 

a ScienceWeb system when facing a large and evolving knowledge base.

Interposing a backward chaining reasoner between an evolving knowledge base 

and a query manager with support o f "trust" yields an architecture that can support 

reasoning in the face o f frequent changes. An optimized query-answering algorithm, an 

optimized backward chaining algorithm and a trust-based hybrid reasoning algorithm are



three key algorithms in such an architecture. Collectively, these three algorithms are 

significant contributions to the field o f backward chaining reasoners over ontologies.

I explored the idea o f "trust" in the trust-based hybrid reasoning algorithm, where 

each change to the knowledge base is analyzed as to what subset of the knowledge base is 

impacted by the change and could therefore contribute to incorrect inferences. I adopted 

greedy ordering and deferring joins in optimized query-answering algorithm. I introduced 

four optimizations in the algorithm for backward chaining. These optimizations are: 1) 

the implementation o f the selection function, 2) the upgraded substitute function, 3) the 

application o f OLDT and 4) solving o f the "owksameAs" problem.

I evaluated our optimization techniques by comparing the results with and without 

optimization techniques. I evaluated our optimized query answering algorithm by 

comparing to a traditional backward-chaining reasoner. I evaluated our trust-based hybrid 

reasoning algorithm by comparing the performance o f a forward chaining algorithm to 

that o f a pure backward chaining algorithm. The evaluation results have shown that the 

hybrid reasoning architecture with the scalable reasoning system is able to support 

scalable reasoning o f ScienceWeb to answer qualitative questions effectively when facing 

both a fixed knowledge base and an evolving knowledge base.
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CHAPTER 1 

INTRODUCTION

Consider a potential chemistry Ph.D. student who is trying to find out what the 

emerging areas are that have good academic job prospects. What are the schools and who 

are the professors doing groundbreaking research in this area? What are the good funded 

research projects in this area? Consider a faculty member who might ask, “Is my record 

good enough to be tenured at my school? At another school?” Similarly consider an NSF 

program manager who would like to identify emerging research areas in mathematics that 

are not being currently supported by NSF. It is possible for these people each to mine this 

information from the Web. However, it may take a considerable effort and time, and even 

then the information may not be complete, may be partially incorrect, and would reflect 

an individual perspective for qualitative judgments. Thus, the efforts o f the individuals 

neither take advantage o f nor contribute to others’ efforts to reuse the data, the queries, 

and the methods used to find the data. Qualitative descriptors such as “groundbreaking 

research in data mining” are likely to be accepted as meaningful if they represent a 

consensus o f an appropriate subset o f the community at large. Once accepted as 

meaningful, these descriptors can be realized in a system and made available for use by 

all members o f that community. For example, “groundbreaking” research for one 

segment o f the community could be work that results in many publications in refereed 

journals. For another segment it could be research that leads to artifacts that make people 

more productive, where “more productive” might mean to spend less time on finding 

papers in fields related to a given research problem. Qualitative descriptors also evolve



over time. For example, a community may later identify as another factor in “good 

research” that the degree to which it is “transformative”. In addition to qualitative 

descriptors, useful queries may also be written using quantitative descriptors, for 

example: “What is the ordered list o f PhD departments in CS when the ranking is the 

amount o f  research dollar spent in 2009?”

The system implied by these queries is an example o f a semantic web where the 

underlying knowledge base covers linked data about science research that are being 

harvested from the Web and are supplemented and edited by community members. The 

query examples given above also imply that the system not only supports querying o f 

facts but also rules and reasoning as a mechanism for answering queries.

In semantic webs, knowledge is formally represented by an ontology, as a set o f 

concepts within a domain, and the relationships between pairs of concepts. The ontology 

is used to model a domain, to instantiate entities, and to support reasoning about entities 

(or facts). Ontologies represent facts as triples and we shall use the terms facts, triples, 

and instances synonymously. Common methods for implementing reasoning over 

ontologies are based on First Order Logic, which allows one to define rules over the 

ontology.

A number of projects (e.g., Libra [1, 2], Cimple [3], Ametminer [4]) have built 

systems to capture limited aspects o f  community knowledge and to respond to semantic 

queries. However, all o f them lack the level o f community collaboration support that is 

required to build a knowledge base system that can evolve over time, both in terms o f the 

knowledge it represents as well as the semantics involved in responding to qualitative 

questions. These systems are also homogeneous, in the sense that they harvest data from



one type o f resources. A team at ODU is working on ScienceWeb [5, 6], which will 

combine diverse resources such as digital libraries for published papers, curricula vitae 

from the web, and agency data bases such as NSF’s research grant data base and that will 

use collaboration as the fundamental approach to evolve its knowledge base.

1.1 ScienceWeb

In ScienceWeb the ODU team is developing a framework for a system that 

provides answers to qualitative and quantitative queries o f a large evolving knowledge 

base covering science research. The system will support the community joining together, 

sharing the insights o f its members, to evolve:

•  the type o f data to be gathered and how to organize them,

• the methods for collecting the data, their sources,

•  the process o f collecting them, and validating them,

• the meaning o f qualitative descriptors and queries most needed and how they can

be computationally realized.

ScienceWeb will need to scale to accommodate the substantial corpus o f 

information about researchers, their projects and their publications. It will need to 

accommodate the inherent heterogeneity o f both its information sources and o f its user 

community. Finally, it must allow the semantic (qualitative) descriptors to evolve with 

time as the knowledge of the community grows and the problems the community 

researches change.

ScienceWeb will develop new tools, technologies, and a framework, allowing a 

community to: (a) collaboratively develop and evolve its domain knowledge base, (b) 

collaboratively develop queries for answering qualitative questions, and (c)



collaboratively help in automatically harvesting and validating information from different 

resources. In the long-term, this framework should prove useful in many domains and 

different contexts.

ScienceWeb is a platform where researchers including faculty, Ph.D. students 

and program managers can collaboratively work together to get answers o f  their queries 

from a consensus point o f view or from their specific point o f  view. The collaborative 

aspect is not only in the construction o f queries but in the construction o f  the underlying 

ontology, rules and instance data. The proposed architecture o f the ScienceWeb is shown 

in Fig. 1.

Harvesting
Methods

Construction

Query
Construction

Ontology
Construction

Rule
Construction Collaborative Clients

Co Ha bora Ive Middleware

Harvesting
Methods
Evolution

Query
Evolution

Ontology
Evolution

Server

Data Source 
Web

HaivesterReasoner

DB

Knowledge Base

Fig. 1. Architecture o f  ScienceW eb

A traditional data mining architecture involves harvesting from data sources to 

populate a knowledge base, which in turn can then answer queries about the harvested 

content. This architecture is enhanced by adding a layer o f collaborative clients for 

construction o f queries, rules, ontological concepts, and harvesting methods, mediated by



a layer o f server functions that oversee and support the evolution of each o f those 

functional groups within the knowledge base.

The system is built, developed and evolved based upon users’ collaborative 

contributions as shown in Fig. 2. Users contribute during querying & answering, 

harvesting and ontology evolution. Querying is not an ordinary job o f posting, parsing 

and retrieving as in a conventional database system. Instead, it becomes an interactive, 

collaborative process. Harvesting and ontology evolution also benefit from the 

information provided by the users. Thus, collaboration is critical and widely spread 

throughout the system.

Contribute

Get answers

Initial Knowledge Basi 
(Ruleso+Ontology( 
+lnstanoe Datao)

Knowledge Base K 
(Rulesi+Ontologyi 
^Instance Data,)

-► l
Community

System

Fig. 2. Evolution o f  ScienceWeb

Queries and rules are the core o f ScienceWeb system. How the queries and rules 

develop based on the collaboration is critical to the evolution o f the system. Here are the 

main steps o f development o f queries and rules. First, users strive for consensus on rule
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expression o f qualitative descriptor and quantitative descriptor, consensus on adding rules 

into rule base, and consensus on changing the ontology. Second, when users construct 

queries and rules, the existing queries and rules from others’ point o f view should be 

made available for help and inspiration. Third, users will have access to methods for 

automatic query enrichment and rule prediction that are based on analysis o f  existing 

queries, rules and relationship among them, and analysis o f behaviors and interests of 

specific subsets o f a research community.

In ScienceWeb, a qualitative query is to be answered according to the criteria 

given in the form of custom rules by members o f the community, which means inference 

from custom rules has to be done before returning the results o f most queries. Current 

ontology reasoning systems do support inference from custom rules. But the current 

performance o f inferencing from custom rules on large size instance data does not meet 

the requirement o f real-time response. I have done experiments on different sizes o f 

instance data conforming to the ScienceWeb ontology [5]. The experiment results 

explicitly show that when the size o f the instance data grows from thousands to millions, 

the reasoning for a qualitative query with new custom rules takes minutes to hours, which 

is unacceptable for the real-time query-answering system [5]. It is critical to find 

approaches to solve the performance problem.

Some basic scenarios that illustrate the workings o f  the modules constituting 

ScienceWeb (as shown in Fig. 1) are:

Query construction and evolution:

• The user interacts with the Query Construction client to present his query.
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• The Query Construction client works with the Query Evolution module and looks 

for similar past queries in the knowledge base.

• The user chooses to select one query from similar past queries, or to edit a past 

query, or to use the original query, unaltered.

• The query is passed on for query processing.

Query processing:

• The user submits a query, either a formerly constructed query or a new or 

modified one, arising from interaction with the Query Construction and Query 

Evolution modules.

• The reasoner and DB in the knowledge base work together to return the answers 

o f the posted query.

Rule construction and evolution:

• The user constructs the rules (criteria) to express the qualitative descriptor and 

quantitative descriptor appearing in a new query for further inference.

• The user interacts with the Rule Construction client to introduce his rule.

• The Rule Construction client works with the Rule Evolution module to look for 

similar past rules to help users to compose rule.

•  To compose a new rule, the user chooses to edit a past rule or to construct a 

totally new rule.

• After the new rule is constructed, the system informs the user that the new rule 

has been included in the rule base.

Ontology construction and evolution:



• The user works with the Ontology Construction client to add, edit or delete 

classes or properties in the ontology.

• The user interacts with the Ontology Evolution module to make sure that the new 

ontology is consistent after the changes.

Harvesting method construction and evolution:

•  The user interacts with the Harvesting Method Construction client to describe the 

resources from which new instance data can be obtained.

•  The harvester crawls some sample data from these resources.

• The Harvesting Method Evolution module verifies the validity o f  these resources.

• At a later time, the harvester obtains instance data within valid resources

1.2 Proposed Work

Collaboration is at the heart o f the approach to build ScienceWeb. Such 

collaboration includes building and evolving the knowledge base, building, evolving and 

reusing queries and identifying, specifying methods and harvesting raw information. The 

interaction between the system and people must be effective enough to allow for 

collaborative development. Users are not willing to spend more than an hour, perhaps 

even only several minutes to wait for the response o f the system when trying, for 

example, to create a new query [7],

Reasoning over the knowledge base provides support for answering qualitative 

questions and quantitative questions, whose scalability and efficiency influence greatly 

the response time o f the system.

ScienceWeb is a system that collects various research related information. The 

more complete the knowledge base is, the more helpful answers the system will provide.
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As the size o f knowledge base increases, scalability becomes a challenge for the 

reasoning system. It may handle millions, even hundreds o f  millions, o f  items in the 

knowledge base. As users make changes to the basic descriptors of the knowledge base, 

providing fast enough response time (ranges from seconds to a few minutes) in the face 

o f changes is one o f the core challenges for the reasoning system.

The goal o f  this thesis is to design a hybrid reasoning architecture and develop a 

scalable reasoning system whose efficiency is able to meet the interaction requirements in 

a ScienceWeb system when facing a large and evolving knowledge base.

1.2.1 Architecture o f  an Adaptive Reasoning System fo r a Semantic Web

There are two basic inference methods commonly used in first order logic: 

forward chaining and backward chaining [8],

A question/answer system over a semantic web may experience changes 

frequently. These changes may be to the ontology, to the rule set or to the instances 

harvested from the web or other data sources. For the examples discussed in our opening 

paragraph, such changes could occur hundreds o f times a day. Forward chaining is an 

example o f data-driven reasoning, which starts with the known data in the knowledge 

base and applies modus ponens in the forward direction, deriving and adding new 

consequences until no more inferences can be made. Backward chaining is an example of 

goal-driven reasoning, which starts with goals from the consequents, matching the goals 

to the antecedents to find the data that satisfies the consequents. As a general rule, 

forward chaining is a good method for a static knowledge base and backward chaining is 

good for the more dynamic cases.

In order to achieve the goal o f improving the performance and scalability o f
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reasoning, I introduce an adaptive reasoning architecture with a hybrid reasoner, a 

knowledge base and management modules. In this architecture, an adaptive mechanism is 

adopted to determine what part o f the knowledge base is unaffected by changes and to 

switch between forward chaining and backward chaining depending on whether one or 

the other performs better. In the knowledge base, the storage will contain core facts 

obtained by the harvester, inferred instances from forward chaining, and standard 

reasoning rules as well as custom rules.

The resulting architecture o f an adaptive reasoning system is presented in Fig. 3. 

To explain this architecture I present first a short description o f the individual 

components and then a series o f scenarios that will illustrate the sequence o f  modules 

executed and the resulting data flow upon various inputs from users.

Input from users: Queries and Changes

A query is the basic way for users to search and retrieve information. For 

example, in the query “Who are the groundbreaking researchers in Digital Library?” 

“groundbreaking” is a qualitative descriptor that has been evolved by one (or more) 

user(s) by developing custom rules; “researcher” and “digital library” are classes in the 

ontology.

Changes may be introduced to the ontology, to the custom rule set, or to instances 

as the harvested from the web. For example, people might not agree on the ontology as it 

was originally designed and they will make changes to reflect their own beliefs.

Similarly, custom rules represent a personal understanding o f qualitative descriptors. 

Custom rules will change as more people add their own opinion. Hopefully, these 

qualitative descriptors will evolve to a consensus. The collection o f instances will be
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enriched gradually with the discovery o f new sources o f information by individuals and 

the subsequent update o f the methods o f harvesting the information. Thus, changes o f 

ontology, custom rule sets, and instances may occur with varying degree o f frequency. 

Changes have a significant influence on the process o f storage and performance o f  query 

no matter whether the query involves inferencing or not.

ChangesQuery

Query & 
Inference 

Management
Change

Management

Storage
Management

Hybrid
Reasoner Knowledge Base

Forward Chaining
Inferred Triples

Backward Chaining C ore F ac ts

Rules

Fig. 3. Architecture o f  an Adaptive Reasoning System

Query & Inference Management

Query & Inference Management is the component that determines what part o f 

the knowledge base is unaffected by the changes and that makes the choice between
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Forward Chaining and Backward Chaining.

Change Management

Change Management records the history o f all changes to the ontology, custom 

rules or instances. It not only provides change records to Query & Inference Management 

for the adaptive reasoning mechanism, but also communicates with the Storage 

Management module to realize the actual changes in the storage module.

Hybrid Reasoner

As a central component in the adaptive reasoning system, the Hybrid Reasoner is 

a combination o f forward chaining and backward chaining that is responsible for the 

reasoning. Forward Chaining is the component that fires all o f  the rules in the system and 

generates all inferred triples at once -  a process called materialization. After 

materialization, answering a query does not involve any reasoning but simple parsing, 

searching, and retrieving. Backward Chaining is the component that fires relevant rules in 

the system only during the processing o f a query.

Storage Management

The Storage Management organizes storage to improve the scalability and 

performance o f inferencing. This component provides mechanisms to group and index 

base triples obtained from the users and the harvester module and triples that have been 

inferred such that search and updates can be done efficiently.

Storage

There are three separate storage areas o f data in the system: Inferred Triples, Core 

Facts, and Rules. Inferred Triples are generated by materialization, Core Facts include 

data instances and the ontology, and Rules include standard logic rules, custom rules
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created at the start o f the system and subsequent changes to these data.

1.2.2 Adaptive Reasoning Mechanism

ScienceWeb is a collaborative platform that integrates efforts from users to define 

what data are to be obtained in what way and how the data are to be organized and what 

forms the queries will be. After a bootstrapping process has generated an initial 

knowledge base, we expect frequent changes to all aspects o f  the knowledge base: 

ontology, rule set, harvesting methods, and instance data. It is one o f my hypotheses, to 

be tested in the future, that changes to the ontology and rule set will stabilize over time 

whereas instance data will be continue to be changed as well as periodically harvested. 

The Adaptive Reasoning Mechanism is designed to select the appropriate reasoning 

method depending partially on the degree o f change. Forward chaining is good in 

situations with infrequent or no updates. Queries, including qualitative queries, can then 

be executed without any inferencing. Fast response to queries without inference is a merit 

o f forward chaining. Any update o f the ontology, custom rules or instances requires 

reloading of data and inferencing all over again, resulting in slow responses to queries 

issued immediately subsequent to these changes. Backward chaining is good in situations 

with fast-changing data because backward chaining starts from the query then searches 

all the triples that meet the need, avoiding an entire materialization. As only rules and 

data related to the query are involved, answers can be returned within an acceptable time 

period. The critical question to be resolved in my thesis is how to delineate the impact o f 

changes on the knowledge base so we know when and where to switch from one to the 

other reasoning methods.
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1.3 Objectives

ScienceWeb is a platform where researchers including faculty, Ph.D. students and 

program managers can collaboratively work together to get answers o f their queries from 

a consensus point of view or from their specific point of view. It will develop new tools, 

technologies, and a framework, allowing a community to: (a) collaboratively develop and 

evolve its domain knowledge base, (b) collaboratively develop queries for answering 

qualitative questions, and (c) collaboratively help in automatically harvesting and 

validating information from different resources.

I am addressing in this thesis only a select few o f the challenging research issues 

ScienceWeb poses, and I am making certain assumptions about the context for the 

problem I will research. I will not address the collaborative aspects o f ScienceWeb, 

including collaborative query, harvesting methods and ontology evolution.

In this thesis I will research the issues involved in designing a hybrid reasoning 

architecture and developing a scalable reasoning system whose scalability and efficiency 

are able to meet the requirements o f query and answering in a semantic web system when 

facing both a fixed knowledge base and an evolving knowledge base. For evaluation 

purposes, I will develop a base query and rule set as well as instance data from a variety 

o f sources. Specifically, the objectives are:

• Support scalable reasoning o f ScienceWeb to answer qualitative questions 

effectively when facing a fixed knowledge base

o Support custom rule reasoning to answer qualitative questions 

o Improve the scalability and efficiency of the backward chaining reasoner 

o Improve the scalability and efficiency of the query and answering process



o Demonstrate completeness and soundness o f  the reasoning system 

o Demonstrate real-time or near real-time inferencing for a large knowledge 

base

• Support scalable reasoning o f ScienceWeb to answer qualitative questions 

effectively when facing an evolving knowledge base

o Classify and represent changes that the knowledge base faces 

o Introduce the concept o f trust into the reasoning system 

o Develop a hybrid reasoning system that will combine forward chaining 

and backward chaining and adapt to changes in the knowledge base 

o Demonstrate completeness and soundness o f  the reasoning system 

o Demonstrate real-time or near real-time inferencing for a large knowledge 

base

In general, my main goal in this thesis is to support scalable reasoning of 

ScienceWeb to answer qualitative questions effectively when facing both a fixed 

knowledge base and an evolving knowledge base. For the purpose o f demonstrating the 

performance o f  our system, I have run experiments on top o f a widely used benchmark 

(up to 10 million facts). I have evaluated various optimizations that impact the 

effectiveness o f the reasoning system as measured in response time. I have evaluated the 

system with respect to the scalability in terms of size of the knowledge base from 

thousands to 10 million facts. I have evaluated the completeness and soundness o f the 

reasoning system.
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CHAPTER 2 

BACKGROUND

In this chapter, I will describe the background of the ScienceWeb project which 

provides the context for my thesis and that o f  adaptive reasoning for ScienceWeb which 

is the thesis’s subject. The Related Areas section gives a general view of the context o f 

my thesis area: digital libraries and the semantic web. The Thesis Area section focuses 

on the areas directly related to the work in this thesis, such as the background for 

reasoning and benchmarks for ontologies.

2.1 Related Areas

2.1.1 Scientific Literature Digital Libraries

Digital libraries are collections o f digital objects. Digital libraries can be 

contrasted based on the source o f their information such as scientific literature. The 

professional societies such as IEEE [9] or ACM [10] and commercial publishing houses 

such as Springer-Verlag [11] provide authoritative digital libraries for scientific 

publications. These libraries are limited in scope, being focused by design upon the 

publications o f the sponsoring organization. These organizations maintain complete 

digital libraries for all their publications, but full access is typically restricted to paying 

members o f the societies or subscribers. In addition to traditional search features, they 

often provide special features such as references cited by a paper, allow the exploration 

o f the co-author relation, and sometimes provide citation counts.

A contrasting class o f  digital libraries consists of those systems that obtain their



content from the web. The stored content is typically a metadata record o f a publication 

with references to the location o f the actual document. Google Scholar [12] is designed to 

provide a simple way to search digital libraries o f scholarly literature. One can search 

with keywords o f common metadata o f an article such as author, publication, date, and 

area. It provides a citation count, related papers and a listing o f versions available for 

download. For articles in professional digital libraries, it provides metadata and a link to 

that digital library. DBLP [13, 14] provides bibliographic information on major computer 

science conference proceedings and journals. DBLP provides a faceted search on 

publication years, publication types, venues and authors. It also provides the functions o f 

“Automatic Phrases” and “Syntactic Query Expansion” to generate more patterns and 

forms for entering keywords and key phrases. CiteseerX [15, 16], Libra [1 ,2] and 

getCITED [17] are other systems that maintain and update their collection by continually 

crawling the web. All these systems have different levels o f coverage. For instance, 

searching for “Smalltalk-80: the language and its implementation”, CiteceerX does not 

include this book in its collection, Google scholar returns 979 as its citation count, Libra 

returns a citation count o f  914, while getCITED returns 1. In some of these systems, 

community members can edit and correct harvested information.

2.1.2 Science-related Knowledge Bases

There are a large number o f knowledge bases [3, 18-24] for a variety o f  domains. 

As an example, consider Cimple [3], which is being used to develop DBLife, a 

community portal for database researchers. In the Cimple project, researchers developed 

a knowledge base that draws its basic information from unstructured data on the web. It 

then analyzes the information and discovers relations such as co-authorship and
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concentrates on having a consistent state o f the information that it measures using 

precision and recall. It uses members o f the community to correct and refine extracted 

information.

Another example o f  a sophisticated knowledge base in Computer Science is 

AmetMiner [4], which provides profiles o f researchers, associations between researchers, 

publications, co-author relationships, courses, and topic browsing. It has the capability to 

rank research and papers. It is a centrally developed system with fixed queries and 

schemas for data, but the knowledge base is continually growing as new data become 

available.

The Mathematics Genealogy Project [25] is a knowledge base that defines the 

transitive relation o f advisor-PhD student for the domain o f Mathematics. It is maintained 

by a few dedicated users with few automated tools. However, it has obtained significant 

coverage within its domain and even has expanded into Computer Science. Systems in 

this category are typically sustained by few people but most users are also contributors.

A number of these systems have developed interesting ways o f harvesting 

information (converting unstructured or semi-structured information into structured), o f 

forming natural language questions into formal queries, and o f enhancing the precision, 

recall and efficiency when returning answers.

2.1.3 Ontologies

There has been an increasing effort in organizing web information within 

knowledge bases [26-29] using ontologies. Ontologies can model real world situations, 

can incorporate semantics which can be used to detect conflicts and resolve 

inconsistencies, and can be used together with a reasoning engine to infer new relations
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or proof statements. The DBpedia [26] project focuses on converting Wikipedia content 

into structured knowledge. YAGO [27] is automatically derived from Wikipedia [30] and 

WordNet [31]. SwetoDblp is a large ontology derived from bibliographic data o f 

computer science publications from DBLP. RKB Explorer [29] harvests information o f 

people, projects, publications, research areas from a different types o f  resources. 

Ontology-driven applications also include data mining [32-35], software engineering 

[36], general natural language query systems [37, 38], and systems that help users build 

formal semantic queries [26, 39],

A number o f tools exist for collaboratively designing and developing ontologies: 

CO-Protege [40], Ontolingua [41], Ontosaurus [42], OntoEdit [43], WebODE [44],

Kaon2 [45], OilEd [46]. With the exception o f  OilEd and Protege they provide support 

for collaboration and conflict resolution [47],

Changes introduced to ontologies can result in structural and semantic 

inconsistencies, the resolution of which remains an open problem. Migration o f instance 

data from one version of an ontology to the next is a critical issue in the context o f 

evolving ontologies. Some ontology changes, such as creating new classes or properties, 

do not affect instances. When these changes occur, instances that were valid in the old 

version are still valid in the new version. However, other changes may potentially affect 

instances. In this latter case, some strategies can include having tools take their best guess 

as to how instances should be transformed, allowing users to specify what to do for a 

specific class o f changes, or flagging instances that might be invalidated by changes.

2.1.4 Semantic Web

According to the W3C, "The Semantic Web provides a common framework that



allows data to be shared and reused across application, enterprise, and community 

boundaries." [48] The concept o f  a semantic web has been adopted in information 

retrieval to improve the accuracy o f responses [49-54]. Assigning meanings to documents 

would keep documents expressing the same meaning with different words and 

eliminating documents expressing different meanings with the same words. For example, 

ontology-based information retrieval approaches [50, 51] aim to increase the quality o f 

responses by capturing some semantics o f  documents. Another example is semantic 

indexing [52, 53], which aims to identify appropriate concepts that characterize the 

document content. Concepts from the semantic web have been adopted in information 

extraction to improve the accuracy o f extraction [55-57], For example, semantic-based 

text categorization aims to assign a class label to a document using semantic similarity 

[57]. The semantic web has been adopted in the biological sciences to make information 

accessible to researchers [58, 59], The semantic web has been applied in corporate 

environments to facilitate the integration o f information and provide support for decision 

making, for example, business processes [60], knowledge management [61]. A number 

of communities have adopted the semantic web as the basis for collaboration, for 

example, DBpedia [26], Friend o f a Friend (FOAF) [62], Semantically-Interlinked Online 

Communities Project (SIOC) [63] and GoPubMed [64],

2.1.5 Sources o f Information

Many o f the systems already discussed can serve as a source o f information for 

the knowledge base to be used in ScienceWeb. An open digital libraries such as DLBP 

can provide publications for computer science publications and, as it provides detailed 

citation records; it can also be used to build records o f faculty and researchers and their
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affiliations in the knowledge base. Information on funded research can be obtained from 

federal agencies in the United States such as NSF and NIH. NIH also requires all projects 

to publish their papers in PubMed [65] which can be used as well.

Significant sources o f information will be the curricula vitae researchers typically 

publish on their websites. In computer science, a very high fraction of the researchers 

publish all relevant information about their research in their curricula vitae which are 

generally available to any crawler. More importantly most researchers regularly update 

these curricula vitae.

One of the few knowledge bases that provide information on the quality o f  an 

object is the study by the National Academy o f Sciences [66] that ranks various 

departments and universities with respect to a number o f criteria such as research output 

and student funding. It is interesting to note that, in a change to a similar study done ten 

years ago, this report allows now user to define their measure of quality and obtain 

dynamically rankings according to their view o f quality.

2.2 Thesis Areas

2.2.1 Description Logic (DL)

Research in the field o f knowledge representation and reasoning usually focused 

on methods for providing high-level descriptions o f  the world that can be effectively used 

to build knowledge-based systems. These knowledge-based systems are then able to get 

implicit consequences o f their explicitly represented knowledge. Thus, approaches to 

knowledge representation are crucial to the ability o f finding inferred consequences [67], 

Early knowledge representation methods such as frames [68] and semantic networks [69] 

lack well-defined syntax and a formal, unambiguous semantics, which are elements o f
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qualified knowledge representation. Description logic was introduced into knowledge 

representation systems to improve the expressive power. Description logic [70] is a 

family o f logic-based knowledge representation formalisms, which is designed to 

represent the terminological knowledge from an application domain [71].

There are many varieties o f description logics. Different operators are allowed in these 

varieties. The expressive power is encoded in the label for a logic using the following 

letters[72]:

• Functional properties.

• T: Full existential qualification (Existential restrictions that have fillers other than 

o w l : t h i n g ) .

• 'U: Concept union.

• C: Complex concept negation.

• 5: An abbreviation for JALC with transitive roles.

• 3~f: Role hierarchy (subproperties - rdfs:subPropertyOf).

• 3t: Limited complex role inclusion axioms; reflexivity and irreflexivity; role 

disjointness.

• O: Nominals. (Enumerated classes o f object value restrictions - o w l : o n e O f , 

o w l : h a s V a l u e ) .

• /:  Inverse properties.

• N .  Cardinality restrictions ( o w l : C a r d i n a l i t y ,  owl : M a x C a r d i n a l i t y ) .
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•  Q  Qualified cardinality restrictions (available in OWL 2, cardinality restrictions 

that have fillers other than o w l : th in g ) .

•  (D): Use o f datatype properties, data values or data types.

OWL is a DL-based language that is a standard ontology language for the 

Semantic Web. The design o f OWL is based on the family of DLs. OWL 2 is based

on the expressive power o f S'ROIQ*v>, OWL-DL is based on SlH O IJfu>, and for OWL-

Lite it is based on SJ-CfJyD>. [72]

A DL knowledge base consists o f  two parts: intentional knowledge (TBox), which 

represents general knowledge regarding a domain, and extensional knowledge (ABox), 

which represents a specific state o f affairs. The “T” in term “TBox” denotes 

“terminology” or “taxonomy” which is built based on the properties o f concepts and the 

subsumption relationships among the concepts in the knowledge. The “A” in term 

“ABox” denotes “assertional” knowledge that includes individuals o f  the specific 

domain. [67, 73]

2.2.2 Inference Methods

DL Reasoning Algorithm

The main reasoning tasks for DL reasoners are verifying KB consistency, 

checking concept satisfiability, concept subsumption and concept instances [71]. There 

are many algorithms for reasoning in DLs [71]. First are structural subsumption 

algorithms [74, 75], which first normalize the descriptions o f  concept, and then compare 

the syntactic structure o f the normalized descriptions recursively. The disadvantage o f 

this approach is that they are incomplete for expressive DLs, although they are efficient.



Second is the resolution-based approach [76-80], which transforms DLs into first-order 

predicate logic and then applies appropriate first-order resolution provers. Third is the 

automata-based approach [81-83], which is often more convenient for showing ExpTime 

complexity upper-bounds than tableau-based approaches. Fourth is the tableau-based 

approach [84], which is currently the most widely used reasoning algorithm for DLs. It 

had been previously used for modal logics [85], then introduced in the application o f DLs 

by Schmidt-SchauB and Smolka [86] in 1991. This approach is able to deal with large 

knowledge bases from applications and is complete for expressive DLs. Furthermore, 

highly-optimized tableau-based algorithms [87] are proposed as the basis for the new 

Web Ontology Language OWL2.

Inference Methods in First Order Logic

There are three kinds o f  inference methods in First Order Logic (FOL), Forward 

chaining, Backward chaining and Resolution [8],

Forward chaining is an example o f data-driven reasoning, which starts with the 

known data in the KB and applies modus ponens in the forward direction, deriving and 

adding new consequences until no more inferences can be made. Rete [88] is a well- 

known forward chaining algorithm. Backward chaining is an example o f goal-driven 

reasoning, which starts with goals from the consequents matching the goals to the 

antecedents to find the data that satisfies the consequents. Resolution is a complete 

theorem-proving algorithm that proves the theorems by showing that the negation 

contradicts with the premises[8].

Materialization and Query-Rewriting

Materialization and query-rewriting are the most popular inference strategies
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adopted by almost all o f the state o f the art ontology reasoning systems. Materialization 

means pre-computation and storage o f inferred truths in a knowledge base, which is 

always executed during loading the data and combined with forward-chaining techniques. 

Query-rewriting means expanding the queries, which is always executed during 

answering the queries and combine with backward-chaining techniques.

Materialization and forward-chaining are suitable for frequent, expensive 

computation o f answers with data that are relatively static. OWLIM [89, 90], Oracle 1 lg  

[91], Minerva [92] and DLDB-OWL [93] all implement materialization during loading of 

the data. Materialization permits rapid answer to queries because all possible inferences 

have already been carried out. But any change in the ontology, instances, or custom rules 

requires complete re-processing before responding to any new queries. Furthermore, a 

large amount o f redundant data may be produced by materialization o f a large knowledge 

base, which may slow the subsequent loading and querying.

Query-rewriting and backward-chaining are suitable for efficient computation o f 

answers with data that are dynamic. Virtuoso [94], AllegroGraph [95] and Sher [96] 

implement dynamic reasoning when it is necessary. This approach improves the 

performance o f answering new queries after data changes and simplifies the maintenance 

o f storage. But frequent repeated queries in query-rewriting will require repeated 

reasoning, which is time-consuming compared to pure search in materialization. HStar 

[97] attempts to improve performance by adopting a strategy of partially materializing 

inference data instead of complete materializing.

A hybrid approach may give the best o f both worlds. Jena [98] supports three 

ways o f inferencing: forward-chaining, backward-chaining and a hybrid o f these two



2 6

methods. In Jena’s hybrid mode, any hybrid rules will be instantiated according to the 

variable bindings from the forward engine. Queries are answered using the backward 

engine by applying the merge o f the supplied and instantiated rules to the data (raw data 

+ inferred data). This hybrid approach has a fixed division between forward chaining and 

backward chaining. In my dissertation, I will explore an adaptive hybrid approach with a 

dynamic division between forward chaining and backward chaining for better 

performance under changing circumstances.

2.2.3 Combination Method o f Ontologies and Rules

Classification of Combination

Ontologies are used to represent a domain o f  interest by defining concepts, 

recording relations among them and inserting individuals. Rules are mainly based on 

subsets o f First Order Logic (FOL) and possible extensions. There is a trend to integrate 

ontologies and rules into the world o f the Semantic Web.

The integration o f ontologies and rules has been clearly reflected in Tim Bemers- 

Lee’s “Semantic Web Stack” diagram [99], which illustrates the hierarchy o f languages 

that compose the architecture o f the Semantic Web. There exist two reasons why to 

integrate ontologies and rules. First is expressive power: rules provide more expressive 

power to complement ontology languages, such as “composite properties”. Second is 

reasoning techniques: existing considerable research on effective reasoning support o f 

rules provide solid basis for ontology inferencing.

Antoniou et al. classify the integration of ontologies and rules according to the 

degree o f integration [100], distinguishing between either the hybrid approach or the 

homogeneous approach as follows below. (Antoniou’s use o f  the term “hybrid” is
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unrelated to the hybrid reasoners discussed in the preceding section.)

In the homogeneous approach, the ontologies and rules are treated as a new 

logical language. There is no separation between predicates o f  an ontology and predicates 

o f  rules. Rules in this new language may be used to define classes and properties o f an 

ontology. The inference in this approach is based on the inference o f the new logical 

language. Examples o f the homogeneous approach include [101-105]. Some o f these are 

very popular in applications, such as DL+log [103], SWRL [104], DLP [105],

In the hybrid approach, there is a strict separation between predicates o f 

ontologies and predicates o f rules. Rules cannot define classes and relationships in the 

ontology, but some specific relations used in applications. The ontology reasoning and 

rule execution are performed by two different reasoners. Inferencing in the hybrid 

approach is based on the interaction between the ontology reasoner and the rule reasoner. 

There are also many examples o f the hybrid approach AL-Log [106, 107], HD-rules 

[108], NLP-DL [109], CARIN [110], dl-programs [111], r-hybrid KBs [112],and 

DatalogDL [113].

RDF-entailment and RDFS-entailment are both examples o f vocabulary 

entailment that capture the semantics o f RDF and RDFS. Entailment rules are inference 

patterns that define what RDF triples [114] can be inferred from the existing 

knowledge[l 15]. Horst [116] defines “R-entailment” as an entailment over an RDF graph 

based on a set of rules. It is an extension o f “RDFS entailment”, extending the meta­

modeling capabilities of RDFS. Horst defines pD* semantics in [117] as a weakened 

variant o f OWL Full. Then in [118] pD* semantics were extended to apply to a larger 

subset o f the OWL vocabulary. R-entailments incorporates pD* entailment. OWLIM [89,
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90] is the practical reasoner based on OWL Horst [116-118], Rule-based OWL reasoners 

are implemented based on the entailment rules, and the interpretation o f these entailment 

rules relies on the rule engine.

There are three categories o f  semantic reasoners that adopt the above inference 

methods respectively. The first category is the DL reasoner, such as Racer [119], Pellet 

[120, 121], fact++ [122] and hermiT [123], with the inference of these reasoners being 

implemented by the popular tableau algorithm or hypertableau [123]. The second 

category contains reasoners based on the homogeneous approach, such as rule-based 

reasoner OWLIM [89, 90], OWLJessKB [124], BaseVISor [125], Jena [98, 126],

Bossam [127], SweetRules [128], with the inference of these reasoners being based on 

the implementation o f entailments in a rule engine. For example: Jena relies on one 

forward chaining RETE engine and one tabled Datalog engine [129]. OWLIM [89, 90] 

cannot work without support o f TRREE. BaseVISor [125] and Bossam [127] are both 

RETE-based reasoners. The Datalog-driven reasoner Kaon2 [130, 131], which reduces a 

S~hfl£yx>> KB to a disjunctive Datalog program, and the F-Logic based reasoner F-OWL

[132] are both examples o f homogeneous approach besides rule-based reasoners. The 

third category contains hybrid reasoners based on the hybrid approach o f integration o f 

ontology and rules as described in Section 2.2.3, such as AL-Log [106, 107], HD-rules 

[108], NLP-DL [109], CARIN [110], dl-programs [111], r-hybrid KBs [112], DatalogDL 

[113], DLE [133, 134] and Minerva [92] with the inference o f  these reasoners being 

implemented by integration o f existing DL reasoner and with an existing rule engine.

DL reasoners have great performance on complex TBox reasoning, but they do 

not have scalable query answering capabilities that are necessary in applications with
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large ABoxes [ 135-137]. Rule-based reasoners are based on the implementation o f 

entailments in a rule engine. They have limited TBox reasoning completeness because 

they may not implement each entailment or they choose performance over completeness. 

TBox and ABox entailment rules are fired against ontological knowledge in Rule-based 

reasoners. Hybrid reasoners that integrate a DL reasoner and an existing rule engine can 

combine the strong points o f both sides.

An example o f such a hybrid reasoned is DLE [133, 134] which is a mixed 

framework combining the DL reasoning o f a DL reasoner and the forward-chaining 

reasoning of a rule-based reasoner. By using the efficient DL algorithms, DLE 

disengages the manipulation o f the TBox semantics from any incomplete entailment- 

based approach. And DLE also achieves faster application o f  the ABox related 

entailments and efficient memory usage[133]. However, there are three limitations in this 

framework:

1. It implements the materialization approach against the existing RDF graph based 

on the forward-chaining engine. With fast changing ontology and rules, DLE has 

to perform the materialization all over again, which makes some specific query 

and answering slower.

2. It does not implement the storage schema for more scalable ABox reasoning when 

the size o f ABox exceeds that o f main memory. It has only been tested in main 

memory, so the performance is limited due to scalability of rule-based reasoners.

3. It is based totally on the performance o f the rule-based reasoner on firing the 

entailments without any optimization.

It has also been mentioned in [133] that approaches described in [138] would
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increase the performance. Minerva [92] is also a scalable owl ontology storage and 

inference system, which combines a DL reasoner and a rule engine for ontology 

inference, materializing all inferred results into a database. It implements the 

materialization strategy like DLE.

Support of Custom Rules

With custom rules, users can compose rules to introduce new concepts, such as 

the definition o f a new property, into the structure o f  the TBox. Support o f  custom rules 

brings more flexibility into the reasoning systems. The combination o f ontologies and 

rules makes the support o f custom rules easier in terms o f the expressive power and 

inference. In other words, the combination supports custom rules more naturally. SWRL 

is a good example. Some reasoners support custom rules by combining the logic and 

inferencing o f SWRL to a differing extent, such as Racer, Pellet, hermiT, Bossam, 

SweetRules, Kaon2 and Ontobroker. SWRL is a system that follows the homogeneous 

approach o f combination o f ontologies and rules. Some reasoners support custom rules 

using their own rule formats based on the existing rule engine, such as Bossam, OWLIM, 

Jena, etc.

2.2.4 Scalability o f Semantic Store 

Storage Scheme

More and more semantic web applications contain large amounts o f data 

conforming to an ontology. How to store these large amounts of data and how to reason 

with them becomes a challenging issue for the research in fields of Semantic Web and 

Artificial Intelligence and many semantic web applications. Research has been 

conducted on the storage scheme and the improvement o f  reasoning methods for large
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I will first discuss the storage scheme and its implementation o f  different triple

stores.

Generally, there are two main kinds o f triple stores: native stores (employing 

conventional file systems) and database-based stores, using relational or object relational 

databases.

Examples o f native stores are OWLIM [89, 90], AllegroGraph [95], Sesame 

Native [140] ,Jena TDB [98, 126], HStar [97], Virtuoso [94].

AllegroGraph is a powerful graph-oriented database that can store pure RDF as 

well as any graph data-structure. The bulk o f an AllegroGraph RDFstore is composed o f 

assertions. Each assertion has five fields: subject (s), predicate (p), object (o), graph (g) 

and triple-id (i). The s, p, o, and g fields are strings o f  arbitrary size. AllegroGraph 

maintains a string dictionary which associates the unique string with a special number to 

prevent duplication. AllegroGraph creates indices which contain the assertions plus 

additional information to speed queries. AllegroGraph also keeps track o f all the deleted 

triples. All these features result in fast speed for load and update.[141]

OWLIM has two versions. The “standard” OWLIM version, referred to as 

OWLIM-Lite, uses in-memory reasoning and query evaluation. The persistence strategy 

o f this version is based on N-Triples. The indices o f  OWLIM-Lite are essentially hash 

tables. OWLIM-SE is an even more scalable not-in-memory version, which stores the 

contents o f the repository (including the “inferred closure”) in binary files with no need 

to parse, re-load and re-infer all the knowledge from scratch. OWLIM-SE uses sorted 

indices, which are seen as permanently stored ordered lists. OWLIM uses B+ trees to



32

index triples[139],

Jena TDB is a component of Jena for non-transactional native store and query. It 

is based on the file system. A TDB store consists o f three parts, the node table, triple and 

quad indexes and the prefixes table. The node table generally stores the representation o f 

RDF terms, and the node table provides two mappings. One is from Node to Nodeld, and 

the other is from Nodeld to Node. The default storage o f the node table for the Nodeld to 

Node mapping is a sequential access file, and that for Node to Nodeld mapping is a B+ 

Tree. Triples are used for the default graph and stored as 3-tuples o f Nodelds in triple 

indexes. Quads are used for named graphs and stored as 4-tuples. Each index has all the 

information about a triple. The prefixes table uses a node table and an index for GPU 

(Graph->Prefix->URI). And customized threaded B+ Trees are used in implementation 

o f many persistent data structures in TDB [142],

In the HStar data model, OWL data has been divided into three categories. The 

first category contains OWL Class, OWL Property and Individual Resource. The second 

category contains the relation between elements in the first category. The third category 

contains characters defined on the OWL Property. HStar designs a customized storage 

model following the categorization o f OWL data. It uses inner identifier OID instead o f 

URI of an entity. HStar stores the mapping from the URI o f an entity to its OID in global 

hash tables. Inheritance relations among Classes are stored in a tree structure Class Tree 

with a C-index for faster access to the data. The C-index is a B+ tree structure. 

Equivalence relations among Classes are stored in a B+ Tree and maintained in memory. 

Inheritance relations among Properties are stored in Property Tree. Equivalence relations 

among Classes are stored in a B+ Tree and maintained in memory. Inverse relations
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among Properties are stored as data members o f  nodes in Property Tree. Therefore, HStar 

organizes its triples according to the categorization o f different relationships and 

characteristics. Tree structures and lists are the main data structures that are used in the 

implementation o f storage. B+ trees are also used to index triples [97].

RDF data are stored as quads, such as graph, subject, predicate and object tuples 

in Virtuoso. All such quads are in one table, which may require different indexing 

depending on the query. Bitmap indices are adopted by Virtuoso to improve the space 

efficiency. When the graph is known, the default index layout is a GSPO (graph, subject, 

predicate and object) as the primary key and OPGS as a bitmap index. When the graph is 

left open, the recommended index layout is SPOG for primary key, OPGS, GPOS and 

POGS as bitmap indices [143, 144],

Representative database-based stores are: Jena SDB [98], Oracle 1 lg  R2 [91], 

Minerva [92], (Sesame + MySQL) [140], DLDB-OWL [93] and (Sesame+ PostgreSQL) 

[140]. They all take advantage of existing mature database technologies for persistent 

storage.

Comparing the native stores with database-based stores illustrates both their 

advantages and disadvantages. The advantage o f native stores is that they reduce the time 

for loading and updating data. However, a disadvantage o f native stores is that they are 

not able to make direct use o f the query optimization features in database systems. Native 

stores need to implement the functionality o f a relational database from the beginning, 

such as indexing, query optimization, and access control. As for database-based stores, 

the advantage is that they are able to make full use o f mature database technologies, 

especially query optimization while the disadvantage is that they may be slower in
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loading and updating data,

Reasoning over Large ABoxes

Due to the large size o f  instance data conformed to corresponding ontology in 

many knowledge bases, reasoning over large ABoxes has become an issue in the fields o f 

semantic web and description logics. There are two main kinds of approaches to dealing 

with this issue. The first approach includes designing novel algorithms, schemes and 

mechanisms that enhance the reasoning ability on large and expressive knowledge bases. 

The second approach adopts simplification by reducing the expressive power o f TBoxes 

describing large ABoxes.

In the first approach, Kaon2 has been shown to have better performance on 

knowledge bases with large ABoxes but with simple TBoxes [137] when compared with 

state-of-the-art DL reasoners such as Racer, FaCT++, and Pellet. One o f the novel 

techniques adopted in the implementation o f Kaon2 is reducing a SHIQ(D)knowledge 

base KB to a disjunctive Datalog program DD(KB) such that KB and DD(KB) entail the 

same set o f ground facts. There are three advantages and extensions based on this 

transformation. First, existing research on techniques and optimizations o f  disjunctive 

Datalog programs could be reused, such as magic set transformation [145]. Second, DL- 

safe rules are combined with disjunctive programs naturally by translating them into 

Datalog rules, which increases the expressive power of the logic. Third, in [146] an 

algorithm is developed for answering conjunctive queries in extended with DL-

safe rules efficiently based on the reduction to disjunctive Datalog.

A scalable ontology reasoning method by summarization and refinement has been 

applied in Sher [96], A summary o f the ontology, called a “summary ABox”, is used to
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reduce the reasoning to a small subset o f the original ABox, keeping the soundness and 

completeness [147], The main idea o f the method is to aggregate individuals that belong 

to the same concepts into the summary with all the necessary relations that preserve the 

consistency. Then queries are performed on the summary ABox rather than on the 

original ABox. Another process called refinement is used in determine the answers o f 

the queries by expanding the summary ABox to make it more precise. Dolby et al. 

claimed that the method o f summarization and refinement can also be treated as an 

optimization that any tableau reasoner can employ to achieve scalable ABox reasoning 

[148],

Guo et al. [149] have proposed a method that partitions a large and expressive 

ABox into small and comparatively independent components following the analyses o f 

the TBox. Thus, specific kinds o f  reasoning can be executed separately on each 

component and the final results are completed through collecting and combining the 

results from each small component. After the partition, large ABoxes can be processed by 

state-of-the-art in-memory reasoners.

In [150] Wandelt and Moller present another example of the first approach using 

the method of “role condensates”, which is a complete, but unsound approach to answer 

conjunctive queries in a proxy-like manner.

Using the second approach, Calvanese et al. [151, 152] have proposed a new 

Description logic, called DL-Lite, which is not only rich enough to capture basic 

ontology languages, but also requires low complexity o f reasoning. The expressive 

power of this description logic allows conjunctive query answering through standard 

database technology so that the query optimization strategies provided by current DBMSs
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can be used for the better performance. They concluded that this is the first result o f  

polynomial data complexity for query answering over DL knowledge bases.

Hom-SHIQ [153, 154] is an expressive fragment o f SHIQ and the Horn fragment 

o f first-order logic. It provides polynomial algorithms for satisfiability checking and 

conjunctive query answering on large ABoxes.

2.2.5 Benchmarks

Benchmarks evaluate and compare the performances o f  different reasoning 

systems. A number of popular RDF and OWL benchmarks exist to conduct evaluation o f 

performance over such variables as ABox size, TBox size, TBox complexity, and query 

response.

The SP2Bench SPARQL Performance Benchmark [155]has a scalable RDF data 

generator that creates DBLP-like data and a set of benchmark queries. SP2Bench has 

been applied to a number o f well-known existing engines including the Java engine ARQ 

on top o f Jena [156], SDB, Sesame and Virtuoso.

The Berlin SPARQL Benchmark(BSBM) [157] is also designed for comparison 

o f the query performance o f storage systems that expose SPARQL endpoints (i.e., a 

conformant SPARQL protocol service that enables users to query a knowledge base via 

the SPARQL language[158, 159]). BSBM simulates the realistic enterprise conditions 

and focuses on measuring SPARQL query performance against large amounts o f RDF 

data. It is built around an e-commerce use case with a benchmark dataset, a set o f 

benchmark queries and a query sequence. BSBM has been applied to a number of 

existing systems such as Virtuoso, Jena TDB, 4store [160], and OWLIM.

The Lehigh University Benchmark (LUBM) [161 ] is a widely used benchmark for
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evaluation of Semantic Web repositories with different reasoning capabilities and storage 

mechanisms. LUBM includes an ontology for university domain, scalable synthetic OWL 

data, fourteen extensional queries and performance metrics.

The University Ontology Benchmark (UOBM) [162] extends the LUBM 

benchmark in terms o f inference and scalability testing. UOBM adds a complete set o f  

OWL Lite and DL constructs in the ontologies for more thorough evaluation on inference 

capability. UOBM creates more effective instance links by enriching necessary properties 

and improves the instance generation methods for more evaluation on scalability.

Both LUBM and UOBM have been widely applied to the state o f  the art 

reasoning systems to show the performance regarding different aspects[161, 162],

Although more and more systems consider the existing benchmarks as a standard 

way to evaluate and highlight their performance, some researchers have challenged the 

coverage o f these benchmarks [163, 164], Weithoner et al. [163] discussed some new 

aspects of evaluation such as ontology serialization, TBox complexity, query caching, 

and dynamic ontology changes. They concluded that there is still no current single 

benchmark suite that can cover both traditional and new aspects, as well as no reasoner 

that is able to deal with large and complex ABoxes in a robust manner. A set o f 

requirement that is useful for the future benchmarking suites are given in the end.

2.2.6 Summary o f Major Reasoning Systems

Jena

Jena is a Java framework for Semantic Web applications that includes an API for 

RDF. It supports in-memory and persistent storage, a SPARQL query engine and a rule- 

based inference engine for RDFS and OWL. The rule-based reasoner implements both
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the RDFS and OWL reasoners. It provides forward and backward chaining and a hybrid 

execution model. It also provides ways to combine inferencing for RDFS/OWL with 

inferencing over custom rules. [98]

Pellet

Pellet is a free open-source Java-based reasoner supporting reasoning with the full 

expressive power of OWL-DL (S J-fO lN vr) in description logic terminology). It is a

great choice when sound and complete OWL DL reasoning is essential. It provides 

inference services such as consistency checking, concept satisfiability, classification and 

realization. Pellet also includes an optimized query engine capable o f answering ABox 

queries. DL-safe custom rules can be encoded in SWRL. [121]

Kaon2

Kaon2 is a free (free for non-commercial usage) Java reasoner including an API 

for programmatic management o f OWL-DL, SWRL, and F-Logic ontologies. It supports 

all o f OWL Lite and all features o f OWL-DL apart from nominal. It also has an 

implementation for answering conjunctive queries formulated using SPARQL. Much, 

but not all, o f the SPARQL specification is supported. SWRL is the way to support 

custom rules in Kaon2. [131]

Oracle l l g

As an RDF store, Oracle 1 lg  provides APIs that supports the Semantic Web. 

Oracle 1 lg  provides full support for native inference in the database for RDFS, RDFS++, 

OWLPRIME, OWL2RL, etc. Custom rules are called user-defined rules in Oracle l lg.  It 

uses forward chaining to perform inferencing. [91] In Oracle the custom rules are saved 

as records in tables.
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OWLIM

OWLIM is both a scalable semantic repository and reasoner that supports the 

semantics o f RDFS, OWL Horst and OWL 2 RL. OWLIM-Lite is a “standard” edition o f 

OWLIM for medium data volumes. It is the edition in which all the reasoning and query 

are performed in memory. [90] Custom rules are defined via rules and axiomatic triples. 

HermIT

HermiT is an efficient OWL reasoner based on a novel “hypertableau” reasoning 

algorithm. HermiT supports the semantics o f OWL2. Since version 1.1, HermiT supports 

reasoning with DL Safe rules added to the ontology if  there are no complex properties 

used in the rule bodies. [123]

2.2. 7  Limitations o f Existing Research

In order to implement an adaptive reasoning framework suitable for 

“ScienceWeb”, an efficient, complete and scalable reasoning system with support o f 

customs rules that can adapt to changes in the ontology, rules and instances is required.

As mentioned in Section 1.2.3, DL reasoners [119, 120, 122] have sufficient 

performance on complex TBox reasoning, but they do not have scalable query answering 

capabilities that are necessary in applications with large ABoxes. Rule-based OWL 

reasoners [89, 126] are based on the implementation of entailment rules in a rule engine. 

They have limited TBox reasoning completeness because they may not implement each 

entailment rule or they choose the performance instead of the completeness [133]. Hybrid 

reasoners [133, 165] that integrate a DL reasoner and a rule engine can combine the 

strong points o f both sides. However, to our best knowledge, existing hybrid reasoners do 

not deal with evolving knowledge bases.
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Forward-chaining and materialization, adopted in reasoning systems [89-93], is 

suitable for frequent, expensive computation o f answers with data that are relatively 

static. However, any change in the ontology, instances or custom rules requires complete 

re-processing before response to the new queries. And large amount o f  redundant data 

will be produced for large knowledge base, which may slow the performance o f loading 

and querying. Backward-chaining and query-rewriting, adopted in reasoning systems [94- 

96], is suitable for efficient computation o f  answers with data that are dynamic and 

infrequent queries. However, frequent, repeated queries will require repeated reasoning 

that is a waste o f  time. Reasonable adaptive hybrid approach would combine the strong 

points o f  both patterns for better performance under changing circumstances.

Persistent, external stores, either native stores or database-based stores, are 

necessary for a scalable reasoning system. Database-based stores may be slower in 

loading and updating data, but they are able to make full use o f mature database 

technologies, especially, query optimization. As for native stores, they are not able to 

make use o f the query optimization features in database systems. However, native stores 

reduce the time for loading and updating data greatly.

In this thesis I combine both forward-chaining and backward-chaining with 

support for persistent native stores for scalable reasoning. The purpose o f this 

combination is to develop a scalable reasoning system whose scalability and efficiency is 

able to meet the requirements of query and answering in a semantic web system when 

facing both a fixed knowledge base and an evolving knowledge base.
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CHAPTER 3 

ONTOLOGY REASONING SYSTEMS USING CUSTOM RULES

In ScienceWeb we will be able to answer questions that contain qualitative 

descriptors such as “groundbreaking”, ’’top researcher”, and “tenurable at university x” 

ScienceWeb is being built using ontologies, reasoning systems and custom based rules 

for the reasoning system. In this chapter, I will address the scalability issue for a variety 

o f supporting systems for ontologies and reasoning. In particular, I will discuss the 

impact o f  using custom inference rules that are needed when processing queries in 

ScienceWeb.

In this chapter, we evaluate the performance o f Jena, Pellet, KAON2, Oracle 1 lg  

and OWLIM using representative custom rules, including transitive and recursive rules, 

on top o f our ontology and LUBM [161]. In order to support custom rules, they do need 

to combine OWL inference and custom rule inference. These systems support custom 

rules in different formats and degrees. We will compare how the size o f the ABox and the 

distribution o f the ABox affect their inference performance for different samples o f 

custom rules. We also compare query performance and query cache effects.

The remainder o f  this chapter is organized as follows: In Section 3.1 we discuss 

the ontology for ScienceWeb, a data generator for it and compare the generator to 

existing benchmarks. In Section 3.2 we evaluate various reasoning systems on multiple 

benchmarks on standard queries. In Section 3.3 we describe the data sets, custom rules 

and queries to be used in the experiments given in Section 3.4. Conclusions are given in 

Section 3.5.
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3.1 Ontology Development and a Data Generator

3.1.1 Ontology Development

There have been a number o f  studies on reasoning systems using only their native 

logic. To provide credibility for our context, we used benchmark data from these studies, 

replicate their results with native logic, and then extend them by adding customized rules. 

I use LUBM [161] for comparing our results with earlier studies. The second set o f  data 

will emulate a future ScienceWeb. Since ScienceWeb at this time is only a plan, we need 

to use artificial data for experimentation.

Fig. 4 shows the limited ontology class tree we deem sufficient to explore the 

scalability issues. The ontology shown in Fig. 4 represents only a small subset o f the one 

to be used for ScienceWeb. It was derived to be a minimal subset that is sufficient to 

answer a few select qualitative queries. The queries were selected to test the full 

capabilities o f a reasoning system and to necessitate the addition o f customized rules.

3.1.2 Synthetic Data Generator

In support o f the performance analysis described above, a flexible system has 

been developed for generating a knowledge bases o f varying sizes to serve as 

benchmarks [166], This system is called “UnivGenerator” . The major challenge for this 

generator is to not only produce ontology-conformant data sets of the desired size, but to 

guarantee a plausible distribution for the many properties that relate objects across the 

knowledge base. Existing generators such as LUBM [161] tend to work within an 

aggregation tree (e.g., for a university object generate a number of departments, for each 

department generate a number o f faculty, for each faculty member generate a number o f
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papers authored by that faculty member). Obtaining reasonable distributions within such 

a tree is relatively straightforward. But when the domain expands to include other 

aggregation trees (e.g., for each publisher generate several journals, for each journal 

generate several papers) that must share objects with other aggregation trees, it is more of 

a challenge to maintain reasonable distributions for relations that span such trees (e.g., in 

how many different journals will a faculty member publish?) but such distributions are 

important to performance analysis o f reasoning systems involving such relations.

^  A  III
9  Non FundedProjec

i Faculseati;

#  AdjunctPrdesso

Fig. 4. Class tree o f  research community ontology
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3.1.3 Comparison of the ScienceWeb, LUBM and UOBM Ontologies

The LUBM, the UOBM and the ScienceWeb ontologies are all about concepts 

and relationships in a research community. For instance, concepts such as Faculty, 

Publication, and Organization are included in all ontologies, as are properties such as 

adv isor, p u b lic a t io n A u th o r ,  and worksFor. All the concepts o f  the LUBM can be 

found in the ScienceWeb ontology, albeit the exact name for classes and properties may 

not be same.

ScienceWeb will provide more detail for some classes. For example, the 

ScienceWeb ontology has a smaller granularity when it describes the classification and 

properties o f Publication. ScienceWeb provides more classes, for example, class 

ResearchFie ld  and class Projects. ScienceWeb also provides more properties for some 

classes, for example, isRankedAt and hasProjectCount, where isRankedAt is to 

hold rankings o f universities, and hasProjectCount is to hold the number o f  projects 

o f one university and one department. The addition o f the concepts o f research fields and 

projects, corresponding relationships and properties will make ScienceWeb more 

representative o f the real research community.

LUBM starts with a university and generates faculty members for that university. 

The advisor o f a student must be a faculty in the same university. The coauthors o f a 

paper must be in the same university. In ScienceWeb we generate data that reflect a more 

realistic situation where faculty can have advisors at different universities and, co-authors 

can be at different universities.

UOBM extends LUBM in terms o f inference and scalability testing. UOBM 

includes both OWL Lite and OWL DL ontologies for inference capability testing.
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Moreover, UOBM generates links between individuals from different universities for 

scalability testing. Table I shows a comparison o f the ScienceWeb, LUBM and UOBM 

including number o f classes, properties and individuals per university. Following the 

rules o f [162], the number o f classes and properties used to define ABox are denoted in 

the bracket.

TABLE I
C o m p a r i s o n  o f  S c ie n c e W e b ,  LUBM a n d  UOBM

Ontology+datasets ScienceWeb The LUBM The UOBM
OWL Lite OWL DL

No. o f  Classes 31(20) 43(22) 51(41) 69(59)
No. o f  Datatype 

Property 30(23) 7(3) 9(5) 9(5)

No. o f  Object 
Property 18(13) 25(14) 34(24) 34(24)

No. o f  Individuals 
in TBox 0 0 18 58

No. o f  Statements 
per University 3,400-7,000 90,000-

110,000
210,000-
250,000

220,000-
260,000

No. o f  Individuals 
per University 300-500 8,000-15,000

10,000-
20,000

10,000-
20,000

Table I illustrates the size o f LUBM ontology and how the LUBM synthetic data 

set scales up as we change the number o f universities. ScienceWeb tends to generate 

classes and relationships that are more suggestive o f  a real research community. The 

ScienceWeb ontology in Table I is a limited ontology that represents only a small subset 

o f the one to be used for ScienceWeb. It was derived to be a minimal subset that is 

sufficient to answer a few select qualitative queries.

3.2 Benchmark Study Using LUBM and UOBM

In this section, I replicate a benchmark study on LUBM and UOBM for the 

various reasoning systems under consideration. In the study, I employ the extensional
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queries contained in the benchmarks themselves.

LUBM contains scalable synthetic OWL data. Different size o f dataset can be 

generated for experiments. To identify the dataset, I use the following notation from 

paper [161] in the subsequent description: LUBM (N, S): The dataset that contains N 

universities beginning at UniversityO and is generated using a seed value o f  S.

The instance generator in UOBM can create instances according to user specified 

ontology (OWL Lite or OWL DL). In addition, the user can specify the size o f the 

generated instance data by setting the number o f universities to be constructed. UOBM 

contains 6 test datasets for experiments set up for various goals: Lite-1, Lite-5, Lite-10, 

DL-1, DL-5 and DL-10. We use the following notation to identify these test datasets in 

the subsequent description: UOBM (Lite/DL-N): The dataset that contains N universities 

and is conformed to OWL Lite/OWL DL.

Due to scalability limits, some of the reasoning systems, such as Jena and Pellet, 

are not able to answer queries on large datasets, I therefore collected experimental results 

only on the small dataset LUBM (0, 1). These are presented in Table II. There are 14 

extensional queries involved in this experiment.

In Table II, if  there is a time-out (one hour), we mark it with an “n/a”. Generally, 

most ontology reasoning systems have a reasonable performance except for Jena. Jena 

could not answer 7 out o f 14 queries and its answer to query 6 is incomplete. Pellet does 

not return answers for query 2 and query 9. OWLIM has poor performance for query 7 

and is not able to answer query 9 before time-out. Query 9 is more complicated than 

query 7. There are 2 constraints in query 7 while query 9 is featured by the most classes 

and properties in all the queries with 3 constraints. The complexity o f  a query does
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influence the querying performance o f OWLIM. Kaon2 and Oracle have the best overall 

performance.

TABLE II
Q u e r y  P e r f o r m a n c e  o n  LUBM ( 0 ,1) U n i t :  S e c o n d s

Jena PeUet Oracle Kaon2 OWLIM
qi n/a 4.6 0.5 0.4 0.1
q2 n/a n/a 0.9 0.5 0.1

q3 6.4 4.5 0.5 0.4 0.1
q4 354.2 4.5 1.5 0.6 0.1
qs n/a 4.8 0.8 0.6 0.4
q6 6.9 5.3 1.5 0.6 2.9
q7 . n/a 870 1.5 0.6 56.6
q8 n/a 684.1 2.7 1 7.3
q9 n/a n/a 95.8 0.7 n/a

qlO n/a n/a 0.8 0.6 0.1
q l l 191 4.6 0.6 0.4 0.2

q i2 6.2 5.8 0.7 0.6 0.1
q!3 208.5 4.7 0.6 0.6 0.1
q!4 6.8 5.3 1.4 0.4 1.7

The goal of our second experiment is to compare the reasoning systems in terms 

o f query performance and completeness and soundness o f the results using UOBM.

Again, due to scalability limits, some reasoning systems are not able to answer queries on 

large datasets. I therefore only present the experiment results on the small dataset UOBM 

(DL-1). These are shown in Table III and Table IV. 15 extensional queries are involved 

in this experiment.

In Table III, if  there is a time-out (one hour), we mark it with an “n/a”. OWLIM is 

the only one system that could answer all the queries. The completeness and soundness of 

results are shown in Table IV. Oracle also performs well with a success on 14 out o f 15 

queries.
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TABLE III
Q u e r y  P e r f o r m a n c e  o n  UOBM (DL-1) U n i t :  S e c o n d s

Jena PeUet Oracle Kaon2 OWLIM
q 1 n/a 9.9 1.8 n/a 0.2
q2 n/a 9.8 2 n/a 0.8
q3 n/a 10.2 0.8 n/a 0.4

q4 n/a n/a 1.1 n/a 0.5
q5 n/a 9.9 0.7 n/a 0.1

q6 n/a 10.9 0.8 n/a 0.2
q7 n/a 10.3 0.7 n/a 0.2
q8 n/a 15.2 0.8 n/a 0.2

q9 n/a 9.6 1 n/a 0.4
qlO n/a 9.3 0.6 n/a 0.1
q ll n/a 1446.1 6.6 n/a 2.9
q i2 n/a 11 1.3 n/a 0.4
q i3 n/a n/a 0.5 n/a 0.3
q l4 n/a 1725.7 2.4 n/a 2.2
q l 5 n/a 14.3 0.4 n/a 0.1

TABLE IV
C o m p l e t e n e s s  a n d  S o u n d n e s s  o f  Q u e r y  o n  UOBM (DL-1)

Jena Pellet Oracle Kaon2 OWLIM

qi n/a 32/32 32/32 n/a 32/32
q2 n/a 2512/2512 2512/2512 n/a 2512/2512
q3 n/a 666/666 666/666 n/a 666/666
q4 n/a n/a 383/383 n/a 383/383
q5 n/a 0/200 200/200 n/a 200/200
q6 n/a 165/165 165/165 n/a 165/165
q7 n/a 19/19 19/19 n/a 19/19
q8 n/a 303/303 303/303 n/a 303/303
q9 n/a 0/1057 1057/1057 n/a 1057/1057
qlO n/a 24/25 25/25 n/a 25/25
q l l n/a 934/953 953/953 n/a 953/953
qi2 n/a 65/65 65/65 n/a 65/65
qi3 n/a n/a 0/379 n/a 379/379
q l4 n/a 0/6643 6643/6643 n/a 6643/6643
qi5 n/a 0/0 0/0 n/a 0/0
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3.3 Ontology Data, Custom Rule Sets and Queries

The UnivGenerator that I described in Section 3.1.2 generates a specified number 

o f ontology triples within specific constraints. For instance, the user can specify that the 

number o f  publications o f  an associate professor ranges within 10-15 publications and the 

number o f co-authors ranges from 0-4. The generator will ensure that triples are 

generated within these constraints and will make sure that the relations, e.g. co-author, 

are properly instantiated. The size range o f the datasets in our experiments is listed in 

Table V. I generate 7 datasets for LUBM and 9 datasets for ScienceWeb, both ranges 

from thousand to millions for our experiment.

TABLE V 
S iz e  R a n g e  o f  D a t a s e t s  ( in  T r i p l e s )

Data

setl

Data

set2

Data

set3

Data

set4

Data

set5

Science
Web 3511 6728 13244 166163 332248

LUBM 8814 15438 34845 100838 624827

Data

set6

Data

set7

Data

set8

Data

set9

Science
Web 1327573 2656491 3653071 3983538

LUBM 1272870 2522900

I now present the 5 rule sets and 3 corresponding queries that I will use in the next 

set of experiments. Rule sets were defined to test basic reasoning to allow for validation, 

such as co-authors having to be different, and to allow for transitivity and recursion. Rule 

sets 1 and 2 are for the co-authorship relation, rule set three is used in queries for the
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genealogy o f PhD advisors (transitive) and rule set 4 is to enable queries for distinguished

advisors. Rule set 5 is a combination o f the first 4 sets.

Rule set 1: Co-author
a u th o rO f(? x , ?p )A auth orO f( Py, ?p)
=>coAuthor(?x, ?y)
Rule set 2: validated Co-author
au th o rO f(? x , ? p )A au th orO f(?y , ? p )A n otE qua l(? x , ?y)

=> coAuthorCPx, ?y)
Rule set 3: Research ancestor (transitive)
a d v is o rO f( ?x, ? y ) => re s e arch A n ces to r(? x , ?y)
researchA n cestor(P x , ? y )A research A n ces to r(? y , ?z)
= *  researchA n cesto r(? x , ?z)
Rule set 4: Distinguished advisor (recursive)
a d v is o rO f( ? x ,? y )A a d v is o rO f( ? x ,P z )A n o tE q u a l(? y ,  ?z)
AworksFor(?Xj ?u)
= *  d is t in g u is h A d v is o r (? x ,  ?u)

a d v is o rO f(? x ,  ? y )A d is t in g u is h A d v is o r (> y , Pu)AworksFor( ?x,?d) => 
d is t in g u is h A d v is o r (? X j  ?d)
Rule set 5: combination of above 4 rule sets.

In the Jena rules language, these rules are encoded as:

^ in c lu d e  <OWL>.
[ r u l e l :  (?x u n i:a u th o rO f  ?p) (?y u n ira u th o rO f  ?p) n o tE q u a l(? x ,? y )  
-> (? x  un i:coAuthor ?y)]
[ r u le 2 :  (?x u n i:a d v is o rO f  ?y) ->  (?x u n i:re search A n ce s to r  ?y )]  
[ r u le 3 :  (?x u n i: re search A n ce s to r  ? y )(? y  u n i : researchAncestor ?z)  
-> (? x  u n i:research A n cesto r  ? z )]
[ r u le 4 :  (?x u n i:a d v is o rO f  ?y) (?x u n i : adv iso rO f ?z 
notEqualCPy,?z) (?x un i:w orksFor ?u) ->  (?x 
u n i:d is t in g u is h A d v is o r  ? u ) ]
[ r u le 5 :  (?x u n i:a d v is o rO f  ?y) (?y  u n i :d is t in g u is h A d v is o r  ?u) (?x  
uni:worksFor ?d) ->  (?x u n i :d is t in g u is h A d v is o r  ?d)]

In SWRL these rules are less compact. Rule 1 would be encoded as:

< s w r l :V a r ia b le  r d f : ab o u t= "#x" />
< s w r l :V a r ia b le  r d f : ab o u t= "#y" />
<swr1 : V a r ia b le  r d f : a b o u t= " # p " />

<sw rl: Im p r d f :a b o u t= " r u le l ' '>
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< s w r l : head r d f : p a rs e T y p e = " C o lle c t io n " >
< s w r l : In d iv id u a lP ro p ertyA to m >

< s w r l :p ro p e r ty P re d ic a te  
r d f : resource="#coA uthor"/>

<sw rl:a rgum ent1 r d f : re s o u rc e = " # x " />
< s w r l : argument2 r d f : reso u rce= "#y" />

< / s w r l : In d iv id u a lP ro p ertyA to m >
< /s w rl:h e ad >
<sw rl:body rd f :p a rs e T y p e = " C o lle c t io n " >

< s w r l : In d iv id u a lP ro p ertyA to m >
< s w r l :p ro p e r ty P re d ic a te  

r d f : resou rce="#au thorO f" />
< s w rl:a rg u m e n tl  r d f : re s o u rc e = " # x " />
< s w r l : argument2 r d f : resou rce= "#p" />

< / s w r l : In d iv id u a lP ro p ertyA to m >
< s w rl: In d iv id u a lP ro p e rty A to m >

< s w r l :p ro p e r ty P re d ic a te  
r d f : resou rce="#au thorO f" />

< sw rl:a rg u m en tl  r d f : reso u rc e= "#y" />
<sw rl:argum ent2 r d f : resou rce= "#p" />

< / s w r l : In d iv id u a lP ro p ertyA to m >
< s w r l : D i f fe re n t In d iv id u a ls A to m >

< s w rl:a rg u m e n tl  r d f : reso u rc e= "#x" />  
<sw rl:argum ent2 r d f : reso u rce= "#y" />  

< /s w r l :D i f fe r e n t In d iv id u a ls A to m >
< / s w rl:b o d y>

< /s w r l : Imp>

In OWLIM, rulel would be encoded as:

Id :  r u l e l
x < u n i:a u th o rO f> p [C o n s tra in t  x != y ]
y < u n i:a u th o rO f> p [C o n s tra in t  y != x]

x <uni:coAuthor> y [C o n s tra in t  x != y ]

I have composed 3 queries to use in these tests, expressed in SPARQL notation:

Query 1: Co-author
PREFIX u n i :< h t tp : / /w w w .o w l-
o n to lo g ies  .com /O nto logyl)n ivers ityResearchM odel.ow l#>

http://www.owl-
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SELECT ?x ?y
WHERE {?x un i:coA uthor ?y. ?x uni:hasName 
\ " F u l lP r o fe s s o r 0 _ d 0 _ u 0 \” }
Query 2: Research ancestor 
PREFIX u n i : <h t tp : / /w w w .o w l-
on to lo g ies .co m /O n to lo g yU n ive rs ityR esearch M o d e l .owl#>
SELECT ?x ?y
WHERE {?x u n i:re search A n ce s to r  ?y. ?x uni:hasName 
\" F u l lP ro fe s s o r0 _ d 0 _ u 0 \” } ;
Query 3: Distinguished advisor 
PREFIX u n i :< h t tp : / /w w w .o w l-
on to lo g ies .co m /O n to lo g yU n ive rs ityR esearch M o d e l.o w l#>
SELECT ?x ?y
WHERE {?x u n i:d is t in g u is h A d v is o r  ?y. ?y u n i : h a s T i t le  
\"d ep artm en t0u 0 \"  >;

Queries are used with the rules sets that define the properties employed in the 

queries. Rule sets 1 and 2 are tested with query 1. Rule set 2 is tested with query 2. Rule 

sets 3 and 4 are tested with queries 2 and 3. Rule set 5 is tested with all queries.

3.4 Comparison of Reasoning Systems on Custom Rules

3.4.1 Experimental Environment and Metrics

The latest versions (as o f the date o f  these experiments, May 2010) o f OWL 

reasoning systems supporting custom rules have been chosen for the evaluation: Jena 

(2.6.2, 2009-10-22 release), KAON2 (2008-06-29 release), Pellet (2.2.0, 2010-07-06 

release), OWLIM (3.3, 2010-07-22 release), and Oracle l l g  R2 (11.2.0.1.0, 2009-09-01 

release). As I wanted to insure that I was obtaining results that were commensurate with 

the earlier benchmark studies, I have taken the two main metrics from[167]. These are:

• Setup time: This stage includes loading and preprocessing time before any query 

can be made. This includes loading the ontology and instance data into the 

reasoning system, and any parsing, inference that needs to be done.

http://www.owl-
http://www.owl-
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• Query processing time: This stage starts with parsing and executing the query and 

ends when all the results have been saved in the result set. It includes the time o f 

traversing the result set sequentially. For some systems (Jena, Pellet, Kaon) it 

might include some preprocessing work.

All the tests were performed on a PC with a 2.40 GHz Intel Xeon processor and 

16 G memory, running Windows Server 2008 R2 Enterprise. Sun Java 1.6.0 was used for 

Java-Based tools. The maximum heap size was set to 800M. I defined one hour as the 

time-out period.

3.4.2 Evaluation Procedure

Our goal is to evaluate the performance of different ontology reasoning systems in 

terms o f reasoning and querying time using custom rules.

I am interested in two aspects o f scalability. One aspect is simply the size o f data. 

That is, I am interested in the performance o f a system as the number o f triplet’s changes 

from small toy size to realistic sizes o f millions. A second aspect o f scalability I am 

interested is the expressive power o f reasoning. That is, I am interested what some o f the 

limits are in the type o f questions ScienceWeb users can ask. To that end, I will perform 

the experiments with the transitive rules where we have different limits on the transitive 

chain.

Finally I am interested in the impact o f  using realistic models o f the instance 

space (ScienceWeb) versus a simpler model (LUBM).

3.4.3 Comparison on Custom Rules 

Setup Time

I begin by comparing setup times for the five systems under investigation. The
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generated data sets contained thousands to millions o f  triples o f information. The setup 

time can be sensitive to the rules sets used for inferencing about the data because some 

rules require filters (e.g., “not equal”) and some rules express transitivity, or recursion.

All will consequently involve different ABox reasoning with different sizes and 

distributions o f ABoxes. Therefore, each system-ontology pair was examined using each 

o f the 5 rules sets.

Jena, Pellet and Kaon2 load the entire data set into memory when performing 

inferencing. For these systems, therefore, the maximum accepted size o f  the ABox 

depends on the size of memory. In our environment, Jena and Pellet could only provide 

inferencing for small ABoxes (less than 600,000 triples). Kaon2 was able to return 

answers for ABoxes o f up to 2 million triples. OWLIM and Oracle have better scalability 

because they are able to exploit external memory. They both are able to handle the largest 

data set posed, which is nearly 4 million triples. As the dataset grows, it turns out Oracle 

has the best scalability.

For smaller ABoxes (less than 2 million triples), Kaon2 usually has the best 

performance on setup time. However, as the size o f  the ABox grows past that point, only 

Oracle 1 lg  and OWLIM are able to finish the setup before time-out occurs.

The performances of these systems vary considerably, especially when the size of 

dataset grows. OWLIM performs better than Oracle 1 lg  on rule sets 1, 2 and 3. However, 

OWLIM is not good at rule set 4 with the ScienceWeb dataset. This appears to be 

because the ScienceWeb dataset involves more triples in the ABox inference for rule set 

4 than does the LUBM dataset. Thus, when large ABox inferencing is involved in set-up, 

Oracle 11 g performs better than OWLIM. Oracle 1 lg  needs to set a “filter” when



55

inserting rule set 2 into the database to implement “notEqual” function in this rule set. As 

the ABox grows, more data has to be filtered while creating the entailment. This filter 

significantly slows the performance. For LUBM, Oracle 11 g is not able to finish the setup 

for a one million triple ABox in one hour while OWLIM could finish in 100 seconds. 

Some data points are missing for larger size o f datasets because we cut off experiments 

lasting longer than an hour.

Query Processing Time

Based on our results, OWLIM has the best query performance in most datasets in 

our experiments, but this superiority is overtaken as the size o f dataset grows. Fig. 5 

shows the time required to process query 1 on the ScienceWeb dataset.
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Fig. 5. Query processing time o f  query 1 for ScienceWeb dataset

In actual use, one might expect that some inferencing results will be requested 

repeatedly as component steps in larger queries. If so, then the performance o f a
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reasoning system may be enhanced if such results are cached.

Next, we therefore record the processing time for single queries and the average 

processing time for repeated queries. The average processing time is computed by 

executing the query consecutively 10 times. The average query processing time has been 

divided by the single query processing time to detect how caching might affect query 

processing. Table VI shows the caching ratio between processing time o f  one single 

query and average processing time on ScienceWeb ontology for query 1. Based on our 

results, OWLIM is the only one that does not have a pronounced caching effect. The 

caching effect o f other systems becomes weaker as the size o f dataset grows.

TABLE VI
C a c h in g  R a t io s  b e t w e e n  P r o c e s s in g  T im e  o f  S in g l e  Q u e r y  a n d  A v e r a g e  P r o c e s s in g  T im e

o n  Sc i e n c e W e b  O n t o l o g y  f o r  Q u e r y

Data
sett

Data
set2

Data
set3

Data
set4

Data
set5

Data
set6

Data
set7

Data
set8

Data
set9

Jena 6.13 5.57 5.50 2.40 1.87

Pellet 6.03 5.48 4.91 1.56 1.32

Oracle 5.14 2.77 2.65 5.59 3.40 3.49 3.75 3.75 8.22

Kaon2 6.34 5.59 5.59 2.24 1.65 1.02 1.02

OWLIM 1.83 1.83 1.30 1.48 1.20 1.05 1.07 1.01 1.03

3.4.4 Comparison among Systems on Transitive Rule

I anticipate that many ScienceWeb queries will involve transitive or recursive 

chains o f inference, therefore, I next examine the behavior o f  the system on such chains 

of inference. Because the instance data for the LUBM and ScienceWeb ontologies may



not include sufficient long transitive chains, I created a group of separate instance files 

containing different number o f individuals that are related via the transitive rule in rule 

set 3.

As Fig. 6 and Fig. 7 show, Pellet only provides the results before time-out when 

the length o f transitive chain is 100. Jena’s performance degrades badly when the length 

is more than 200. Only Kaon2, OWLIM and Oracle 1 lg  could complete inference and 

querying on long transitive chains.

Kaon2 has the best performance in terms o f setup time, with OWLIM having the 

second best performance. For query processing time, OWLIM and Oracle have almost 

same performance in terms o f querying time. When the length of transitive chain grows 

from 500 to 1000, the querying time o f Kaon2 has a dramatic increase.
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Fig. 1. Setup time for transitive rule 

The comparison o f different semantic reasoning systems is shown in Table VII.
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TABLE VII
C o m p a r is o n  o f  D i f f e r e n t  S e m a n t ic  R e a s o n in g  Sy s t e m s

OWLIM
Kaon2 Pellet Jena SwiftOWLIM BigOWLIM Oracle

Supported 
expressive 
power for 
reasoning

SHIQ(D) SROIQ(D)
varies

by
reasoner

R-entailment, 
OWL 2 RL

OWL: 
union, 

intersection 
, OWL 2 

RL

Reasoning
algorithm

Resolutio 
n & 

Datalog
Tableau Rule-

based
Rule-based Rule-based N /A

In-memory
reasoning Yes Yes Y es Yes No No

Materializati­
on No Yes Yes Yes Y es Y es

Open-source N o Y es Y es No N o No
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Fig. 2. Query processing time after inference over transitive rule

3.5 Additional Techniques for Scalability

In this section, I explore the additional techniques for improving the scalability o f 

the ontology reasoner. I will present transformation o f RDFS rules [115] and OWL Horst 

fragments [116] for a given ontology such that reasoning will be more efficient. I will
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also provide techniques o f  loading RDF files by property during the reasoning process 

instead o f pre-loading them all.

3.6 Specialized Rule Sets

In order to improve the scalability o f  the ontology reasoning, I transform RDFS 

rules and OWL Horst fragments by incorporating the semantics of the ontology into the 

rules directly.

3.6.1 Description of the Transformation 

An example o f a rule is:

( x i  p i  y i )  ( x 2 P2 y 2 >  ( p i  P b 1 c i )  ( p 2 p b 2 c 2 )  - >  ( x i  p b 1 c i )  

where X i ,  x 2 ,  y i ,  y 2 ,  c i ,  c 2 j  p i ,  p 2 are variables, and pb1 P b2 are known 

properties.

The first step is to perform Tbox reasoning (reasoning about ontology class and 

property axioms).

The second step is to specialize the premises that are related to Tbox reasoning, 

such as ( p i  p b 1 C i )  ( p 2  p b 2 C 2 ) ,  which is to find all o f the facts in the knowledge 

base including inferred facts that make ( p i  p b 1 C i )  ( p 2 P b 2 c2) true.

All o f the matched triples that can make ( p i  p b 1 C i )  ( p 2 p b 2 C 2 )  true are:

( p i 1 Pb1 C i 1 )  ( P21 Pb2 C21)
( p i 2 Pb1 c i 2 )  ( p 22 p b2 c 22 )

( p i k Pb1 C i k )  ( p 2k pb2 c 2k )

where N>=k>=0 (we define N as the number o f triples in the storage).

The third step is to substitute the matched values into the original rule form to
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specialize the rule sets and remove the redundant premises.

The rule form turns into:

(x i p i1 y i)  (x 2 P21 y i)  -> (x i  pb1 c i1)
(x i p i2 y i)  (x 2 P21 y i)  -> (x i  pb1 c i2)

(x i p ik y i)  (x 2 P21 y 2 ) -> (x i  pb1 c ik)

3.6.2 Proof of Soundness and Completeness o f the Specialized Rule Sets

Given the description of our method, our goal is to prove the exact same triples 

will be inferred when firing the original rules and the specialized rules.

Soundness o f specialized rules: The new rule set will be sound iff all o f  the triples 

that could be inferred from the specialized rules will satisfy the original rules.

(p i1_pik) j (P 21-p 2k)> (C i1-Cik) and (C21-C2k) can make (p i pb1 Ci) (p 2 

pb2 C2 ) true.

All the triples inferred by

(x i p i1 y i)  (x 2 P21 y i )  -> (x i pb1 c i1)
(x i p i2 y i)  (X2 P22 y 2 ) -> (x i pb1 c i2)

(x i p ik y i ) (x 2 P2k y i  ) -> (x i pb1 c ik)

will make (xi pi y i ) ( x 2 P2 y 2 ) true. Thus

(x i pi y i ) ( x 2 p2 y 2 ) ( p i  Pb1 c i ) ( p 2 Pb2 c 2) 
is true.

Completeness of specialized ride forms: The new rule set will be complete iff all 

of the triples that could be inferred from the original rules could also be inferred from the 

specialized rules.

Suppose there is one triple set that makes (x i  pi y i)  (X2 P2 y 2 ) (p i Pb1
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C i )  ( p 2  P b 2 C 2 )  true but does not satisfy any of

( x i  p i 1 y i )  ( x 2 P 2 1 y 2 )

( x i  p i 2 y i )  ( x 2 P 2 2 yi )
n w H  «

( X i  P i k y i )  ( x 2 P 2 k y 2 >

Suppose the triple set is ( x i ®  p i ®  y i ® )  ( X2 ® P2® y 2 0 )  ( p i ®  P b 1 C i ® )  ( P 2 0

P b 2 c 20 ) .

Thus, ( x i ®  p i ®  y i ®  ) is true, ( x 2® P 2 0 y 2 ® )  is true, ( p i ®  p b 1 C i ® )  is true and 

( P 2 ®  P b 2 C 2 ® )  is true. Then ( p i ®  p b 1 C i ® )  ( p 2 ®  P b 2 c 2 ® )  is definitely true.

Because ( p i 1 - p i k ) ,  ( p 2 a - p 2 k ) ,  ( c i 1 - C i k )  and ( C 2 1 - C 2 k)  can make ( p i  p b 1 

C i )  ( p 2  P b 2 C 2 )  true, and these are all we can find, pi ® is among ( p i 1 - p i k )  and P 2 0 is 

among ( p 2 1 - p 2 k ) .

So, one of

( x i  p i 1 y i )  ( x 2 P 2 1 y 2 )

( x i  p i 2 y i )  ( x 2 P 2 2 y i )

( x i  p i k y i )  ( x 2 P 2 k y 2 )

would be true.

This contradicts our assumption that one triple set that makes ( X i  p i  y i )  (  X2  

P2  y 2 )  ( p i  P b1 C i )  (p 2 P b2 C 2 )  true but does not satisfy any o f

( x i  p i 1 y i )  ( x 2 P 2 1 y 2 )

( x i  p i 2 y i )  ( x 2 P 2 2 y i )

( x i  p i k y i )  ( x 2 P 2 k yi ) .
Thus, all o f the triples that are inferred by the original rules will also be inferred by the 

specialized rules.

3.6.3 Generalized Rule Form and Examples o f Specialized Rules

The following is a generalization o f the rule form in Section 3.6.1:
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(Xi  P i  y i )  ( x 2 P2 y 2 ) — (x«, p m y „ )  ( a i  p a* b i )  ( a 2 pa2 b 2) — ( a n p an b n ) 
( p i 1 Pb1 Cl)  ( P i 2 Pb2 C2). .. . . .(pik Pbk Ck) ->  (Xj Pa3/ P b 3 y j )

The same proof procedure can be applied to this general form to prove the identity

o f the original rules to the specialized rules.

Based on the description o f the transformation from original rules to specialized

rules, I present a sample o f  generated specialized rules in Table VIII. The prefix defined

for namespace is “ub”.

TABLE VIII
E x a m p l e s  o f  S p e c ia l iz e d  R u l e s

Original Rules Specialized Rules
(?x ub:worksFor ?y) ->  (?x ubrmemberOf ?y)

(?x ub:undergraduateDegreeFrom ?y) ->  (?x 
ubrdegreeFrom ?y)

(?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a 
?q?b)

(?x ubrmastersDegreeFrom ?y) -> (?x ubrdegreeFrom
?y)
(?x ub:doctoralDegreeFrom ?y) ->  (?x ub:degreeFrom
?y)
(?x ub.headOf ?y) -> (?x ubrworksFor ?y)

(?a rdfs:subPropertyOf ?b), (?b 
rdfs:subPropertyOf ?c) -> (?a 
rdfs:subPropertyOf ?c)

(?x ub:headOf ?y) -> (?x ub:memberOf ?y)

(?x ub:memberOf ?y) -> (?y ub:member ?x)

(?P owlrinverseOf ?Q), (?X ?P ?Y) -> (?Y ?Q (?x ub:member ?y) -> (?y ub:memberOf ?x)

?X) (?x ubrhasAlumnus ?y) -> (?y ubrdegreeFrom ?x)

(?x ubrdegreeFrom ?y) -> (?y ubrhasAlumnus ?x)

(?x rdfrtype ubrTechnicalReport) ->  (?x rdfrtype 
ubrArticle)

(?x rdfrtype ubrUniversity) -> (?x rdfrtype 
ubrOrganization)

(?x rdfsrsubClassOf ?y), (?a rdf:type ?x) -> (?a 
rdf:type ?y)

(?x rdfrtype ubrFullProfessor) -> (?x rdfrtype 
ub: Professor)

(?x rdfrtype ubrAdministrativeStaff) ->  (?x rdfrtype 
ubrEmployee)

(?x rdfrtype ubrChair) -> (?x rdfrtype ubrProfessor)

(?x rdfrtype ubrProfessor) -> (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrFaculty) -> (?x rdfrtype ubrEmployee)

(?x rdfrtype ubrManual) -> (?x rdfrtype ubrPublication)
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TABLE VIII (C o n t in u e d )

Original Rules Specialized Rules
(?x rdfrtype ubrJoumalArticle) ->  (?x rdfrtype 
ubrArticle)

(?x rdfrtype ubrCourse) -> (?x rdfrtype ubrWork)

(?x rdfrtype ubrUndergraduateStudent) ->  (?x rdfrtype 
ub: Student)

(?x rdfrtype ubrProgram) -> (?x rdfrtype 
ubrOrganization)

(?x rdfrtype ubrConferencePaper) ->  (?x rdfrtype 
ubrArticle)

(?x rdfrtype ubrSystemsStaff) -> (?x rdfrtype 
ubrAdministrativeStafT)

(?x rdfrtype ubrResearchGroup) ->  (?x rdfrtype 
ubrOrganization)

(?x rdfrtype ubrBook) -> (?x rdfrtype ubrPublication)

(?x rdfrtype ubrSpecification) -> (?x rdfrtype 
ubrPublication)

(?x rdfrtype ubrSoftware) -> (?x rdfrtype ubrPublication)

(?x rdfrtype ubrDepartment) -> (?x rdfrtype 
ubrOrganization)

(?x rdfsrsubClassOf ?y), (?a rdfrtype ?x) -> (?a 
rdfrtype ?y)

(?x rdfrtype ubrResearch) -> (?x rdfrtype ubrWork)

(?x rdfrtype ubrDean) -> (?x rdfrtype ubrProfessor)

(?x rdfrtype ubrAssociateProfessor) ->  (?x rdfrtype 
ubrProfessor)

(?x rdfrtype ubrLecturer) -> (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrResearchAssistant) ->  (?x rdfrtype 
ubrStudent)

(?x rdfrtype ubrCollege) -> (?x rdfrtype ubrOrganization)

(?x rdfrtype ubrPostDoc) -> (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrlnstitute) -> (?x rdfrtype 
ubrOrganization)

(?x rdfrtype ubrArticle) -> (?x rdfrtype ubrPublication)

(?x rdfrtype ubrUnofficialPublication) ->  (?x rdfrtype 
ubrPublication)

(?x rdfrtype ubrVisitingProfessor) -> (?x rdfrtype 
ubrProfessor)

(?x rdfrtype ubrGraduateCourse) -> (?x rdfrtype 
ubrCourse)

(?x rdfrtype ubrAssistantProfessor) ->  (?x rdfrtype 
ubrProfessor)

(?x rdfrtype ubrGraduateStudent) -> (?x rdfrtype 
ubrPerson)
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TABLE V fll (C o n t in u e d )

Original Rules Specialized Rules

(?x rdfsrsubClassOf ?y), (?a rdfrtype ?x) -> (?a 
rdf:type ?y)

(?x rdf:type ubrClericalStaff) -> (?x rdf:type 
ubrAdministrativeStaff)

(?x rdfrtype ub:SystemsStaff) -> (?x rdfrtype 
ubrEmployee)

(?x rdfrtype ubrClericalStaff) -> (?x rdfrtype 
ubrEmployee)

(?x rdfrtype ubrFullProfessor) -> (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrChair) ->  (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrDean) -> (?x rdfrtype ubrFaculty)

(?x rdfrtype ubrAssociateProfessor) -> (?x rdfrtype 
ubrFaculty)

(?x rdfrtype ubrVisitingProfessor) -> (?x rdfrtype 
ubrFaculty)

(?x rdfrtype ubrAssistantProfessor) -> (?x rdfrtype 
ubrFaculty)

(?x rdfrtype ubrTechnicalReport) ->  (?x rdfrtype 
ubrPublication)

(?x rdfrtype ubrJoumalArticle) ->  (?x rdfrtype 
ubrPublication)

(?x rdfrtype ubrConferencePaper) -> (?x rdfrtype 
ubrPublication)

(?x rdfrtype ubrFullProfessor) ->  (?x rdfrtype 
ubrEmployee)

(?x rdfrtype ubrChair) -> (?x rdfrtype ubrEmployee)

(?x rdfrtype ubrDean) -> (?x rdfrtype ubrEmployee)

(?x rdfrtype ubrAssociateProfessor) -> (?x rdfrtype 
ubrEmployee)

(?x rdfrtype ubrVisitingProfessor) -> (?x rdfrtype 
ubrEmployee)

(?x rdfrtype ubrAssistantProfessor) -> (?x rdfrtype 
ubrEmployee)

(?x rdfrtype ubrLecturer) -> (?x rdfrtype ubrEmployee)

(?x rdfrtype ubrPostDoc) -> (?x rdfrtype ubrEmployee)

(?x rdfrtype ubrGraduateCourse) ->  (?x rdfrtype 
ubrWork)

(?x ?p ?y), (?p rdfs:range ?c) -> (?y rdf:type 
?c)]

(?x ubraffiliatedOrganizationOf ?y) -> (?y rdfrtype 
ubrOrganization)

(?x ubrteacherOf ?y) -> (?y rdfrtype ubrCourse)

(?x ubradvisor ?y) -> (?y rdfrtype ubrProfessor)

(?x ubrsoftwareDocumentation ?y) -> (?y rdfrtype 
ubrPublication)

(?x ubrteachingAssistantOf ?y) -> (?y rdfrtype 
ubrCourse)
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TABLE VIII (C o n t in u e d )

Original Rules Specialized Rules
(?x ub:member ?y) ->  (?y rdfrtype ubrPerson)

(?x ubrresearchProject ?y) -> (?y rdfrtype ubrResearch)

(?x ubraffiliateOf ?y) -> (?y rdfrtype ubrPerson)

(?x ubrorgPublication ?y) -> (?y rdfrtype 
ubrPublication)

(?x ubrmastersDegreeFrom ?y) ->  (?y rdfrtype 
ubrUniversity)

(?x ubrdegreeFrom ?y) -> (?y rdfrtype ubrUniversity)

(?x ubrhasAlumnus ?y) -> (?y rdfrtype ubrPerson)

(?x ?p ?y), (?p rdfs:range ?c) -> (?y rdf:type ?c)] (?x ubrsubOrganizationOf ?y) -> (?y rdfrtype 
ubrOrganization)

(?x ubrpublicationResearch ?y) ->  (?y rdfrtype 
ubrResearch)

(?x ubrpublicationAuthor ?y) -> (?y rdfrtype 
ubrPerson)

(?x ubrundergraduateDegreeFrom ?y) -> (?y rdfrtype 
ubrUniversity)

(?x ubrdoctoralDegreeFrom ?y) -> (?y rdfrtype 
ubrUniversity)

(?x ubrlistedCourse ?y) -> (?y rdfrtype ubrCourse)

(?x ubrpublicationAuthor ?y) -> (?x rdfrtype 
ubrPublication)

(?x ubrundergraduateDegreeFrom ?y) -> (?x rdfrtype 
ubrPerson)

(?x ubrtelephone ?y) -> (?x rdfrtype ubrPerson)

(?x ubrdoctoralDegreeFrom ?y) -> (?x rdfrtype 
ubrPerson)

(?x ubrmastersDegreeFrom ?y) -> (?x rdfrtype 
ubrPerson)

(?x ubremailAddress ?y) -> (?x rdfrtype ubrPerson)

(?x ?p ?y), (?p rdfs:domain ?c) -> (?x rdf:type (?x ubradvisor ?y) ->  (?x rdfrtype ubrPerson)

?c) (?x ubrage ?y) -> (?x rdfrtype ubrPerson)

(?x ubrsoftwareVersion ?y) -> (?x rdfrtype 
ubrSoftware)

(?x ubrpublicationResearch ?y) -> (?x rdfrtype 
ubrPublication)

(?x ubraffiliateOf ?y) -> (?x rdfrtype ubrOrganization)

(?x ubrtitle ?y) -> (?x rdfrtype ubrPerson)

(?x ubraffiliatedOrganizationOf ?y) ->  (?x rdfrtype 
ubrOrganization)

(?x ubrorgPublication ?y) -> (?x rdfrtype 
ubrOrganization)
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TABLE VIII (C o n t in u e d )

Original Rules Specialized Rules

(?x ?p ?y), (?p rdfs:domain ?c) -> (?x rdf:type 
?c)

(?x ubiteacherOf ?y) -> (?x rdf:type ub:Faculty)

(?x ub:degreeFrom ?y) -> (?x rdfitype ub:Person)

(?x ubilistedCourse ?y) -> (?x rdfitype ubiSchedule)

(?x ubimember ?y) ->  (?x rdfitype ubiOrganization)

(?x ubihasAlumnus ?y) -> (?x rdfitype ub:University)

(?x ubitenured ?y) ->  (?x rdfitype ubiProfessor)

(?x ubiresearchProject ?y) -> (?x rdfitype 
ubiResearchGroup)

(?x ubisubOrganizationOf ?y) -> (?x rdfitype 
ubiOrganization)

(?x ubiteachingAssistantOf ?y) -> (?x rdfitype 
ubiTeachingAssistant)

(?x ubipublicationDate ?y) -> (?x rdfitype 
ubiPublication)

(?P rdf:type owl:TransitiveProperty), (?A ?P 
?B), (?B ?P ?C) -> (?A ?P ?C)

(?x ubisubOrganizationOf ?y) (?y 
ubisubOrganizationOf ?z) -> (?x 
ubisubOrganizationOf ?z)

3.6.4 Preliminary Evaluation of Jena Using the Specialized Rules

To present the effectiveness o f  the specialized rules, I evaluate the 14 queries 

provided by the LUBM using Jena on top o f  two rule sets. One rule set contains the 

original RDFS rules and OWL Horst fragments. The other rule set contains the 

specialized rules that capture the semantics from the LUBM ontology. The experiments 

are run in memory. So, considering the limits o f an in-memory test, I only employ two 

small datasets, LUBM (01) (one department o f  a university) and LUBM (1) (one 

university), of size 8820 and 100844 respectively, for the experiments. Jena supports 

three ways o f inferencing: forward-chaining, backward-chaining and a hybrid o f  these 

two methods. In this experiment, I select the hybrid mode o f  Jena, since it is the default 

mode and considered to be a performance tradeoff [129], The evaluation results are
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presented in Table IX.

TABLE IX
E v a l u a t io n  o f  J e n a  U s in g  t h e  S p e c ia l iz e d  R u l e s  a n d  O r ig in a l  R u l e s

Query 
Response time 

(ms) 
Specialized 

rules

Query 
Response 
time (ms) 

Original rules

Query Response 
time (ms) 

Specialized rules

Query Response 
time (ms) 

Original rules

LUBM (01) LUBM1
Query 1 757 5394 1381 406212
Query2 1552 1659 119176 243130
Query3 4 5 20 28
Query4 11 11 16 74583
Query5 67 171 105 954703
Query6 45 47 412 432

Query7 227 20375 27310 Out o f  Memory 
Error

Query8 101 118 838 1465351
Query9 7182 94411 15197259 >1 hour

Query 10 3 4 31 1507150
Query 11 1 3 5 995
Query 12 1 18 2 8465
Query 13 2 12 16 198
Query 14 23 24 102 286

As Table IX shows, for LUBM (01), Jena with the specialized rules has much 

better performance for query 1, query 5, query 7 and query 9. For the other queries, Jena 

with the specialized rules has similar performance as the original rules. For LUBM (1), 

Jena with specialized rules has much better performance for most o f the 14 queries except 

for query 3, query 6, query 13 and query 14. Jena with the original rules is not able to 

return answers in one hour (query 9) or terminates abnormally due to an “Out o f Memory 

Error” (query 7). In general, Jena with the specialized rules outperforms Jena with the 

original rules for both datasets.

All the results returned in the above experiments are sound and complete. In the
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above experiment, I have not taken the processing time for the transformation from the 

original rules into the specialized rules into account. This processing time will not affect 

the dramatic difference between the performance o f  the specialized rules and original 

rules especially significantly, particularly, as the size o f the dataset increases. There are 

two reasons. First, the transformation is a one-time job if  the ontology is stable, so the 

processing time can be distributed into each query response. Second, the transformation 

normally can be completed within seconds for LUBM as tested.

3.7 Discussions

One of the promises o f the evolving Semantic Web is that it will enable systems 

that can handle qualitative queries such as “good PhD advisors in data mining”. We have 

explored in this chapter the feasibility o f developing such a system using ontologies and 

reasoning system that can handle customized rules such as “validated co-author”.

When looking at more realistic models (ScienceWeb) than provided by LUBM 

serious issues arise when the size approaches millions o f triplets. For the most part, 

OWLIM and Oracle offer the best scalability for the kinds o f  datasets anticipated for 

ScienceWeb.

This scalability comes in part from heavy front-loading of the inferencing costs by 

pre-computing the entailed relationships at set-up time. This, in turn, has negative 

implications for evolving systems. One can tolerate high one-time costs that are needed to 

set up a reasoning system for a particular ontology and an instance set. If, however, the 

ontologies or rule sets evolve at a significant rate, then repeated incurrence o f these high 

setup cost is likely to be prohibitively expensive.

The times we obtained for some queries indicate that real-time queries over large
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triplet spaces will have to be limited in their scope unless one gives up on the answers 

being returned in real time. The question as to how we can specify what can be asked 

within a real-time system is an open one.
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CHAPTER 4 

OPTIMIZED QUERY-ANSWERING ALGORITHM

Interposing a backward chaining reasoner between a knowledge base and a query 

manager yields an architecture that can support reasoning in the face o f  frequent 

changes. However, such an interposition o f  the reasoning introduces uncertainty 

regarding the size and effort measurements typically exploited during query optimization. 

In this section, I present an algorithm for dynamic query optimization in such an 

architecture and experimental results confirming its effectiveness.

4.1 Dynamic Query Optimization

A query is typically posed as the conjunction o f a number o f clauses. In a 

traditional data base, each clause may denote a distinct probe o f the data base contents. 

Easily accessible information about the anticipated size and other characteristics o f such 

probes can be used to facilitate query optimization. The interposition o f a reasoner 

between the query handler and the underlying knowledge base means that not all clauses 

will be resolved by direct access to the knowledge base. Some will be handed off to the 

reasoner, and the size and other characteristics of the responses to such clauses cannot be 

easily predicted in advance. If the reasoner is associated with an ontology, however, it 

may be possible to relieve this problem by exploiting knowledge about the data types 

introduced in the ontology.

In this section, I describe an algorithm for resolving such queries using dynamic 

optimization based, in part, upon summary information associated with the ontology. I
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begin with the definitions o f the fundamental data types that we will be manipulating. 

Then I discuss the algorithm for answering a query. A running example is provided to 

make the process more understandable.

We model the knowledge base as a collection o f triples. A triple is a 3-tuple 

(x , p, y) where x, p, and y are URIs or constants and where p is generally interpreted as 

the identifier o f a property or predicate relating x and y. For example, a knowledge base 

might contains triples

(Jones, m a jo rs ln ,  CS), (S m ith ,  m a jo rs ln ,  CS),
(Doe, m a jo rs ln ,  M a th ) ,  (Jones, r e g is t e r e d ln ,  C a lc u lu s l ) ,  (Doe, 
r e g is t e r e d ln ,  C a lc u lu s l ) .

A Q u e ry P a tte rn  is a triple in which any o f  the three components can be

occupied by references to one o f a pool o f entities considered to be variables. In our

examples, we will denote variables with a leading ‘? \  For example, a query pattern

denoting the idea “Which students are registered in Calculusl?” could be shown as

( ? S tu d e n t , r e g is t e r e d ln ,C a lc u lu s l ) .
A query is a request for information about the contents of the knowledge base.

The input to a query is modeled as a sequence of Q u e ry P a tte rn s .  For example, a

query “What are the majors o f students registered in Calculusl?” could be represented as

the sequence o f two query patterns

[ ( PStudent, r e g is t e r e d l n ,C a l c u l u s l ) ,
(PStudent, m a jo rs ln ,  P M a jo r ) ] .

The output from a query will be a QueryResponse. A QueryResponse is a set

of functions mapping variables to values in which all elements (functions) in the set share

a common domain (i.e., map the same variables onto values). Mappings from the same

variables to values can be also referred to as variable bindings. For example, the

QueryResponse of query pattern (PS tudent, m a jo rs ln ,  PMajor) could be the set
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{{P S tudent => Dones, ?Major=>CS},
{PStudent => Sm ith , ?Major=>CS >,

{PStudent => Doe, ?Major=> Math } } .
The SolutionSpace is an intermediate state o f the solution during query

processing, consisting o f  a sequence of (preliminary) QueryResponses, each describing

a unique domain. For example, the Solu tionSpace of the query “What are the majors

of students registered in Calculusl?” that could be represented as the sequence o f two

query patterns as described above could first contain two QueryResponses:

[{{P S tu d en t  => Dones, ?Major=>CS},
{PStudent => Smith, ?Major=>CS } ,

{PStudent => Doe, ?Major=> Math } } ,
{{PStudent => D ones},{PStudent => Doe } } ]

Each QueryResponse is considered to express a constraint upon the universe

of possible solutions, with the actual solution being intersection of the constrained spaces.

An equivalent SolutionSpace is therefore:

[{{P S tu d en t => Dones, ?Major=>CS},
{PMajor => Math, PStudent = > D o e }} ] ,

Part o f the goal o f our algorithm is to eventually reduce the Solu tionSpace to a

single QueryResponse like this last one.

Fig. 8 describes the top-level algorithm for answering a query. A query is

answered by a process of progressively restricting the SolutionSpace by adding

variable bindings (in the form o f QueryResponses). The initial space with no bindings

O represents a completely unconstrained SolutionSpace. The input query consists o f

a sequence of query patterns.

We repeatedly estimate the response size for the remaining query patterns ©, and

choose the most restrictive pattern © to be considered next. We solve the chosen pattern

by backward chaining ©, and then merge the variable bindings obtained from backward
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chaining into the SolutionSpace © via the r e s t r i c t T o  function, which performs a 

(possibly deferred) join as described later in this section.

QueryResponse answerAQuery(query: Query)
{

/ /  Set up i n i t i a l  SolutionSpace 
SolutionSpace SolutionSpace = empty; O

/ /  Repeatedly reduce SolutionSpace by applying
/ /  the most r e s t r ic t iv e  pa tte rn
w hile  (unexplored patterns remain in  the query) {

computeEstimatesOfReponseSize (unexplored p a tte rn s ); ©  
QueryPattern p = unexplored p a tte rn  w ith  sm allest estim ate; ©

/ /  R e s tric t SolutionSpace v ia  exp lo ra tion  o f p 
QueryResponse answerToP = BackwardChain(p); ©
SolutionSpace.restrictTo(answ erToP); ©

>
return  so lu tio n S p ace .fin a lD o in () ; ®

>
Fig. 3. Answering a Query

When all query patterns have been processed, if the SolutionSpace has not 

been reduced to a single QueryResponse, we perform a final join o f these variable 

bindings into single one variable binding that contains all the variables involved in all the 

query patterns ©. The f  in a lD o in  function is described in detail later in this section.

The estimation o f response sizes in © can be carried out by a combination o f 1) 

exploiting the fact that each pattern represents that application of a predicate with known 

domain and range types. If these positions in the triple are occupied by variables, we can 

check to see if the variable is already bound in our SolutionSpace and to how many 

values it is bound. If it is unbound, we can estimate the size o f the domain (or range) 

type, 2) accumulating statistics on typical response sizes for previously encountered
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patterns involving that predicate. The effective mixture o f these sources o f information is 

a subject for future work.

For example, suppose there are 10,000 students, 500 courses, 50 faculty members 

and 10 departments in the knowledgebase. For the query pattern (?S takesCourse  

?C), the domain o f takesCourse is Student, while the range of takesCourse is 

Course. An estimate o f the numbers o f  triples matching the pattern (?S takesCourse  

?C) might be 100,000 if  the average number o f  courses a student has taken is ten, 

although the number o f possibilities is 500,000.

By using a greedy ordering © o f the patterns within a query, we hope to reduce 

the average size o f the SolutionSpaces. For example, suppose that we were interested 

in listing all cases where any student took multiple courses from a specific faculty 

member. We can represent this query as the sequence of the following patterns, shown in 

Table X with their estimated result size (the sizes are based on one o f our LUBM 

benchmark prototypes).

T A B L E  X
Q u e r y p a t t e n s  a n d  E s t im a t e d  R e s u l t  S ize

Clause # Query Pattern QueryResponse
1 ?S1 takesCourse ?C1 {(?S 1 =>Si,?C 1 =>q) } i= i.. i oo.ooo
2 ?S1 takesCourse ?C2 {(?Sl=>Sj, ?C2=>Cj)}j,|..ioo,o(X)
3 ?C1 taughtBy facl { (? C l= > C j)}j=,,.3

4 ?C2 taughtBy facl {(?C2=>Cj)}j=i..3

To illustrate the effect o f the greedy ordering, let us assume first that the patterns 

are processed in the order given. A trace o f the answerAQuery algorithm, showing one 

row for each iteration of the main loop would be in Table XI.
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TABLE XI
T r a c e  o f  J o in  o f  C l a u s e s  in  t h e  O r d e r  G iven

Clause Being Joined Resulting SolutionSpace
(in itia l) _□

1 f{ (? S l= > s , ?C  1 =>Ci)}i»i..ioo.oool

2
[{(?S l=>Si, ?C l=>Ci, ?C2=>Ci)(,=i .1,000.000] 
(based  o n  an  av e rag e  o f  10 cou rses p e r  student)

3 [{(?Sl=>Sj, 7Cl=>Ci, ?C2=>c,)},= !..900]
(Jo in ing  th is  c lau se  d isca rd s  co u rses  taught b y  o th e r facu lty .)

4 R (?S l= > S i, ?C l=>C j, ?C2=>Cj)}j=i..6ol

The worst case in terms o f storage size and in terms o f the size o f the sets being 

joined was at the join o f clause 2, when the join o f two sets o f  size 100,000 yielded

1,000,000 tuples, as shown in above Table XI.

Now, consider the effect o f applying the same patterns in ascending order o f 

estimated size, shown in above Table XII.

TABLE XII
T r a c e  o f  J o in  o f  C l a u s e s  in  A s c e n d in g  O r d e r  o f  E s t im a t e d  S i z e

Clause Being Joined Resulting SolutionSpace
(initial) []

3 [[{(?Cl=>Ci)}M..3]
4 [{(?C l=>ci, ?C2=>e,)}i-

1 [{(?Sl=>Si, I C l ^ ,  ?C2=>c’i)}j„..27o]

2 [{(?Sl=>Si, ?Cl=>Ci, ?C2=>c,)fi 1..60]

The worst case in terms of storage size and in terms o f the size o f the sets being 

joined was at the final addition o f clause 2, when a set o f size 100,000 was joined with a 

set o f 270. The reduction in space requirements and in time required to perform the join 

would be about an order o f magnitude.

The output from the backward chaining reasoner will be a query response. These
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must be merged into the current SolutionSpace as a set o f  additional restrictions. Fig. 

9 shows how this is done.

void S o lu tio n S p ace::res tric tT o  (QueryResponse newbinding)
{

fo r  each element oldBinding in  SolutionSpace 
{

i f  (newbinding shares va ria b le s  w ith  o ld b ind ing ){ O 
bool merged = jo in (new B inding,o ldB inding, f a ls e ) ;©  
i f  (merged) {

remove oldBinding fromsolutionSpace;
}

}
}
add newBinding to  SolutionSpace;

>
Fig. 4. Restricting a SolutionSpace

Each binding already in the SolutionSpace O  that shares at least one variable 

with the new binding ® is applied to the new binding, updating the new binding so that 

its domain is the union o f the sets o f variables in the old and new bindings and the 

specific functions represent the constrained cross-product (join) of the two. Any such old 

bindings so joined to the new one can then be discarded.

The join function at © returns the joined QueryResponse as an update o f its 

first parameter. The join operation is carried out as a hash jo in  [168] with an average 

complexity 0 ( nl+n2+m) where the n i  are the number o f tuples in the two input sets and 

m is the number o f tuples in the joined output.

The third (boolean) parameter o f the join call indicates whether the join is forced 

(true) or optional (false), and the boolean return value indicates whether an optional join 

was actually carried out. Our intent is to experiment in future versions with a dynamic
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decision to defer optional joins if a partial calculation of the join reveals that the output 

will far exceed the size o f the inputs, in hopes that a later query clause may significantly 

restrict the tuples that need to participate in this join.

As noted earlier, our interpretation o f  the SolutionSpace is that it denotes a set 

of potential bindings to variables, represented as the join o f an arbitrary number o f 

QueryResponses. The actual computation o f the join can be deferred, either because o f 

a dynamic size-based criterion as just described, or because o f  the requirement at © that 

joins be carried out immediately only if the input QueryResponses share at least one 

variable. In the absence o f any such sharing, a join would always result in an output size 

as long as the products o f its input sizes. Deferring such joins can help reduce the size o f 

the SolutionSpace and, as a consequence, the cost o f subsequent joins.

For example, suppose that we were processing a query to determine which 

mathematics courses are taken by computer science majors, represented as the sequence 

of the following Q ueryPatterns, shown with their estimated sizes in Table XIII.

TABLE X III  
QUERYPATTERNS AND THEIR ESTIMATED SIZES

Clause QueryPattern QueryResponse
1 (?S1 takesCourse ?C1) {(?S1 =>Sj,?Cl =>C,)} M..100,000
2 (?S1 memberOf CSDept) {(?Sl=>Sj)}j=i..i,ooo
3 (?C1 taughtby ?F1) {(?Cl=>ci, ?Fl=>f,)h-i....500
4 (?F1 worksFor MathDept) o7/<—

Ny

AII'W

To illustrate the effect o f deferring joins on responses that do not share variables, 

even with the greedy ordering discussed earlier, suppose, first, that we perform all joins 

immediately. Assuming the greedy ordering that we have already advocated, the trace o f
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the answerAQuery algorithm would be in Table XIV.

TABLE XIV
T r a c e  o f  J o in  o f  C l a u s e s  in  A s c e n d in g  O r d e r  o f  E s t im a t e d  S iz e

Clause
Being

Joined Resulting SolutionSpace

(in itia l) []
4 r{(?Fi=>fi)}=,..5oi
2 r{(?Fl=>fi, ?Sl=>Sj)li=i..5o.oool
3 [{(?F l=>fu ?S l=>Si, ?C 1 =>Ci)}i= i..i50.000I
1 [{(?Fl=>fi, ?Sl=>Si, ?Cl=>Ci)}i=i..1,000]

In the prototype from which this example is taken, the Math department teaches 

150 different courses and there are 1,000 students in the CS Dept. Consequently, the 

merge o f clause 3 (1,500 tuples) with the SolutionSpace then containing 50,000 tuples 

yields considerably fewer tuples than the product o f  the two input sizes.

The worst step in this trace was the final join, between sets o f size 100,000 and

150,000.

But consider that the join o f clause 2 in that trace was between sets that shared no 

variables. If  we defer such joins, then the first SolutionSpace would be retained “as 

is”. The resulting trace would be shown in Table XV.

TABLE XV 
T r a c e  o f  J o i n  o f  C l a u s e s  w i t h  D e f e r r i n g

Clause
Being

Joined Resulting SolutionSpace

(initial) []
4 f{(?Fl=>fi)li-l..5ol
2 n  (?F 1 =>fi)} i= 1 ..so, 1 (?S 1 =>Si) 1 i-1.. 1 .oool
3 rU?Fl=>f„ ?C 1 =>Ci) 1 i= 1..150 , f(?Sl=>Si)}F,j.oool
1 n(?F l=>fi, ?Sl=>Si, ?C l=>c,)rm .j .oooI
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The subsequent addition o f clause 3 results in an immediate join with only one o f 

the responses in the solution space. The response involving ?S1 remains deferred, as it 

shares no variables with the remaining clauses in the SolutionSpace.

The worst join performed would have been between sets of size 100,000 and 150, 

a considerable improvement over the non-deferred case.

QueryResponseSolutionSpace::finalJoin ( )
{

so rt the bindings in  th is  so lu tion  space in to  
descending order by number of tu p les ; O

QueryResponse re s u lt  = f i r s t  o f the sorted bindings; 
fo r  each remaining binding b in  SolutionSpace { 

jo in  ( re s u lt ,  b, t ru e );  ©
>
re tu rn  re s u lt;

}
Fig. 5. Final Join

When all clauses o f the original query have been processed (Fig. 8 ©), we may 

have deferred several joins because they involved unrelated variables or because they 

appeared to lead to a combinatorial explosion on their first attempt. The f  in a lD o in  

function shown in Fig. 10 is tasked with reducing the internal SolutionSpace to a 

single QueryResponse, carrying out any join operations that were deferred by the 

earlier r e s t r ic t T o  calls. In many ways, f i n a l J o i n  is a recap o f the answerAQuery 

and r e s t r ic t T o  functions, with two important differences:

• Although we still employ a greedy ordering © to reduce the join sizes, there is no need 

for estimated sizes because the actual sizes o f the input QueryResponses are known.
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• There is no longer an option to defer joins between QueryResponses that share no 

variables. All joins must be performed in this final stage© and so the “forced” 

parameter to the optional join function is set to true.

4.2 Evaluation of the Query-answering Algorithm

In this section I compare our answer AQuery algorithm of Fig. 8 against an 

existing system, Jena, that also answers queries via a combination o f an in-memory 

backward chaining reasoner with basic knowledge base retrievals.

The comparison was carried out using two LUBM benchmarks representing a 

knowledge base describing a single university and one with 10 universities. Prior to the 

application o f any reasoning, these benchmarks contained 100,839 and 1,272,871 triples, 

respectively.

I evaluated these using the set o f  14 queries taken from LUBM [161]. These 

queries involve properties associated with the LUBM university-world ontology, with 

none o f the custom properties/rules whose support is actually our end goal (as discussed 

in [5]). Answering these queries requires, in general, reasoning over rules associated with 

both RDFS and OWL semantics, though some queries can be answered purely on the 

basis o f the RDFS rules.

Table XVI compares our algorithm to the Jena system using a pure backward 

chaining reasoner. Jena’s system cannot process all o f the rules in the OWL semantics 

rule set, and was therefore run with a simpler rule set describing only the RDFS 

semantics. This discrepancy accounts for the differences in result size (# o f  tuples) for 

several queries. Result sizes in the table are expressed as the number o f tuples returned by 

the query and response times are given in seconds. An entry o f  n/a means that the query
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processing had not completed (after 1 hour).

Despite employing the larger and more complicated rule set, our algorithm 

generally ran faster than Jena, sometimes by multiple orders o f magnitude. The 

exceptions to this behavior are limited to queries with very small result set sizes or 

queries 10-13, which rely upon OWL semantics and so could not be answered correctly 

by Jena. In two queries (2 and 9), Jena timed out.

TABLE XVI
C o m p a r is o n  a g a in s t  J e n a  w it h  B a c k w a r d  C h a in in g

LUBM: 1 University, 100,839 triples 10 Universities, 1,272,871 triples
answerAQuery Jena Backwd answerAQuery Jena Backwd

response 
time (s)

result
size
(tuple)

response 
time (s)

result
size
(tuple)

response 
time (s)

result
size
(tuple)

response 
time (s)

result
size
(tuple)

Query 1 0.26 4 0.32 4 25. 4 0.86 4
Query2 0.49 0 130 0 0.69 0 n/a n/a
Query3 0.056 6 0.038 6 1.5 6 1.5 6
Query4 0.47 34 0.021 34 0.034 34 0.41 34
Query5 0.033 719 0.19 678 1.1 719 1.0 678
Query6 0.18 7,790 0.49 6,463 0.023 99,566 3.2 82,507
Query7 0.19 67 45 61 1.7 67 8100 61
Query8 0.54 7,790 0.91 6463 2.2 7,790 52 6,463
Query9 0.25 208 n/a n/a 2.7 2,540 n/a n/a
Query 10 0.14 4 0.54 0 2.4 4 1.4 0
Query 11 0.19 224 0.011 0 1.7 224 0.032 0
Query 12 0.22 15 0.0020 0 0.19 15 0.016 0
Query 13 0.028 1 0.37 0 0.34 33 0.89 0
Query 14 0.024 5,916 0.58 5,916 0.026 75,547 2.6 75,547

Jena also has a hybrid mode that combines backward chaining with some 

forward-style materialization. Table XVII shows a comparison of our algorithm with a 

pure backward chaining reasoner against the Jena hybrid mode [4], Again, an n/a entry 

indicates that the query processing had not completed within an hour, except in one case 

(query 8 in the 10 Universities benchmark) in which Jena failed due to exhausted
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memory space.

The times here tend to be someone closer, but the Jena system has even more 

difficulties returning any answer at all when working with the larger benchmark. Given 

that the difference between this and the prior table is that, in this case, some rules have 

already been materialized by Jena to yield, presumably, longer lists o f  tuples, steps taken 

to avoid possible combinatorial explosion in the resulting joins would be increasingly 

critical.

TABLE XVII 
C o m p a r i s o n  a g a i n s t  J e n a  w i t h  H y b r id  R e a s o n e r

LUBM 1 University, 100,839 triples 10 Universities, 1,272,871 triples
answerAQuery Jena Hybrid answerAQuery Jena Hybrid

response
time

result
size

response
time

result
size

response
time

result
size

response
time

result
size

Query 1 0.26 4 0.37 4 25. 4 0.93 4
Query2 0.49 0 1,400 0 0.69 0 n/a n/a
Query3 0.056 6 0.050 6 1.5 6 1.5 6
Query4 0.47 34 0.025 34 0.034 34 0.55 34
Query5 0.033 719 0.029 719 1.1 719 2.7 719
Query6 0.18 7,790 0.43 6,463 0.023 99,566 3.7 82,507
Query7 0.19 67 38 61 1.7 67 n/a n/a
Query8 0.54 7,790 2.3 6,463 2.2 7,790 n/a n/a
Query9 0.25 208 n/a n/a 2.7 2,540 n/a n/a

Query 10 0.14 4 0.62 0 2.4 4 1.6 0
Query 11 0.19 224 0.0010 0 1.7 224 0.08 0
Query 12 0.22 15 0.0010 0 0.19 15 0.016 0
Query 13 0.028 1 0.62 0 0.34 33 1.2 0
Query 14 0.024 5,916 0.72 5,916 0.026 75,547 2.5 75,547
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CHAPTER 5 

OPTIMIZED BACKWARD CHAINING ALGORITHM

In this chapter, I will introduce new optimization techniques to the backward- 

chaining. I will show that these techniques together with the query-optimization reported 

in Chapter 4, will allow us to outperform forward-chaining reasoners in scenarios where 

the knowledge base is subject to frequent change. Finally, I will analyze the impact o f 

these techniques on a large knowledge base that requires external storage.

5.1 Issues

When the knowledge base is small and dynamic, backward chaining is suitable 

for ontology reasoning. However, as the size o f  the knowledge base increases, standard 

backward chaining [8] do not scale well for ontology reasoning. In this section, I discuss 

issues that most standard backward chaining methods for ontology reasoning have.

5.1.1 Guaranteed Termination

Backward chaining is usually implemented by employing a depth-first search 

strategy. Unless methods are used to prevent it, the depth-first search could go into an 

infinite loop. For example, in the rule set we have used so far, we have rules that involve 

each other when proving their heads:

r u l e l :  (?P o w l: in v e rs e O f  ?Q) ->  (?Q o w l: in v e rs e O f  ?P) 

ru le 2 : (? P  o w l: in v e rs e O f  ?Q), (?X ?P ?Y) ->  (?Y ?Q ?X)

In order to prove body clause ?P o w l: in v e rs e O f ?Q in ru le l, we need to 

prove the body of rule2 first, because the head o f  rule2 matches body clause ?P
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o w l : in verseO f ?Q. In order to prove the first body clause ?P o w l : in v e rs e O f  ?Q 

in rule2, we also need to prove the body clause ?P o w l: in ve rseO f ?Q in ru le l, 

because the head o f rulel matches body clause ?P o w l: in ve rseO f ?Q.

Even in cases where depth-first search terminates, the performance may suffer 

due to time spent exploring, in depth, branches that ultimately do not lead to a proof.

5.1.2 The owl: sameAs Problem

The built-in OWL property o w l: sameAs links two equivalent individuals. An 

o w l: sameAs triple indicates that two linked individuals have the same “identity”. [169] 

An example of a rule in the OWL-Horst rule set that involves the o w l: sameAs relations 

is the ru le:“ (?x  ow l: sameAs ?y) (?x  ?p ?z) ->  (?y ?p ? z )”. Consider a

triple, which has m ow l: sameAs equivalents o f its subject, n ow l: sameAs equivalents 

o f its predicate, and k o w l: sameAs equivalents o f  its object, Then m*n*k triples would 

be derivable from that triple.

Reasoning with the o w l: sameAs relation can result in a multiplication o f the 

number o f instances o f variables during backward-chaining and expanded patterns in the 

result. As long as that triple is in the result set, all o f its equivalents would be in the result 

set as well. This adds cost to the reasoning process in both time and space.

5.2 The Algorithm

The purpose o f this algorithm is to generate a query response for a given query 

pattern based on a specific rule set. I use the following terminology.

The main algorithm calls the function BackwardChaining which finds a set of 

triples that can be unified with pattern with bindings in v a r L is t ,  any bindings to
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variables appearing in headClause from the head of an applied rule, b o d y l is t  and 

level that are reserved for solving the recursive problem. Given a Goal and corresponding 

matched triples, a QueryResponse is created and returned in the end.

The optimized BackwardChaining algorithm, described in Fig. 11, is based on 

conventional backward chaining algorithms [8].The s o lu t io n L is t  is a partial list o f  

solutions already found for a goal. For a goal that has already been resolved, we simply 

get the results from s o lu t io n L is t  O. For a goal that has not been resolved yet, we will 

seek a resolution by applying the rules © .W e initially search in the knowledge base to 

find triples that match the goal (triples in which the subject, predicate and object are 

compatible with the query pattern) ©. Then, we find rules with heads that match the 

input pattern ©. For each such rule we attempt to prove it by proving the body clauses 

(new goals) subject to bindings from already-resolved goals from the same body ©. The 

process o f proving one rule is explained below. The method o f “OLDT” [170] is adopted 

to solve the non-termination issue I mentioned in Section 5.3.3. Finally, we apply any 

“same as” relations to c a n d id a te T r ip le s  to solve the owl: sameAs problem®. 

During this process of “SameAsTripleSearch”, we add all equivalent triples to the 

existing results to produce complete results.

Fig. 12 shows how to prove one rule, which is a step in Fig. 11. The heart o f the 

algorithm is the loop through the clauses o f a rule body, attempting to prove each clause. 

Some form o f selection function is implied that selects the next unproven clause for 

consideration on each iteration. Traditionally, this would be left-to-right as the clauses are 

written in the rule. Instead, we order the body clauses by the number o f  free variables.

The rationale for this ordering will be discussed in the following Section 5.3.1.
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BackwardChaining(pattern, h e a d C la u s e ,b o d y lis t,le v e l,v a rL is t)
{

i f  (p a tte rn  not in  s o lu t io n L is t){  ®
candidateTriples+= matches to  p attern  th a t  are found in  

knowledge base; ©  
so lu tionL is t+=  mapping from patte rn  to  candidateTrip les; 
relatedRules = a l l  rules from ru le L is t  where the head matches 

the p a tte rn ; O 
realizedR ules = a l l  the ru les  in  re latedR ules w ith variab les  

substitu ted  w ith values from the p a tte rn  ; 
backupvarList = back up clone o f v a rL is t;  
fo r  (each oneRule in  rea lized R u les ){ ®

if(attem ptToProveRule(oneRule, v a rL is t , le v e l ) ) {  
re s u ltL is t=  unify(headClause, v a rL is t ) ;  
candidateTriples+= re s u ltL is t ;

}
oldCandidateTriples = t r ip le s  in  mappings from so lu tio n L is t  

such th a t headClause matches goal; 
i f  ( oldCandidateTriples not contain  cand id a teT rip les ){  

update so lu tio n L is t w ith  cand idateTrip les; 
if(U pdateafterU n ificationofH ead(headC lause, r e s u ltL is t ) )
{

newCandidateTriples = t r ip le s  in  mappings from 
so lu tio n L is t such th a t headClause matches goal; 

candidateTriples+= newCandidateTriples;
}

}
}

}
else  / *  i f  (s o lu tio n L is t.c o n ta in s (p a tte rn ))  * /  O

{
candidateTriples+= t r ip le s  in  mappings from so lu tio n L is t 

such th a t pattern  matches goal;
Add reasoning context, inc lud ing  head and bodyRest to  lookupList;

>
SameAsT ripleSearch(candidateT r ip le s ) © ;  
re turn  candidateTrip les;
>

Fig. 6. Process o f  BackwardChaining

The process of proving one goal (a body clause from a rule) is given in Fig. 13. 

Before we prove the body clauses (new goals) in each rule, the value o f a calculated
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dynamic threshold decides whether we perform the substitution or not. We substitute the 

free variables in the body clause with bindings from previously resolved goals from the 

same body. The step helps to improve the reasoning efficiency in terms o f  response time 

and scalability and will be discussed in Section 5.3.2. We call the BackwardChaining  

function to find a set of triples that can be unified with body clause (new goal) with 

substituted variables. Bindings will also be updated gradually following the proof o f  body 

clauses.

attem ptToP roveR ule(oneR ule,varL ist,level) { 
body = ru le  body o f oneRule;
sort body by ascending number o f f re e  va riab les ;  
head = ru le  head o f oneRule; 
fo r  (each bodyClause in  body)
{

canBeProven = attemptToProveBodyClause (
bodyClause, body, head, v a rL is t , le v e l) ;  

i f  ( ! canBeProven) break;
>
return  canBeProven;

}
Fig. 7. Process o f  proving one rule

5.3 Optimization Details and Discussion

There are four optimizations that have been introduced in the algorithm for 

backward chaining. These optimizations are: 1) the implementation o f the selection 

function, which implements the ordering o f the body clauses in one rule by the number of 

free variables, 2) the upgraded substitute function, which implements the substitution o f 

the free variables in the body clauses in one rule based on calculating a threshold that
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switches resolution methods, 3) the application o f OLDT and 4) solving o f the 

“owl:sameAs” problem. O f these, optimization 1 is an adaptation o f techniques employed 

in other reasoning contexts [171, 172] and optimizations 3 and 4 have appeared in [169, 

170] whereas technique 2 is new. 1 will describe the implementation details o f these 

optimizations below. A preliminary evaluation o f these techniques is reported in Section 

5.4. More extensive evaluations are reported in Section 5.5 and 5.6.

attemptToProveBodyClause(goal, body, head, v a rL is t , le v e l)
{

canBeProven = tru e ;
dthreshold = C alcu late  dynamic threshold;
p a tte rn L is t = get u n ified  patterns by rep lac ing  variab les  in  bodyClause 

from v a rL is t fo r  current le v e l w ith  ca lcu la ted  dthreshold; 
fo r(each  u n ified P atte rn  in  p a tte rn L is t ) { 

if ( !u n if ie d P a tte rn .is G ro u n d ())  {
bodyRest = unprocessedPartOf(body, g o a l);
triplesFrom Resolution+= BackwardChaining( u n ifie d P a tte rn , head, 

bodyRest, leve l+ 1 , v a rL is t ) ;
>
else if(u n ifie d P a tte rn .is G ro u n d Q ) {

i f  (knowledgeBase contains u n ifie d P a tte rn ){  
triplesFrom Resolution+= u n ified P a tte rn ;

}
}

>
if(tr ip le s F ro m R e s o lu tio n .s ize ()> 0 ) {

update_varList w ith v a rL is t, trip lesFrom R esolution, goal, and le v e l;  
i f  (v a rL is t= = n u ll) { 

canBeProven = fa ls e ;
>

}
e lse {

canBeProven = fa ls e ;
}
return  canBeProven;

}
Fig. 8. Process o f  proving one goal
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5.3.1 Ordered Selection Function

SLD resolution (Selective Linear Definite clause resolution) [173] is a variant o f  

linear resolution that is complete for Horn clauses and is commonly used in Prolog-like 

systems. It is also called "top-down" or "goal-directed". Rule based ontology reasoners 

involving backward chaining are mostly based on SLD Resolution [173], An example is 

QueryPIE [165] which performs backward chaining reasoning on large RDF databases 

with a hybrid algorithm and pre-computation. A second example is Jena [98] with a 

backward chaining engine that evaluates rules in a top-to-bottom, lefit-to-right order, as in 

SLD resolution. A third example is IRIS [174] which is a Datalog reasoner supporting 

top-down strategies like SLDNF (Selective Linear Definite-clause with Negation as 

Failure) with optimizations.

The selection function [175] in SLD resolution chooses which goal to prove next 

which impacts the size o f  the search space and the efficiency of evaluation [176], In the 

simplest case, the selection function can be specified by the order in which literals are 

written (left-to-right order), such as Prolog. Several reordering techniques can be found in 

related literature. In Inductive Logic Programming (ILP), two selection functions for 

SLD resolution have been implemented [172]: Smallest Predicate Domain (SPD- 

resolution for simplicity) and Smallest Variable Domain (SVD-resolution). SPD selects 

the literal with the fewest number o f solutions at each moment first. SVD binds the 

variable with the smallest domain with one o f its possible values. Reordering has also 

been applied in CLP program[ 171] and ASP Instantiation [ 177] to improve the 

efficiency. . The IRIS reasoner [174] re-orders the literals in a rule body to let the most 

restrictive literals appear first. The preferred order is: positive literals, built-ins, and
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negated literals. Reordering techniques has also been applied in query optimization [178- 

180]. The authors claim "A consequence o f the top-down strategy is that a query 

optimizer for first order queries should place literals that ground many variables as early 

as possible. Grounding variables decreases the non-determinacy of the literals that 

follow, which decreases execution time" [180].

What I focus on is backward reasoning for OWL Horst rules over a large 

knowledge base facing changes. The number o f  solutions o f  a goal is not directly 

available in the knowledge base. The timer to resolve each goal will depend on the size o f 

knowledge base and there are no obvious ways to estimate a-priori the time to resolve 

goals. Therefore, the reordering techniques discussed above cannot be applied to our 

backward reasoning directly. I propose a simple way o f implementing the selection 

function to support backward ontology reasoning on a large, changing knowledge base. I 

propose to select the next goal to be evaluated on the basis o f  the number o f  variables. To 

be specific, we choose to evaluate next the goal with the minimal number o f bound 

arguments.

The body o f a rule consists o f a conjunction o f multiple clauses. Traditional SLD 

(Selective Linear Definite) clause resolution systems such as Prolog would normally 

attempt these in left-to-right order, but, logically, we are free to attempt them in any 

order.

We expect that, given a rule under proof, ordering the body clauses into ascending 

order by the number o f free variables will help to decrease the reasoning time. For 

example, let us resolve the goal "?y n d f : typ e  S tudent" , and consider the rule: 

[ rd fs 3 :  (?x ?p ?y) (?p rd fs :ra n g e  ?c) -> (?y r d f : t y p e  ?c) ]
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The goal "?y r d f : ty p e  S tudent”  matches the head o f rule "?y r d f : ty p e  

?c” , and ?c is unified with Student.

If we select body clause "?x ?p ?y" to prove first, it will yield more than 5 

million (using LUBM(40) [161]) instances o f  clauses. The proof o f body clause "  ? x ? p 

?y” in backward chaining would take up to hours. Result bindings o f  "?p”  will be 

propagated to the next body clause “ ?p r d f  S : range ?c”  to yield new clauses (p i  

rd fs :ra n g e  S tu d e n t) ,  (p2 rd fs :ra n g e  S tu d e n t ) ,  ..., (p32 rd fs r ra n g e  

Student), and then a separate proof would be attempted for each o f these specialized 

forms.

If we select body clause "?p rd fs :  range S tu d en t” (?c is unified with 

Student) to prove first, it will yield zero (using LUBM(40)) instances o f clauses. The 

proof o f body clause "?p r d f s : range S tudent” would take up to seconds. No result 

bindings would be propagated to body clause "?x ?p ?y” . The process o f  proof 

terminates.

The body clause “ ?p r d f s : range ?c” has one free variable ?p while the body 

clause “ ?x ?p ?y” has three free variables. It is reasonable to prove body clause with 

fewer free variables first, and then propagate the result bindings to ?p to next body clause 

"?x  ?p ?y” . Mostly, goals with fewer free variables cost less time to be resolved than 

goals with more free variables, since fewer free variables means more bindings and body 

clauses with fewer free variables will match fewer triples.

5.3.2 Switching between Binding Propagation and Free Variable Resolution

Binding propagation and free variable resolution are two modes o f for dealing 

with conjunctions o f multiple goals. I claim that dynamic selection o f these two modes
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during the reasoning process will increase the efficiency in terms o f response time and 

scalability.

These modes differ in how they handle shared variables in successive clauses 

encountered while attempting to prove the body o f a rule. Suppose that we have a rule 

body containing clauses ( ?x p i  ? y ) a n d ( ? y  p2 ?z) (other patterns o f common 

variables are, o f  course, also possible) and that we have already proven that the first 

clause can be satisfied using value pairs { (x i, y i ) ,  (X2 , y 2 ) ,...(x n,yn)} .

In the binding propagation mode, the bindings from the earlier solutions are 

substituted into the upcoming clause to yield multiple instances of that clause as goals for 

subsequent proof. In the example given above, the value pairs from the proof o f  the first 

clause would be applied to the second clause to yield new clauses ( y l  p2 ? z ) , (y2 

p2 ? z ) , . . . ,  (yn  p2 ? z ) , and then a separate proof would be attempted for each o f 

these specialized forms. Any (y., z )  pairs obtained from these proofs would then be 

joined to the ( x ,y )  pairs from the first clause.

In the free variable resolution mode, a single proof is attempted o f the upcoming 

clause in its original form, with no restriction upon the free variables in that clause. In the 

example above, a single proof would be attempted o f  ( ?y p2 ?z), yielding a set o f 

pairs {(yn, Z i) , (yn+i,Z2 ) , . . .(y n+kJ Zk)}. The join o f this with the set {(Xi, y i) ,  

(X2  ̂y i ) }...( xn , yn )} would then be computed to describe the common solution o f both 

body clauses.

The binding propagation mode is used for most backward chaining systems [98]. 

There is a direct tradeoff o f multiple proofs o f narrower goals in binding propagation 

against a single proof o f a more general goal in free variable resolution. As the number of
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tuples that solve the first body clause grows, the number o f  new specialized forms o f the 

subsequent clauses will grow, leading to higher time and space cost overall. If the number 

of tuples from the earlier clauses is large enough, free variable resolution mode will be 

more efficient. (In the experimental results in Section 5.5 and Section 5 .6 ,1 will 

demonstrate that neither mode is uniformly faster across all problems.)

Following is an example (using LUBM(40)) showing one common way of 

handling shared variables between body clauses.

Suppose we have an earlier body clause 1: “ ?y ty p e  Course" and a 

subsequent body clause 2: "?x takesCourse ?y". These two clauses have the 

common variable ?y. In our experiments, it took 1.749 seconds to prove body clause 1 

while it took an average o f 0.235 seconds to prove body clause 2 for a given value o f ?y 

from the proof o f body clause 1. However, there were 86,361 students satisfying variable 

?x, which means it would take 0.235 *86,361=20,295 seconds to finish proof o f 86,361 

new clauses after applying value pairs from the proof of body clause 1. 20,295 seconds is 

not acceptable as query response time. We need to address this problem to improve 

reasoning efficiency in terms o f response time and scalability.

I propose to dynamically switch between modes based upon the size o f the partial 

solutions obtained so far. Let n denote the number o f  solutions that satisfy an already 

proven clause. Let t  denote the threshold used to dynamically select between modes. If n 

< t ,  then the binding propagation mode will be selected. If n> t, then the free variable 

resolution mode will be selected. The larger the threshold is, the more likely binding 

propagation mode will be selected.

Suppose that we have a rule body containing clauses ( a l  p i  b l )  (a2  p2
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b2). Let ( a l  p i  b l )  be the first clause, and (a2  b2 c 2 )  be the second clause, a i ,  

b i  and c i  ( i  £ [1,2]) could be free variable or concrete value. Assume that there is at 

least one common variable between two clauses.

In the binding propagation mode, the value pairs from the proof o f  the first clause 

would be applied to the second clause to yield new clauses (a 2 i  p2i b 2 i) ,  ( a 22 p22 

b22 ) , . . . , ( a 2n p2n c2n), and then a separate proof would be attempted for each o f 

these specialized forms. Any value sets obtained from these proofs would then be joined 

to the value sets from the first clause. Let j o i n i  denote the time spent on the join 

operations. Let proo f i 1 denote the time o f proving first clause with i  free variables and 

proo f 2  ̂be the average time o f proving new specialized form with j  free variables, ( i  

E [ l , 3 ] , j  £[0,2])

In the free variable resolution mode, a single proof is attempted of the upcoming 

clause in its original form, with no restriction upon the free variables in that clause. A 

single proof would be attempted o f (a2  p2 b2), yielding a set of value sets. The join o f 

the value sets yielded from the first clause and the values sets yielded from the second 

clause would then be computed to describe the common solution o f both body clauses.

Let join2 denote the time spent on the join operations. Let proof3k denote the time of 

proving second clause with k free variables (k £ [ 1,3]).

Determining t  is critical to switching between two modes. Let us compare the 

time spent on binding propagation mode and free variable resolution mode to determine 

t .  Binding propagation is favored when

proofi1 + proof2j * n + jo in i < proofi1 + pnoof3k + join2  

Isolating the term involving n,
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pro o f2 j *n < p ro o f i1 + p ro o f3 k + jo in 2  - p r o o f s  - j o i n i  

p ro o f 2:i *n < p ro o f3 k + j o i n 2 - j o i n i

j o i n i  is less than or equal to j o i n 2 , because the value sets from the second 

clause in the binding propagation mode have already been filtered by the value sets from 

the first clause first. The join operations in binding propagation mode are therefore a 

subset o f the join operations in free variable resolution mode. Let t  be the largest integer 

value such that

p ro o f2  ̂ * t < proof3k.

Then,

p ro o f 2? * t <= p r o o f 2j *n < p ro o f3 k + j o i n 2 - j o i n i .

We conclude that:

t  = f l o o r ( proof3k/  p ro o f2;i) (1)

Formula (1) provides thus a method for calculating the threshold t  that 

determines when to employ binding propagation. In that formula, k denotes the number 

o f free variables in the second clause ( a2 p2 b2 ), j  denotes the number o f free

variables o f the new specialized forms (a 2 i  p2i b2i) , ( a 22 p22 b2 2 ), ( a l n p2n

c2n) of the second clause with (k e  [1,3], j  G [0,2]).The specialized form o f the second 

clause has one or two less free variables than the original form. Hence the possible 

combinations o f (k , j )  are {(3,2),(3,1),(2,1),(2,0),(1,0)}.

To estimate p ro o f3k and p ro o f 2j , we record the time spent on proving goals 

with different numbers o f free variables. We separately keep a record o f the number o f 

goals that have one free variable, two free variables and three free variables after we start 

calling the optimized backwardChaining algorithm. We also record the time spent on



96

proving these goals. After we have recorded a sufficient number of proof times 

(experiments will give us an insight into what constitutes a ‘sufficient’ number), we 

compute the average time spent on goals with k free variables and j free variables 

respectively to obtain an estimate o f p ro o f 3k and proo f 2 .̂

In order to adopt accurate threshold to help improve the efficiency, we apply 

different thresholds to different situations with corresponding number o f  free variable set

( k , j ) .

We assign the initial value to t  from previous experiments in a particular 

knowledge base/query environment if  they exist or zero otherwise.

We update the threshold several times when answering a particular query. The 

threshold will change as different queries are being answered. For each query, we will 

call the optimized backward chaining algorithm recursively several times. Each call o f 

backwardChaining is given a specific goal as an input. During the running o f 

backwardChaining, the average time o f proving a goal as a function o f the number o f 

free variables will be updated after a goal has been proven. During the running of 

backwardChaining, every time before making selection between two modes the 

estimate threshold is updated before making the decision.

5.3.3 How to Avoid Repetition and Non-Termination

Given RDFS Rules [115], Horst rules [116] and custom rules [5] in the rule set 

and queries for answering, backward chaining for ontology reasoning may hit the same 

goals for several times. Some body clauses such as ?a r d f s : subClassOf ?b and ?x 

r d f s : subPropertyOf ?y appear in multiple rules in the Horst rule set that is used in 

many reasoning systems. During the process o f answering a given query, these rules
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containing the same body clauses might be necessary to be proved to answer the query. 

During the process o f answering a given query, some rules may be repeatedly called for 

more than one time, leading to proving the same body clause like 

?a r d f s : subClassOf ?b more than one time. Within the process o f  answering one 

query, such a repetition decreases the efficiency in terms o f  response time. Backward 

chaining with memorization will help to avoid repetition.

Backward chaining is implemented in Logic Programming [181] by SLD 

resolution [173], When we apply conventional backward chaining process to ontology 

reasoning, it has the same non-termination problem as SLD resolution does. During the 

proving process, the rule body needs to be satisfied to prove the goal. In some cases, the 

rule body requires proving goals that have the same property as the goal, resulting 

possibly in an infinite loop unless steps are taken to ensure termination.

For example:

[ r d fs 8 :  (?a r d f s : subClassOf ? b ),  (?b rd fs :s u b C lass O f ?c) -> (?a

rd fs :subC lassO f ? c) ]

is one rule in the RDFS rule set used for ontology reasoning. When we apply standard 

backward chaining to ontology reasoning, proving the head (?a r d f s : subClassOf 

?c) requires proving of the body (?a r d f  s : subClassOf ?b) and (?b 

r d f s : subClassOf ? c ). This loop will be infinite without applying any techniques.

I use an adaptation of the OLDT algorithm to solve this non-termination problem. 

The OLDT algorithm is an extension of the SLD-resolution [173] with a left to right 

computation rule. OLDT maintains a solution table and lookup table to solve the non­

termination problem.
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5.3.4 owl: sameAs Optimization

The “owl: sameAs” relation poses a  problem [169] for almost all the reasoning 

systems including forward chaining. In the reasoning system, we first pre-compute all 

possible o w l: sameAs pairs and save them to a sameAs table. Second, we select a 

representative node to represent an equivalence class of o w l: sameAs URIs. Third, we 

replace the equivalence class o f o w l: sameAs URIs with the representative node. At last, 

if  users want to return all the identical results, we populate the query response using the 

sameAs table by replacing the representative node with the URIs in the equivalence 

class.

As I described in Section 5.1, reasoning with the o w l: sameAs relation can result 

in a multiplication o f the number of instances o f  variables during backward-chaining and 

expanded patterns in the result. As long as that triple is in the result set, all o f  the 

members in its equivalence class would be in the result set as well. This adds cost to the 

reasoning process in both time and space. The optimization that applies pre-computation 

and selects a representative node improves the performance in terms o f  time and space.

This optimization is a novel adaptation o f o w l: sameAs optimization from 

forward chaining reasoning systems, such as OWLIM-SE [90] and Oracle [91], to 

backward chaining reasoning systems.

5.4 Evaluation of Optimized Backward Chaining

In the previous section, I discussed four optimizations that have been introduced 

in the optimized backward chaining algorithm: optimized selection function, dynamic 

switching between binding propagation mode and free variable resolution mode,



avoidance o f  repetition and non-termination (application o f  OLDT) and “owl: sameAs” 

optimization. In this section, I present experimental evidence of the effectiveness o f  the 

first two optimizations. I do not explore the effectiveness o f  OLDT as this is now well- 

established [170] although I apply the same idea o f this optimization to the backward 

chaining algorithm to avoid the explosion o f the size o f the search space. The benchmark 

I am using for the experiments in this thesis exclude all the “owl:sameAs” semantics.

The owl:sameAs optimization technique would work well with UOBM which includes 

the “owl:sameAs” semantics; experimentation on the use the technique is left for future 

work.

All the experiments in this section were performed on a PC with a 2.80 GHz Intel 

Core i7 processor and 8 G memory, running Windows 7 Enterprise. Sun Java 1.6.0 was 

used for Java-based tools. The maximum heap size was set to 512M. I checked all o f  our 

results for being complete and sound. All the timing results I present in this thesis except 

Section 5.5 are CPU times as the knowledge base is entirely in memory.

To evaluate the performance o f the clause selection function and the dynamic 

propagation selection, I evaluate the optimized backward chaining by turning these 

optimizations on and off individually and comparing runs with a technique turned on 

against runs with the technique turned off. In this section, I only present the scalability 

and response time of the optimized backward chaining algorithm when it runs in memory 

without any support o f external storage. I am aware that working in memory has 

limitations with respect to the size o f the knowledge base and the retrieved data. I will 

explore the efficiency of the optimized backward chaining algorithm with external triple 

storage in Section 5.5.
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5.4.1 Selection Function

Table XVIII compares the backward chaining algorithm with the clause selection 

based on free variable count to the traditional left-to-right selection on a relatively small 

knowledge base (100,839 triples), LUBM (l) [161]. Backward chaining with the ordered 

selection function yields considerably smaller query response times for all the queries 

than left-to-right.

TABLE XVIII
E v a l u a t i o n  o f  C l a u s e  S e l e c t i o n  O p t i m i z a t i o n  o n  LUBM(l)

Time (ms), 
Ordered

Time (ms), 
Left-to right

Result Size 
(triples)

Query 1 93 605,907 4
Query2 280 2,316,178 0
Query3 0 417,396 6
Query4 452 2,137,151 34
Query5 80 262,924 719
Query6 374 434,665 7,790
Query7 187 1,083,114 67
Query 8 514 2,032,895 7,790
Query9 171 1,322,701 208

Query 10 78 676,498 4
Query 11 213 571,540 224
Query 12 250 1,582,130 15
Query 13 24 424,931 1
Query 14 15 404,884 5,916

The difference becomes even more dramatic for a larger knowledge base 

(1,272,871 triples), LUBM(IO), as shown in Table XIX. With left-to-right selection, we 

are unable to answer any query within 30 minutes, and out-of-memory errors occur for 

almost half o f the queries. Were the knowledge base moved to external triple storage, the 

I/O time o f accessing the external triple storage would magnify the problem o f left-to- 

right selection.
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TABLE XIX
E v a l u a t io n  o f  C l a u s e  S e l e c t io n  O p t im iz a t io n  o n  LUBM (IO)

Tim e (m s), 
Ordered

Tim e (ms), 
Left-to right

Result Size  
(triples)

Query 1 343
OutOfMemoryError: Java 

heap space
4

Query2 1,060 >1.8*106 28
Query3 15 >1.8*106 6
Query4 858 >1.8*106 34
Query5 15 >1.8*106 719
Query6 1,170 OutOfMemoryError 99,566
Query7 1,341 OutOfMemoryError 67
Query8 1,684 OutOfMemoryError 7,790
Query9 1,591 OutOfMemoryError 2,540

Query 10 982 OutOfMemoryError 4
Query 11 93 >1.8*106 224
Query 12 109 >1.8*106 15
Query 13 0 >1.8*106 33
Query 14 156 >1.8*106 75,547

5.4.2 Dynamic Selection of Propagation Mode

I compare the backward chaining algorithm with three different modes o f 

resolving goals on LUBM(10) in Table XX. The first mode uses dynamic selection 

between binding propagation mode and free variable resolution mode. The second mode 

uses binding propagation mode only. The third mode uses free variable resolution mode 

only.

Table XX shows that neither binding propagation mode nor free variable 

resolution mode is uniformly better than the other on all cases. From query 1 to query5 

and query 11 to query 14, dynamic mode performs almost same as binding propagation 

mode. From query5 to query9, dynamic mode performs dramatically better than binding 

propagation mode with much less query response time. For query 1, query3 and queryl4 

only, dynamic mode performs almost same as free variable resolution mode. For the 

other queries, dynamic mode performs dramatically better than free variable resolution
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mode with much less query response time.

TABLE XX
E v a l u a t io n  o f  D y n a m ic  S e l e c t io n  v e r s u s  B in d in g  P r o p a g a t io n  a n d  F r e e  V a r ia b l e  M o d e s

ON LUBM(IO)

Time (ms), 
Dynamic 
selection

Time (ms), 
Binding propagation 

only

Time (ms), 
Free variable 

resolution only
Query 1 343 343 296
Query2 1,060 1,341 21,278
Query3 15 20 15
Query4 858 961 42,572
Query 5 15 16 22,323
Query6 1,170 592,944 19,968
Query7 1,341 551,822 20,217
Query8 1,684 513,773 40,061
Query9 1,591 524,787 20,841

Query 10 982 509,078 19,734
Query 11 93 109 19,141
Query 12 109 156 38,313
Query 13 0 10 21,528
Query 14 156 140 140

The query response times o f query6 to query 10 are less by orders o f  magnitude 

when running our algorithm with the dynamic selection mode in comparison compared to 

running with binding propagation mode only and free variable resolution mode only. In 

all cases the optimized version finishes faster than the better o f the other two versions. 

Overall, the results in Table XX confirm the advantage of dynamically selecting between 

propagation modes.

5.4.3 Overall Performance

In the semantic web, frequent changes in the underlying knowledge base happen 

because o f continuous harvesting o f new facts such as papers published. Less frequent 

will be changes in the underlying ontology or the rule set that governs the reasoning.
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Individuals might be changing rules rather frequently when they are trying to develop the 

best rules to describe a new concept they want to measure, or instance, ‘ground­

breaking’. Queries may be posted during the frequent changes. A backward chaining 

reasoner can handle a change to the knowledgebase without recourse to materialization as 

a forward chaining reasoner will have to do unless it is willing to provide potentially 

incomplete or simply wrong answers.

We are exploring the scenario o f responding to a query after a change to the 

knowledge base has occurred and that a forward chaining reasoner will do a new 

materialization to accommodate the change. I understand that different knowledge bases 

will encounter this scenario at different frequencies, depending on the rate at which 

changes occur. I also understand that forward chaining reasoners might be willing to wait 

and batch individual changes at the prize o f  incomplete answers for some queries (which 

may not happen during the period o f  accumulating the changes), However, for simplicity 

sake, we will perform the experiments under the assumption of immediate materialization 

and leave the modeling the dynamic nature o f  queries and changes over time for future 

work.

I compare the optimized backward chaining reasoner with OWLIM-SE [90], 

which is considered to be among the best performers on both scalability and response 

time. OWLIM-SE is a semantic reasoner that adopts the materialization (forward 

chaining) mechanism [90], I use the LUBM Benchmark dataset scaling from one 

university to 40 universities. The size of the benchmark dataset scales from 100,839 to 

5,307,754. There are altogether 14 queries in the benchmark. A semantic reasoner that 

adopts the materialization (forward chaining) mechanism would load datasets every time
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when a change occurs in the system.

TABLE XXI
O v e r a l l  C o m p a r i s o n  b e t w e e n  t h e  B a c k w a r d  C h a in i n g  R e a s o n e r  a n d  OWLIM-SE

LU B M H ) LUBM (40)
Time (m s), 

Opt. 
Backwd

Time (ms), 
OWLIM- 

SE

Time (ms), 
Opt. 

Backwd

Time (ms), 
OWLIM- 

SE
Loading

time 2,900 9,600 95,000 350,000

Query 1 260 27 1,400 26
Query2 490 3.4 9,100 5,100
Query3 56 1.0 36 2.5
Query4 470 8.4 5,900 14
Query5 33 59 15 41
Query6 180 240 43,000 5,300
Query7 190 4.4 51,000 54
Query8 540 460 57,000 3,000
Query9 250 63 87,000 4,400

QuerylO 140 0.10 51,000 0.60
Query 11 190 4.9 200 5.4
Query 12 220 1.0 3,600 11
Query 13 28 0.20 33 17
Query 14 24 23 1,200 2,500

In the Table XXI, for LUBM(l), we can see that the optimized backward 

chaining reasoner is close to the response time of OWLIM-SE, however, our loading 

time (initializing the knowledge base - in memory) is only about 1/3 o f  that o f  OWLIM- 

SE’s loading time (initialization and materialization). Thus, the backward chaining 

reasoner performs better than OWLIM-SE on LUBM(l) in cases where we anticipate 

frequent changes. For LUBM(40), from query6 to querylO, the response time o f  the 

optimized backward chaining reasoner is far more than OWLIM-SE, however, if  we take 

loading time for OWLIM-SE into consideration, the optimized reasoner still has a better 

performance.
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5.5 Evaluation with External Storage

In Section 5.3 and 5.4, assessing the effectiveness o f  the optimized reasoner 

[182], all our experiments were performed ‘in-memory’ which limited the study to a 

knowledge base o f  less than 10 Million triples.

In this section, I switch to implementations that use external storage for the 

knowledge base. I consider Jena SDB [183], Jena TDB [142] and OWLIM-SE [90]. I 

extend our study based on a knowledge base o f more than 10 Million triples.

The employment o f external storage introduces new factors and has implications 

on how to improve the scalability o f  the backward chaining reasoner. First, any 

optimization technique needs to balance the number o f accesses to data and the size o f 

the retrieved data against the size o f in-memory cache and its use. Second, the algorithm 

has to take now into account that it will take longer to access a triple (or a set o f triples) 

due to having to perform I/O. In-memory reasoners typically have a ‘model’ o f the 

knowledge base in which they store the facts and an API to access them. When an 

external storage is used they would provide transparent connections from the model to 

the external databases that would allow the reasoner to use the same API for accessing 

the model. This leads to a third factor effecting the scalability and performance o f the 

reasoner: the middleware that realizes the transparent linking.

Jena SDB provides persistent triple stores using relational databases. An SQL 

database is required for the storage and query o f triples for SDB. In this section, I use 

MySQL and PostgreSQL as the relational database for SDB. Jena TDB is claimed as a 

more scalable and faster triple store than SDB [183].A special Jena adapter permits 

access to OWLIM-SE repositories [90]. Reasoners can access all three storage systems
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via a common Jena API.

5.5. I Preliminary A nalysis

I begin by exploring the relative impact on overall performance o f the three major 

components o f the backward chaining reasoner, the middleware, and the storage system 

itself. The purpose of this analysis is to determine how much time we can save by 

improving any one of these subsystems in isolation.

I employed Jena SDB + MySQL as the external storage for the backward 

chaining reasoner in the experiment, evaluating the query response time o f 14 queries 

from LUMB [161] using LUBM(30).

A single function in the backward chaining algorithm implementation is 

responsible for all data retrievals from the triple store. We refer to this function as “the 

Data-retrieval function” in the remainder o f this section. We recorded the clock time Tf 

and CPU time t f  spent within the Data-retrieval function and in the whole query 

processing ( T t o t  and t t o t ,  respectively) in Table XXII.

The portion of the CPU and clock times spent in answering the query but not 

spent in the Data-retrieval function is attributable to the backward chaining reasoner:

Tbw — T to t  -  T f  

Tbw =  t t o t  _  t f

The clock time observed during the Data-retrieval function includes actual input 

operations on the underlying triple store, together with the CPU-intensive manipulation 

of the input data by the middleware layer. Assuming that the ratio, P =ttot/T tot, of CPU 

time to clock time observed over the processing o f an entire query would remain 

approximately constant during the middleware CPU, we were able to estimate the portion
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o f the Data-retrieval function clock time that was attributable to the middleware:

Tmid = P tm id

and can attribute the remaining clock time as the actual time spent doing I/O:

T io  =  T f  -  Tmid

Then we can estimate a minimal clock time to answer the query, assuming 100% 

CPU utilization, as

Tittin — tb w +  P Tmid +  T io

TABLE XXII
C l o c k  T im e , CPU T im e  a n d  I/O T im e  f r o m  E x p e r i m e n t s  w i t h  J e n a  SDB u s i n g  LUBM(30)

Total 
Clock 
time, 

Ttot (ms)

Total 
CPU 
Time, 

ttot (ms)

Clock 
time in 
Data- 

retrieval 
function, 

Tt(ms)

CPU 
time in 

I/O 
function, 

ti(ms)

Query 1 1405.00 951.00 920.00 546.00

Query2 9631.00 6084.00 5058.00 2293.00

Query3 203.00 78.00 109.00 31.00

Query4 35354.00 8096.00 31140.00 5070.00

Query5 173.00 78.00 94.00 15.00

Query6 23744.00 7035.00 19984.00 3712.00

Query7 24058.00 9984.00 18659.00 6333.00

Query8 28694.00 11029.00 22680.00 5896.00

Query9 29598.00 11700.00 23899.00 6988.00

QuerylO 18612.00 6630.00 15040.00 3572.00

Query 11 3636.00 561.00 2964.00 124.00

Query 12 7567.00 1903.00 5226.00 405.00

Query 13 187.00 46.00 95.00 0.00
Query 14 1873.00 811.00 1451.00 452.00



Table XXIII shows the values o f  these estimates, together with the percentage o f  

that value attributable to each o f the three components. In Table XXIII, the percentage of 

time spent in I/O operations ranges from 22% to 75%, a considerable variation. This 

might be because some retrievals from triple store retrieve huge numbers o f  triples while 

others are far more focused and process much less data.

TABLE XXIII
E s t im a t e d  I/O T i m e  a n d  I d e a l  P e r c e n t a g e s  f r o m  E x p e r im e n t s  w it h  J e n a  SDB U s in g

LUBM(30)

M in possible 
clock tim e to 

answer a 
query,Tmin 

(m s)

% o f  
Tmin 

spent 
in I/O

% o f  
Tm in  

spent in  
B W  chaining

% o f  
Tmin tim e 
spent in 

m iddleware

Query 1 1217.15 0.22 0.33 0.45

Query2 8376.00 0.27 0.45 0.27

Query3 125.00 0.38 0.38 0.25

Query4 32175.53 0.75 0.09 0.16

Query5 153.19 0.49 0.41 0.10
Query6 22818.84 0.69 0.15 0.16

Query7 19277.93 0.48 0.19 0.33

Query8 26801.04 0.59 0.19 0.22
Query9 27147.26 0.57 0.17 0.26

QuerylO 17497.60 0.62 0.17 0.20
Query 11 3334.32 0.83 0.13 0.04

Query 12 6496.09 0.71 0.23 0.06

Query 13 141.00 0.67 0.33 0.00
Query 14 1730.68 0.53 0.21 0.26

The percentage of the time devoted to the middleware ranges from 0% to 44%, 

with an average around 20%, indicating that the triple storage layer adds a significant 

component o f CPU time. The backward chaining code running on top o f that accounts for 

13 to 45% of minimal processing time, and the average is 25%.
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These percentages are surprisingly balanced, suggesting that improvements to any 

one of the three major components o f  the system can have only modest effect on the total 

time. Significant improvements will be possible only by improvement in all three areas. 

One possible avenue of exploration is changes to the reasoner that would not only speed 

up the reasoner but would affect the number and size of requests for input from the 

underlying store. Indirectly, at least, several o f  the optimizations I have proposed in 

Section 5.3 could have such an effect. Caching, an effect not explored in this experiment, 

could also have a major impact across all three areas.

5.5.2 Evaluation of the Optimization Techniques

In this section, I examine the impact o f the two major optimizations proposed in 

Section 5.3.

Ordered Selection Function

I replace the traditional left-to-right processing o f clauses within rule bodies by 

ordering by ascending number of free variables.

Table XXIV compares the backward chaining algorithm with the clause selection 

based on free variable count to the traditional left-to-right selection on a relatively small 

knowledge base (100,839 triples), LUBM (l) [161], stored in Jena TDB. Backward 

chaining with the ordered selection function yields considerably smaller query response 

times for all the queries than left-to-right. The I/O time o f accessing the external triple 

storage magnifies the problem of left-to-right selection compared to [182] because the 

knowledge base is in external triple storage TDB now.
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TABLE XXIV
E v a l u a t i o n  o f  C l a u s e  S e l e c t i o n  O p t i m i z a t i o n  o n  LUBM(l) U s in g  TDB a s  E x t e r n a l

St o r a g e

Time (m s), 
Ordered

Time (m s), 
Left-to right

Result Size 
(triples)

Query 1 296 >6.0*105 4
Query 2 811 >6.0*105 0
Query3 46 >6.0*105 6
Query4 1419 >6.0*105 34
Query5 31 >6.0*105 719
Query6 265 >6.0*105 7,790
Query7 234 >6.0*105 67
Query8 483 >6.0*105 7,790
Query9 202 >6.0*105 208

QuerylO 156 >6.0*105 4
Query 11 218 >6.0*105 224
Query 12 202 >6.0*105 15
Query 13 15 >6.0*105 1
Query 14 31 >6.0*105 5,916

The difference becomes even more dramatic for a larger knowledge base 

(1,272,871 triples), LUBM(IO) stored in Jena TDB, as shown in Table XXV. With left- 

to-right selection, we are unable to answer any query within 30 minutes, and out-of- 

memory errors occur for almost half o f  the queries. The I/O time o f accessing the 

external triple storage magnifies the problem of left-to-right selection compared to [182] 

because the knowledge base is in external triple storage TDB now.

Switching between Binding Propagation and Free Variable Resolution

Binding propagation and free variable resolution are two modes for dealing with 

conjunctions o f multiple goals. I have proposed dynamic selection o f these two modes 

during the reasoning process to increase the efficiency in terms of response time and 

scalability.

I compare the backward chaining algorithm with three different modes of 

resolving goals on LUBM(IO) stored in Jena TDB in Table XXVI. The first mode uses
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dynamic selection between binding propagation mode and free variable resolution mode. 

The second mode uses binding propagation mode only. The third mode uses free variable 

resolution mode only.

TABLE XXV
E v a l u a t i o n  o f  C l a u s e  S e l e c t i o n  O p t i m i z a t i o n  o n  LUBM(IO) U s in g  TDB a s  E x t e r n a l

St o r a g e

Time (ms), 
Ordered

Time (ms), 
Left-to right

Result
Size

(triples)
Query 1 1045 OutOfMemoryError: 

Java heap space
4

Query2 2433 >2.0*106 28
Query3 31 >2.0*106 6
Query4 3744 >2.0*106 34
Query5 15 >2.0*106 719
Query6 1435 OutOfMemoryError 99,566
Query7 1903 OutOfMemoryError 67
Query8 2106 OutOfMemoryError 7,790
Query9 1918 OutOfMemoryError 2,540

QuerylO 1138 OutOfMemoryError 4
Query 11 140 >2.0*106 224
Query 12 358 >2.0*106 15
Query 13 15 >2.0*106 33
Query 14 187 >2.0*106 75,547

Table XXVI shows that neither binding propagation mode nor free variable 

resolution mode is uniformly better than the other on all cases. From query 1 to query 5 

and in query 13, dynamic mode performs almost same as binding propagation mode. 

From query 6 to query 10, dynamic mode performs dramatically better than binding 

propagation mode with much less query response time. For query 11, query 12 and query 

14, dynamic mode performs better than binding propagation mode with less query 

response time. For query 1, query3 and query 14 only, dynamic mode performs almost 

same as free variable resolution mode. For the other queries, dynamic mode performs 

dramatically better than free variable resolution mode with much less query response



time. The query response times o f query6 to querylO are less by orders o f  magnitude 

when running the algorithm with the dynamic selection mode in comparison compared to 

running with binding propagation mode only and free variable resolution mode only. In 

all cases the optimized version finishes faster than the better o f the other two versions.

TABLE XXVI
E v a l u a t i o n  o f  D y n a m ic  S e l e c t i o n  v e r s u s  B in d in g  P r o p a g a t i o n  a n d  F r e e  V a r i a b l e  M o d e s  

o n  LUBM(IO) U s in g  T D B  a s  E x t e r n a l  S t o r a g e

Time (ms), 
Dynamic 
selection

Time (ms), 
Binding 

propagation 
only

Time (ms), 
Free 

variable 
resolution 

only
Query 1 1045 904 904
Query2 2433 2683 26535
Query3 31 15 15
Query4 3744 4149 41605
Query5 15 15 2244810
Query6 1435 >6.0*105 20514
Query7 1903 >6.0*105 20763
Query8 2106 >6.0*105 42831
Query9 1918 >6.0*105 21512

QuerylO 1138 >6.0*105 19921
Query 11 140 904 19094
Query 12 358 1435 41745
Query 13 15 31 24117
Query 14 187 1154 187

Overall, the results in Table XXVI confirm the advantage o f dynamically 

selecting between propagation modes. The I/O time o f accessing the external triple 

storage magnifies the problem of binding propagation mode only and free variable 

resolution mode only compared to [ 182] because the knowledge base are in external 

triple storage TDB now. The selection o f the threshold in dynamic mode is affected by 

the employment o f external storage and affects the number o f  accesses to store.
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Storage System Impact

To explore the effect o f  switching the underlying storage manager, I compared 

three external storage methods employed in the optimized backward chaining reasoner 

with regard to I/O time. For all 14 queries from LUBM, the three storage managers SDB, 

TDB and OWLIM-SE, all have the same number o f  accesses (calls to the Data-retrieval 

function) to the underlying store.

I show in Table XXVII the I/O time per access for SDB, TDB and OWLIM-SE 

using LUBM(50) which has 6,890,640 triples. The I/O time per store access o f  SDB is 

dramatically longer than both TDB and OWLIM-SE through all 14 queries in LUBM. 

From query 1 to 5 and query 13, the I/O time per store access of TDB is slightly longer 

than OWLIM-SE. For the other queries, TDB has shorter I/O time per store access. In 

general, TDB and OWLIM-SE have similar performance in terms o f I/O time.

TABLE XXVII
C o m p a r i s o n  a m o n g  SDB, TDB a n d  OWLIM-SE a s  E x t e r n a l  S t o r a g e  o n  I/O T im e  p e r  S t o r e

A c c e s s  o n  LUBM(50)

Time
(ms),
SDB+

PostgreS
QL

Time
(ms),
TDB

Time
(ms),

OWLIM-
SE

#of 
Number 
of access 
to store

Query 1 41.42 2.32 0.70 132
Query2 50.76 0.48 0.35 353
Query3 1.63 0.42 0.28 65
Query4 82.38 0.38 0.14 455
Query5 1.57 0.36 0.20 81
Query6 298.74 0.67 5.12 153
Query7 237.69 0.13 0.52 286
Query 8 72.24 0.07 0.43 917
Query9 221.45 0.02 0.17 351

QuerylO 223.33 0.07 0.14 218
Query 11 2.08 0.05 0.12 616
Query 12 2.07 0.03 0.10 2792
Query 13 1.28 0.21 0.13 86
Query 14 111.76 0.03 0.22 67
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Overall Performance

Finally, I consider the overall performance o f the optimized backward chaining 

reasoner when using three different storage managers. 1 use SDB, TDB and OWLIM-SE 

respectively when running the optimized backward chaining reasoner for all 14 queries 

from LUBM, and I measure query response time using LUBM(50) in Table XXVIII. 

Query 1, query2, query3 and query6, OWLIM-SE has the fastest response time. Jena SDB 

+ PostgreSQL performs fastest only for query4, because the I/O time o f Jena SDB is the 

longest out o f three stores. For the rest o f the queries, Jena TDB is fastest.

TABLE XXVIII
C o m p a r i s o n  b e t w e e n  SDB, TDB a n d  OWLIM-SE a s  E x t e r n a l  S t o r a g e  o n  Q u e r y  

R e s p o n s e  T im e  o n  LUBM(50)

Clock Time
Time (ms), 

SDB+Postgr 
eSQL

Time
(ms),
TDB

Time (ms), 
OWLIM- 

SE
Query 1 6430 13440 3549
Query2 24960 36102 17046
Query3 406 58 61
Query4 46400 71298 45680
Query 5 533 78 156
Query6 59144 32590 30470
Query7 83799 34580 45527
Query8 85563 48307 53013
Query9 95992 34583 49566

Query 10 63100 20191 27916
Query 11 3466 528 876
Query 12 16253 2403 3199
Query 13 374 39 37
Query 14 8581 4731 5364

In Table XXIX I show a similar comparison of TDB and OWLIM-SE on query 

response time using LUBM(IOO). SDB was omitted from this comparison because the 

loading time o f SDB is prohibitively long. In both Table XXVIII and Table XXIX, Jena



TDB has the better performance through all 14 queries. In general, the optimized 

backward chaining reasoner and external storage Jena TDB has the best performance 

especially when the size o f the knowledge base increases.

TA BLE X X rx
C o m p a r is o n  b e t w e e n  TD B a n d  O W LIM -SE a s  E x t e r n a l  St o r a g e  on  Q u e r y  R e s p o n s e  T i m e  o n

LUBM(IOO)

C lock  Tim e
Time (ms), 

TDB
Time (ms), 

OWLIM-SE
Query 1 2652 5085
Query2 13884 29657
Query3 31 46
Query4 49109 82664
QueryS 46 78
Query6 26020 51277
Query7 39873 76752
Query8 58609 98343
Query9 46925 85456

Query 10 26894 52821
Query 11 452 826
Query 12 920 1716
Query 13 15 31
Query 14 7222 11263

5.6 Evaluation with Custom Rule Sets and Queries

5.6.1 Ontology Data, Custom Rule Sets and Queries

TA BLE XXX  
Size Range o f  Datasets (in Triples)

Dataset 1 Dataset2 Dataset3 Dataset4 D ataset5 Dataset6

ScienceWeb 3511 6728 13244 166163 332248 1327573
LUBM 8814 15438 34845 100838 624827 1272870

Dataset7 Dataset8 D ataset9 DataSetlO DataSet 11

ScienceWeb 2656491 3653071 3983538

LUBM 2522900 4109311 6890949 13880279 27643953
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The size range o f the datasets in our experiments is listed in Table XXX. I 

generate 11 datasets for LUBM and 9 datasets for ScienceWeb, both ranges from 

thousand to millions for our experiments. I have added 4 more datasets from LUBM to 

the ontology data in Chapter 3 for the experiments in this section.

Below I will give the 5 rule sets and 3 corresponding query sets that I will use in 

the experiments. I have made some changes to the rule sets and queries that I have 

introduced in section3. Rule sets were defined to test basic reasoning to allow for 

validation, such as allowing for transitivity and recursion. Rule set 1 for the co-authorship 

relation, mle set two is for collaborator relation, rule set three is used in queries for the 

genealogy o f PhD advisors (transitive) and rule set 4 is to enable queries for “good” 

advisors. Rule set 5 is a combination o f the first 4 sets.

Rule set 1: Co-author
au th o rO f(? x , ? p )A au th orO f( ?y, ?p) => coAuthor^Px, ?y)
Rule set 2: Collaborator
adv iso rO f (? x , ?y) => c o l la b o r a to r O f  (?x , ?y)
Rule set 3: Research ancestor (transitive) 
ad v is o rO f(? x , ?y) ==» research A n cesto r(  ?x, ?y) 
researchA n cesto r(? x , ?y )A res earch A n ces to r(? y , ?z) => 
researchA n cesto r(? x , ?z)
Rule set 4: Distinguished advisor (recursive)
a d v is o rO f( ?x, ? y )A a d v iso rO f( ?x, ? z )A n o tE q u a l(? y ,? z )
AworksFor( ?Xj?u) => d is t in g u is h A d v is o r (? x ,  ?u)
a d v is o rO f (? x ,? y )A d is t in g u is h A d v is o r (? y ,? u )A w o rk s F o r (? x ,? d )
= *  d is t in g u is h A d v is o r (? x ,  ?d)
Rule set 5: combination of above 4 rule sets.

I have composed 3 query sets to use in the tests, expressed in SPARQL notation:

Query setl:

Query 1: Co-author
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to lo g ies .co m /O n to lo g y lln ive rs ityR es earch M o d e l.o w lf^
SELECT ?x ?y

http://www.owl-


WHERE {?x un i:coA uthor ? y . } ;
Query 2: Collaborator 
PREFIX u n i : < h t tp : / /w w w .o w l-
o n to lo g ie s . com /O n to logyU nivers ityR esearchM odel. owl#> 
SELECT ?x ?y
WHERE {?x u n i :c o l la b o r a to r O f? y . } ;
Query 3: Research ancestor 
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to lo g ie s . com /O nto logyU nivers ityResearchM odel.ow l#>  
SELECT ?x ?y
WHERE {?x un i:re search A n ce s to r  ? y . } ;
Query 4: Distinguished advisor 
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to lo g ie s . com /OntologyUnivensityResearchM odel.owl#>  
SELECT ?x ?y
WHERE {?x u n i :d is t in g u is h A d v is o r  ?y. } ;
Query set2:

Query 1: Co-author
PREFIX u n i :< h t tp : / /w w w .o w l-
o n to log ies .com /O nto lo gyU n ive rs ityR esearchM od el.ow l#>  
SELECT ?x ?y
WHERE {?x un i:coA uthor ?y. ?x uni:hasName 
\ ”F u llP ro fe s s o r0 _ d 0 _ u 0 \"  }
Query 2: Collaborator 
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to log ies .com /O nto lo gyU n ive rs ityR esearchM od el.ow l#>  
SELECT ?x ?y
WHERE {?x u n i:  c o l la b o ra to rO f  ?y. ?x uni:hasName 
\ "F u llP ro fe s s o r0 _ d 0 _ u 0 \"  >;
Query 3: Research ancestor 
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to lo g ies  .com /O nto logyl)n ivers ityR esearchM odel.ow l#>  
SELECT ?x ?y
WHERE {?x u n i:research A n cesto r  ?y. ?x uni:hasName 
\ " F u llP ro fe s s o r0 _ d 0 _ u 0 \"  } ;
Query 4: Distinguished advisor 
PREFIX u n i :< h t tp : / /w w w .o w l-
o n to lo g ie s . com /O nto logyU nivers ityR esearchM odel. owl#> 
SELECT ?x ?y
WHERE {?x u n i :d is t in g u is h A d v is o r  ?y. ?y u n i : h a s T i t le  
\"d epartm ent0u0 \"  } ;

http://www.owl-
http://www.owl-
http://www.owl-
http://www.owl-
http://www.owl-
http://www.owl-
http://www.owl-
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Query set3:

Query 1: Co-author
PREFIX u n i :< h t tp : / /w w w .o w l-
o n to lo g ies .co m /O n to lo g yU n ive rs ityR esearch M o d e l.o w l#>
SELECT ?x ?y
WHERE { < h t tp : / /w w w .d 0 .u 0 .e d u /~ F u llP ro fe s s o n 0 _ d 0 _ u 0 > u n ircoA uth or
?y. >
Query 2: Collaborator
PREFIX u n i : <h t tp : / /w w w .o w l-
o n to lo g ie s . com /O nto logyU nivers ityR esearchM odel. owl#>
SELECT ?x ?y
WHERE { < h t tp : / /w w w .d 0 .u 0 .e d u /~ F u l lP ro fe s s o r0 _ d 0 _ u 0 > u n i:  
c o l la b o r a to r O f  ?y. } ;
Query 3: Research ancestor 
PREFIX u n i :< h t tp : / /w w w .o w l-
on to log ies .com /O nto lo gyU n ive rs ityR esearchM od e l.ow l#>
SELECT ?x ?y
WHERE { < h t t p : / / www. d 0 . u0 . e d u /~ F u llP ro fe s s o r0 _ d 0 _ u 0 > 
un i:re search A n ce s to r  ?y. } ;
Query 4: Distinguished advisor 
PREFIX u n i :< h t tp : / /w w w .o w l-
o n to lo g ies .co m /O n to lo g y lln ive rs ityR es earch M o d e l.owl#>
SELECT ?x ?y
WHERE {?x u n i :d is t in g u is h A d v is o r  <h t tp : / /w w w .d 0 .u 0 .e d u > . } j

There are minor differences among the above three query sets. Query set 1 is

intended to retrieve all the pairs of relationships, for example, all the co-authors in the

knowledge base. Query set 2 is intended to retrieve partial pairs of relationships, for

example, all the co-authors o f  researchers whose name is “FullProfessorOdOuO”. Query

set 3 is intended to retrieve pairs o f relationships for a specific researcher/department, for

example, all the co-authors o f researcher

<h t tp : / /w w w .d 0 .u 0 .e d u /~ F u llP ro fe s s o r0 _ d 0 _ u 0 >.

Query set 2 is the query form we used in paper [5]. For query set 2, the optimized

backward chaining reasoner answers two separate queries and then applies a join

operation resulting in a cross product. For query set 1 and 3, the optimized backward

http://www.owl-
http://www.d0.u0.edu/~FullProfesson0_d0_u0
http://www.owl-
http://www.d0.u0.edu/~FullProfessor0_d0_u0
http://www.owl-
http://www.d0.u0.edu/~FullProfessor0_d0_u0
http://www.owl-
http://www.d0.u0.edu
http://www.d0.u0.edu/~FullProfessor0_d0_u0
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chaining reasoner only need to answer one single query respectively.

Queries are used with the rules sets that define the properties employed in the 

queries. Each rule set is tested with corresponding queries in different query sets. Rule set 

5 is tested with all queries.

5.6.2 Experimental Environment and Metrics

I have chosen Jena TDB as our external storage support for the optimized 

backward chaining reasoner. The latest version systems have been chosen: Jena (2.11.0, 

2013-09-18 release), and Jena TDB (1.0.0, 2013-09-18 release). Consider that a 

backward chaining system does not require expensive up front closure computation every 

time the knowledge base changes, I have taken scalability and query processing time 

from [5] as the main metrics.

• Query processing time: This stage starts with parsing and executing the query and 

ends when all the results have been saved in the result set. It includes the time o f 

traversing the result set sequentially.

All the experiments in this section were performed on a PC with a 2.80 GHz Intel 

Core i7 processor and 8 G memory, running Windows 7 Enterprise. Sun Java 1.6.0 was 

used for Java-based tools. The maximum heap size was set to 512M. I checked all o f our 

results for being complete and sound. All the timing results I present in this section are 

CPU times as the knowledge base is entirely in memory.

5.6.3 Evaluation Procedure

Our goal is to evaluate the performance o f the optimized backward chaining 

reasoner in terms of reasoning and querying time using custom rules. I am interested in 

two aspects o f performance. One aspect is scalability, which means the size o f data and
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the complexity o f reasoning. The second aspect is query processing time. I am interested 

in the query processing time as the size o f the knowledge base changes from small toy 

size to realistic sizes of millions.

5.6.4 Results and Discussion

Evaluation on top of LUBM

With rule sets and query sets described in Section 5 .6 .1 ,1 evaluate the backward 

chaining reasoner on 11 datasets generated from LUBM. In this section, all the datasets 

are stored in external storage using Jena TDB as our support. The evaluation results o f  

the backward chaining reasoner on top of LUBM is shown in Table XXXI focus on two 

aspects o f evaluation on supporting reasoning of customized rules. The first aspect is 

scalability. With support o f external storage, the optimized backward chaining reasoner 

can handle up to about 30 million size dataset in our experimental environment. The 

second aspect is performance in terms of query processing time. As the size o f dataset 

increases, the query processing time scales from less than 1 second to about half minute.

As shown in Table XXXI, for all the datasets, query processing time o f all queries 

from query set 1 are slightly better than query set 2 because o f  the minor difference that I 

have discussed in Section 5.2.6. The optimized backward chaining reasoner applies join 

operation to answer queries from query set 2. We believe that the other ontology 

reasoning systems may employ different methods in query processing to answer multi­

queries.

For all the datasets, query processing time o f  all queries from query set 3 is less 

than 1 seconds. I do not present the evaluation results o f query set 3 in this thesis. 

Compared with results in paper [5] for query set 2, the optimized backward chaining



reasoner has better scalability than Jena, Kaon2 and Pellet. From dataset 1 to dataset 6, 

we can see that the optimized backward chaining reasoner has almost the same query 

processing time as OWLIM and Oracle. The backward chaining reasoner performs 

reasoning at query time. Thus, as the size o f  dataset increases, Oracle and OWLIM 

requires less time in query processing than the backward chaining reasoner. However, 

both Oracle and OWLIM requires expensive up front closure computation when 

knowledge base changes. Thus, the backward chaining reasoner performs better than 

OWLIM and Oracle in cases where we anticipate frequent changes.

TABLE XXXI
Q u e r y  P r o c e s s i n g  T im e  (m s) f o r  Q u e r y  S e t I  a n d  Q u e r y  S e t2  o n  LUBM

Query
setl

Query
set2

Query
setl

Query
set2

Query
setl

Query
set2

Query
setl

Query
set2

Query 1 Query2 Query3 Query4
Datasetl 171 249 124 171 109 156 156 249

Dataset2 234 265 159 187 140 187 249 327

Dataset3 421 468 171 249 171 265 374 452

Dataset4 733 889 265 452 421 452 592 764

Dataset5 1669 1778 811 951 858 1029 1591 1606

Dataset6 2823 2979 1232 1435 1388 1497 2293 2386

Dataset7 4570 4836 1934 2168 2308 2324 3447 3478

DatasetS 6115 6832 2808 2839 2917 3244 4602 4655

Dataset9 10233 11044 4258 4586 4664 5116 6848 6879
Dataset

10 19012 19671 7534 7960 8938 9250 11793 12074

Dataset
11 37034 37752 15241 16536 18064 18392 21902 22932

Evaluation Using the ScienceWeb Ontology

With rule sets and query sets described in Section 5 .2 .6 ,1 evaluate the backward 

chaining reasoner on 9 datasets generated from ScienceWeb ontology. In this section, all
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the datasets are stored in external storage using Jena TDB as our support. The evaluation 

results o f  the backward chaining reasoner on top o f ScienceWeb ontology is shown in 

Table XXXII. For scalability, with support o f  external storage, the optimized backward 

chaining reasoner can handle all o f 9 datasets in our experimental environment. For 

performance in terms of query processing time, as the size o f  dataset increases, the query 

processing time scales from less than 1 second to about 10 seconds.

As shown in Table XXXII, for all the datasets, query processing time o f all 

queries from query set 1 are slightly better than query set 2 because o f  the minor 

difference that I have discussed in Section 5.2.6. The optimized backward chaining 

reasoner applies join operation to answer queries from query set 2.

TABLE XXXII
Q u e r y  P r o c e s s in g  T im e  f o r  Q u e r y  S e t I a n d  Q u e r y  S e t 2 o n  S c ie n c e  O n t o l o g y  U n i t : m s )

Query
setl

Query
set2

Quer 
y setl

Quer 
y set2

Query
setl

Quer 
y set2

Query
setl

Query
set2

Query 1 Query2 Query3 Query4
Dataset 1 124 156 93 109 296 358 93 156
Dataset2 140 187 109 124 436 483 109 171
Dataset3 187 280 124 171 156 249 124 202
Dataset4 780 811 358 499 873 967 530 717

Dataset5 1107 1232 639 670 1404 1450 982 1201
Dataset6 2090 2449 1014 1092 3104 3603 1435 1887

Dataset7 3806 4040 1466 1716 4976 5116 2574 2683

Dataset8 5288 5382 1887 1903 8767 8798 3744 3822

Dataset9 5834 6115 2168 2449 10483 10670 4851 4929

Similar to the discussion in previous section, for all the datasets, query processing 

time o f all queries from query set 3 is less than 1 seconds. I do not present the evaluation 

results o f query set 3 in this thesis.
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Compared with results in paper [5] for query set 2, the optimized backward 

chaining reasoner has better scalability than Jena, Kaon2 and Pellet. From dataset 1 to 

dataset 5, we can see that the optimized backward chaining reasoner has almost the same 

query processing time as OWLIM and Oracle. The backward chaining reasoner performs 

reasoning at query time. Thus, as the size o f dataset increases, Oracle and OWLIM 

requires less time in query processing than the backward chaining reasoner. However, 

both Oracle and OWLIM requires expensive up front closure computation when 

knowledge base changes. Thus, the backward chaining reasoner performs better than 

OWLIM and Oracle in cases where we anticipate frequent changes.

Comparison between In-memory Store and External Storage on LUBM

I employed Jena TDB for the support o f external storage in order to increase the 

scalability o f the optimized backward chaining reasoner. We anticipate that some 

applications might want to balance performance and scalability. For example, for some 

mobile applications, performance is more important than scalability.

In this section, I compare the performance o f the optimized backward chaining 

reasoner with and without support o f external storage on all the queries from query setl 

and query set2. The evaluation results are presented in Table XXXIII.

When the optimized backward chaining reasoner runs in memory without any 

support o f external storage, it can only handle up to 7 data sets from LUBM. Thus I only 

compared performance on 7 data sets. I am aware that working in memory has limitations 

with respect to the size o f the knowledge base and the retrieved data. As Table XXXIII 

shows, our reasoner running with support o f Jena TDB has twice the processing time as 

much as running entirely in memory, that is, running entirely in memory performs better
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than running with support o f Jena TDB. For light applications like mobile applications, 

in-memory version would be a better choice.

TABLE XXXIII
C o m p a r is o n  o f  Q u e r y  P r o c e s s in g  T i m e  b e t w e e n  In -m e m o r y  St o r e  a n d  E x t e r n a l  St o r a g e  o n

LUBM(Unit: m s)

Query Type Query
set

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Dataset
6

Dataset
7

Query 1

TDB setl 171 234 421 733 1669 2823 4570
set2 249 265 468 889 1778 2979 4836

In
memory

setl 93 109 124 358 748 1107 2059

set2 109 140 171 363 858 1232 2199

Query2

TDB
setl 124 159 171 265 811 1232 1934

set2 171 187 249 452 951 1435 2168

In
memory

setl 46 46 62 93 249 296 421
set2 78 93 98 140 296 374 530

Query3

TDB
setl 109 140 171 421 858 1388 2308
set2 156 187 265 452 1029 1497 2324

In
memory

setl 56 62 78 124 296 390 639
set2 78 109 113 171 358 483 733

Query4

TDB
setl 156 249 374 592 1591 2293 3447
set2 249 327 452 764 1606 2386 3478

In
memory

setl 93 140 202 327 1107 1263 1887
set2 156 202 296 343 1154 1279 1905
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CHAPTER 6 

TRUST-BASED HYBRID REASONING

In this chapter, I explore the idea o f “trust” , where each change to the knowledge 

base is analyzed as to what subset o f  the knowledge base is impacted by the change and 

could therefore contribute to incorrect inferences. I will present algorithms that adapt the 

reasoner such that, when proving a goal, it does a simple retrieval when it encounters 

trusted items and performs backward chaining over untrusted items. I will provide an 

evaluation of my proposed modifications that shows that my algorithm is conservative 

and that it provides significant gains in performance for certain queries.

6.1 Change Classification

The goal o f  this thesis is to design a hybrid reasoning architecture and develop a 

scalable reasoning system whose efficiency is able to meet the interaction requirements in 

a ScienceWeb system when facing a large knowledge base subject to changes. These 

changes could occur in the ontology, in the custom rule set, in instances already present 

in the knowledge base, or in the addition o f  new instances harvested from the web.

Changes to an ontology could include adding, removing or modifying classes or 

properties in the ontology. An example o f modifying a property in an ontology would be 

a user changing the domain o f the property “p u b lic a t io n A u th o r” from class 

“P u b l ic a t io n ” to “A r t i c l e ”. The “p u b lic a t io n A u th o r” triples whose objects are 

not “A r t i c l e ” type will be removed for the consistency. After the changes, if  someone 

were to then pose a query “Who are coauthors of Professor X?” , such a query could not
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be answered without reasoning about the publication authors, which have been affected 

by these changes. By contrast, if  someone were to pose a query “Who are the advisors of 

Student X?” , this query could be answered by direct lookup in the knowledge base. No 

reasoning would be required, and the answer would be unaffected by the changes.

Changes to custom rules include adding, removing or modifying definition o f 

custom rules such as modifying the rule to define “groundbreaking re s e a rc h ”. An 

example o f modifying a custom rule would be a user locating the existing qualitative 

descriptors for “groundbreaking professor” and changing the rule definition. After the 

change, now if  someone were to pose the query “Who are coauthors o f  Professor X?”, 

this query could be answered by direct lookup in the knowledge base. No reasoning 

would be required. By contrast, if  the query were posed “Who are groundbreaking 

researchers in University X?”, such a query could not be answered without reasoning 

about the implications o f the changed rule.

Changes to instances include adding, removing or modifying instances in the 

storage, such as updating publication list o f  a professor. Table XXXIV shows the 

description of the changes to the ontology, instances and custom rules based on [184],

The column labeled “Operation Description” lists the descriptions o f  the operations.

6.2 A Trust-based Hybrid Reasoning Algorithm

Let us assume that the knowledge base contains all known and derived facts such 

that any query can be directly answered by retrieving the corresponding truths. In such an 

environment I now introduce a change and analyze the impact of that change. We 

consider three categories o f changes: changes to the ontology, changes to custom rules 

and changes to instances.
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TABLE XXXIV
D e s c r ip t io n  o f  t h e  C h a n g e s  t o  t h e  O n t o l o g y , I n s t a n c e s  an d  C u s t o m  R u l e s

Operation Description
Add a Class
Rem ove a Class
M odify a Class
Add a Subclass
M odify a Subclass
Rem ove a Subclass
Add a Superclass
M odify a Superclass
Rem ove a Superclass
Add a EquivalentClass
Remove a EquivalentClass
M odify a EquivalentClass
Add a Property
Rem ove a Property
M odify a property
Add a Domain
Rem ove a Domain
M odify a Domain
Add a Range
Remove a Range
M odify a Range
Set Functionality
Unset Functionality
Add Symmetry

Ontology
Rem ove Symmetry
Set Transitivity
Unset Transitivity
Set InverseFunctionality
Unset InverseFunctionality
Add a Superproperty
Remove a Superproperty
M odify a Superproperty
Add a Subproperty
Rem ove a Subproperty
M odify a Subproperty
Add an Equivalent Property
Remove an Equivalent Property
M odify an Equivalent Property
Add an Inverse Property
Remove an Inverse Property
M odify an Inverse Property
Change to a DatatypeProperty
Change to a ObiectProperty
Add an Individual
Remove an Individual
Add a SameAs Individual
Rem ove a SameAs Individual
M odify a SameAs Individual
Add Type
M odify Type
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TABLE XXXIV (CONTINUED)

Operation Description
Ontology Rem ove Type

Instance

Add a Datatype Property instance
Modify a Datatype property instance
Remove a Datatype property instance
Add an Object Property instance
M odify an Object Property instance
Remove an Object Property instance

Custom Rules
Add a custom rule
M odify a custom rule
Rem ove a custom rule

In a knowledge base that relies on materialization via forward-chaining, all 

derivable conclusions from known facts and rules are assumed to have been written into 

the knowledge base. This leads to fast responses to queries because all queries can be 

answered by direct search and retrieval. No reasoning is required at the time o f the query.

The same queries could presumably be answered in a non-materialized knowledge 

base containing only harvested facts and rules via backward chaining from the properties 

mentioned in the query. This would typically be considerably slower than a direct lookup 

in a materialized knowledge base.

The drawback o f relying on materialization is a loss o f  agility in responding to 

changes. Materialization o f a large knowledge base is potentially time-consuming. It may 

require deferring queries for many hours or, alternatively, issuing results that are 

incomplete or incorrect.

Consider the following example. A student, student© has enrolled in a course, 

Course©. This piece o f information has been discovered by a harvester and added to the 

knowledge base. Now if someone were to pose a query “Who is enrolled in Course©?”, 

this query could be answered immediately by direct lookup in the knowledge base. No 

reasoning would be required. However let us also posit that the knowledge base already
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contains the fact that P ro f0  teaches Course©. If a query were immediately posed “Who 

is being taught by P ro f  0?”, such a query could not be answered without reasoning about 

the implications o f a rule

e n ro l le d In (? S tu d e n t jP C o u rs e ? ) , te ach e s (P F ac u lty ,P C o u rse )  

is T a u g h tB y (P S tu d e n t ,P fa c u lty )

But a search for materialized isTaughtBy instances in the knowledge base will fail to 

turn up the relationship between Professor©  and the newly enrolled Student0 , until 

the knowledge base is re-materialized to incorporate this and all other recent changes.

A hybrid reasoning algorithm can use backward chaining over “untrusted” 

portions o f a knowledge base while using direct lookup to recover previously 

materialized conclusions from the “trusted” portion. Such an algorithm is shown in Fig. 

14.

S ubstitu tions prove (Goal g)
{

i f  (g is  tru s ted )
re tr ie v e  Substitu tions M from knowledge base by d ire c t lookup o f g; 
return  M; 

else  {
Substitu tions M = emptyj
fo r  each ru le  R and S u b s titu tio n  oa such th a t  

the head of R Oi matches g {
Ml = proveTheRuleBody (R.body, o i) j
i f  (Ml is  not empty) / /  proof o f ru le  succeeded

{
S ubstitu tions M2 = a l l  Substitu tions in  Ml 

fo r  v a riab les  in  the head o f R;
M += M2;

}
>

re turn  M;

>

Fig. 9. A hybrid reasoning algorithm
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In the algorithm shown in Fig. 14, R denotes a rule, consisting o f a rule body 

(premises) and a rule head (conclusion), the rule head is true only when the rule body is 

true.

The prove function returns all substitutions for the variables in the goal for 

which that goal is provable. It does this by consulting each rule matching the goal and 

attempting to find substitutions satisfying the body o f that rule. A key step is the test to 

see if  the proof goal is “trusted.” The results o f  this test determine whether we simply 

look up previously materialized instances or engage in a backward-chaining proof.

When we need to prove the rule body, we attempt to recursively prove each goal 

in the rule body one by one. The process o f  proving the rule body is shown in Fig. 15. In 

my actual implementation [182], I employed OLDT [170] and memorization to avoid 

deep recursion. The bindings from earlier goals would be substituted into the current goal 

for subsequent proof. After we prove the current goal, we join the new substitutions from 

that proof with the prior substitutions. In jo in S u b s t i tu t io n s ,  we iterate over two sets 

o f substitutions and compose every pair o f substitutions in the cross product with 

common values.

bool, Substitu tions proveTheRuleBody (body. S ubstitu tio n )
{

Substitu tions M = empty;
fo r  each goal g in  body from S u b s titu tio n  {

Ml = prove(g); 
i f  (M is  empty)

return fa lse,em pty;
M = jo in S u b s titu tio n s (M ,M l);

}
return  tru e , M;

}
Fig. 10. Process o f  proving the rule body
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The advantage o f such a hybrid algorithm is that it allows the knowledge base 

maintainers to defer expensive re-materializations for long periods o f  time (long, at least, 

compared to the frequency o f changes) while still permitting accurate and timely 

responses to incoming queries.

6.3 Conservative Trust Assessment and Experiments

6.3.1 Conservative Trust Assessment

The preceding hybrid algorithm depends upon the idea of knowing when the 

currently materialized instances corresponding to a proof goal can be trusted to be correct 

and complete.

We will say that a proof goal p ( ?X, ?Y) is trustworthy if all instances o f that goal 

derivable from facts and rules in the knowledge base are present in that knowledge base 

as instances. Trustworthy goals can be safely resolved by direct lookup in the knowledge 

base.

In practice, we are unlikely to be able to identify precisely all goals that are 

trustworthy except by materializing the knowledge base, which, by definition, forces all 

goals to be trustworthy. We therefore seek less expensive options to approximate the set 

o f trustworthy goals, a less expensive option for dividing the set of possible proof goals 

into trusted and untrusted sets.

A partition into trusted and untrusted sets is called conservative i f  no 

untrustworthy goals are trusted. If we are conservative in such an approximation to the 

collection o f trustworthy goals, then my hybrid reasoner can be relied upon to give 

accurate responses.

An apparently plausible approach to a conservative trust rule would be property-
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based trust, assume that any property P that was involved in a change (e.g., if  a new

instance P ( x©, y 0 ) was added to the knowledge base) is itself untrusted and then to

take the closure o f the “is used as a premise o f ’ relation, that is, if an untrusted property

Q occurs in the body o f a rule used to prove R

Q (x * y ) ;  ••• R (w ,z )

then R is also untrusted.
For example, suppose that a student, studentO has enrolled in a course, Course©,

taught by Prof0. The addition o f a new fact e n ro lle d ln (S tu d e n t© ,C o u rs e © )  to the 

knowledge base would cause the property e n ro l  le d  In  to be untrusted. In addition, 

given the rule presented earlier deriving isTaughtB y( PStudent, P F acu lty )  from (in 

part) e n r o l le d ln  instances, the property isTaughtBy would also untrusted.

The attraction of this definition o f “untrusted” is that it requires analysis of only 

the rules in the knowledge base without consulting with the far more numerous instances. 

A knowledge base o f many millions o f triples might be expressed in terms o f a few 

hundreds o f properties and a comparable number o f  rules, making this definition o f trust 

far easier to compute than the true trustworthy set.

Unfortunately, this simple procedure breaks down in the face o f “meta-rules” in 

the knowledge base, rules that permit reasoning about properties themselves. For 

example, suppose that student, Student©, just got his degree from U n iv e rs i ty © ,  and 

that the instance “degreeFrom (student©, U n iv e r s i ty © )” is added to the 

knowledge base. We will posit that there are rules such that the property degreeFrom is 

an inverse property o f hasAlumnus. The inverse rule implies that 

?P(?X, ?Y), in verse (? P ,? Q ) ?Q(?Y,?X)



133

Immediately after adding the new fact to the knowledge base, queries such as 

“what alumni/alumnae does u n iv e r s i ty 0  have?” would not respond with Student©. 

The hasAlumnus property is not trustworthy, but it would actually be left as trusted by 

the initial trust approximation. A more sophisticated definition of trust is required.

One possibility would be to expand the set o f  untrusted properties via special 

handling o f the meta-rules common to RDF and OWL. As I will show, however, in my 

experimental results below, prototypes o f such an expanded definition o f property-based 

trust demonstrated that simple changes to a knowledge base could then result in 

significant fractions o f the knowledge base being marked as untrusted. I concluded that 

properties do not offer a detailed enough discrimination to serve as a practical basis for 

trust.

I propose instead a concept o f pattern-based trust: a pattern P(X, Y) (where X and 

Y could be ground instances or free variables) is untrusted if  it matches a change to the 

knowledge base or if  it can be derived from a rule with an untrusted pattern as a premise.

For example, suppose again that a student, student© has enrolled in a course, 

Course©, taught by Prof©. The addition of a new fact

e n ro lled ln (S tu d en t© ,C o u rse © ) to the knowledge base would cause the pattern 

en ro lled ln (S tu d en t© ,C o u rse © ) to be untrusted. In addition, given the rule 

presented earlier deriving isTaughtBy( PStudent, PF acu lty ),  the pattern 

isTaughtB y(S tudent© ,Prof© ) would also be untrusted.

In my hybrid prove algorithm, presented in the prior section, the test to see if a 

goal g is trusted is now interpreted as “if g cannot be unified with any untrusted pattern”. 

Hence queries and proof goals involving patterns such as isTaughtBy ( PS, P ro f© ) and
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isTaughtB y( ?S, ?P) would also be treated as untrusted.

O f importance is the fact that patterns (and therefore potential queries and proofs) 

involving other students and other faculty (e.g., “who is taught by P r o f  1?”) remain 

trusted and so could be answered by direct lookup with no reasoning.

setO fPatterns propagateUntrustForward (premises, conclusion, s u b s titu tio n S e t, 
existingU ntrustedS et)
{

untrustedSet = { } ;  
fo r  each premise p in  premises 

{
patternS et = { } ;
g o a lL is t = get u n ifie d  goals by rep lacing  variab les  

in  p from su b s titu tio n S et; 
fo r  each goal g in  g o a lL is t  

{
re tr ie v e  instances r  from knowledge base by d ire c t lookup o f g; 
re tr ie v e  resu lts  r l  from re a liz e d  patterns in 

existingUntrustedSet by d ire c t  lookup of g; 
r  += r l ;  
i f  ( r  is  empty) 

return  empty; 
i f  (th e  s ize o f r  c threshold) 

untrustedpatternSet + = r;  
else  i f  (th e  s ize o f r >=threshold) 

untrustedpatternSet + = g;
}

S ubstitu tions M = u n ify  p w ith untrustedpatternSet; 
substitu tionS et = jo in S u b s titu tio n s (s u b s titu tio n S e t,M );

>
untrustedSet = su b stitu te  variab les  in  conclusion with su b s titu tio n S e t;  
return  untrustedSet;

>
Fig. 11. The pattern-based trust marking algorithm

The pattern-based trust marking algorithm shown in Fig. 16 will work with these 

meta-rules as well as customized rules. We accumulate a set o f already untrusted patterns
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by running the co llec tU n tru s ted D u eT o  algorithm iteratively on each new change. 

The c o llec tU n trus tedD u eTo  function is shown in Fig. 17.

setO fPatterns collectUntrustedDueTo
(oneChange, ex is tingU ntrustedS et)

{
untrustedSet = {oneChange}; 
fo r  each ru le  R (P iaP2 . . . AP i . . .  Apn => q) and 

each pi matching oneChange
{

re tr ie v e  S ubstitu tions  M from knowledge base by 
d ire c t  lookup of pi; 

untrustSet+= propagateUntrustForward
( [Pe- • Pi-ijP i+i• • • P n ] i q.> M}, existingU ntrustedSet)

>
existingU ntrustedSet += untrustS et; 
discard from existingU ntrustedSet any patterns  

th a t are s p e c ia liza tio n s  o f o ther elements, 
return  existingU ntrustedSet;

>
Fig. 12. The collectUntrustedDueTo function

The co llec tU n trus tedD u eTo  function collects untrusted patterns for one 

single change to the knowledge base, assuming we have already had an existing untrusted 

pattern set. The first time this algorithm runs after materialization that set will be empty. 

The one single change would be added to the untrusted set first. Then we check each rule 

in the rule set to see if we can propagate the “untrust” forward by a limited, specialized 

analogue o f forward chaining. At last, we add our untrusted set produced from the above 

one change to the existing untrusted set, discarding any patterns that are specializations of 

other elements.

The propagateUntrustForw ard function goes through each premise o f the
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rule to compose and propagate the untrusted substitutions. The untrusted substitutions 

from the earlier solutions are substituted into the upcoming premise to yield multiple 

instances o f  that clause as goals for subsequent proof. When we prove a premise, we need 

to prove each unified goal produced from untrusted substitutions by replacing variables in 

the premise. Upon proving a unified goal, we retrieve matched instances from the 

knowledge base and e x is t in g U n tru s te d S e t  by a direct lookup o f the unified goal.

I use a threshold to determine whether the actual matched results or the unified 

goal itself should be added to the untrusted substitutions. If the number o f  matched 

instances is comparatively large, I use a pattern that can represent the whole set o f 

matched instances in the untrusted substitutions instead o f the large set o f  matched 

instances itself. Including all the untrusted instances in the untrusted set would make it 

inefficient when we determine if a goal is trusted or not in this marking algorithm. Finally, 

the rule’s conclusion (head), with appropriate substitution, is added to the untrusted set.

For example, consider a scenario, based on LUBM, in which a university, 

U n iv e rs ity © ,  has hired professor, Fu llp ro fes so rB . This piece o f  information 

w o rk s F o r(F u llp ro fe s s o r© , U n iv e rs i ty © )  has been discovered by a harvester 

and added to the knowledge base. Given the OWL Horst rule set, according to my 

pattern-based marking algorithm, the untrusted patterns are:

worksFor (F u l lp ro fe s s o r© ,  U n iv e rs ity © )  
member (U n iv e r s i ty © ,  F u l lp ro fe s s o r© )  
memberOf (F u l lp ro fe s s o r© ,  U n iv e rs ity © )

Now if  someone were to pose a query “Who are members o f U n iv e rs ity © ? ”,

given that pattern memberOf (F u l lp ro fe s s o r© ,  U n iv e rs i ty © )” is untrusted, we

need to reason using backward chaining.

On the other hand, if  someone were to pose a query “Who are members o f
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U n iv e r s i t y l? ”, given that the pattern memberOf ( ?x, U n iv e rs i ty ! . )  is trusted, all 

the members o f U n iv e r s i t y l  can still be retrieved by a direct look up in the knowledge 

base.

6.3.2 Experiments

In this Section, I further explore the impact o f  trust rules on reasoning by 

conducting and presenting reports involving two sets of benchmarking experiments. I 

also describe preliminary experiments that explore how the percentage o f  trusted facts in 

the knowledge base affects the performance o f the hybrid algorithm.

First, I compare the number o f  objects in the knowledge base marked as untrusted 

by my property-based algorithm to what should be really untrusted. This provides an 

indication o f how many unnecessary reasoning steps the hybrid algorithm would have to 

go through.

TA BLE XXXV 
R e s u l t s  f o r  P r o p e r t y -b a s e d  M a r k in g  A l g o r it h m

Changes Actual A ctual #
#  new #  new untrusted

properties facts propertie
s

Adding a new class 2 3 12
Add a subclass relationship between two new classes 2 6 12
Add new Class as subClass o f  existing class 2 5 12
Adding a new Property 2 2 12
Add a new Property as subPropertyOf o f  another new Property 2 4 12
Add new Property as subPropertyOf o f  existing Property 2 3 12
Add new Class as domain to a new Property 3 5 13
Add new Class as range to a new Property 3 5 13

Table XXXV shows that property-based marking greatly exaggerates the 

number o f untrusted properties. It compares the number o f properties that should be
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untrusted after a change vs. the numbers the property-based algorithm produces. Even in 

a knowledge base with many millions o f triples, the number o f distinct properties is likely 

to be counted in the tens to (very) low hundreds, so the increase shown there in the 

number o f  properties marked as untrusted would likely have a significant effect on query 

processing. This is made worse by the fact that the experiments showed that many 

properties marked as untrusted were ontological meta-rules such as all subclass relations. 

As an example, under LUBM(l) the properties marked as untrusted match an average o f 

97,300 triples out o f 149,894, which is about 65% o f the knowledge base. These results 

led us to set aside property-based trust marking in favor o f the finer discrimination 

afforded by pattern-based marking.

In contrast the average number o f patterns added by the pattern-based marking 

algorithm for the same changes as in produces the same number of properties as the 

‘actual’ columns show.

The second set o f  experiments provides a comparison of performance o f  my 

hybrid pattern-based proof algorithm against the regular, optimized backward chaining 

algorithm [182] and against the OWLIM forward chaining algorithm using benchmark 

knowledge bases LUBM1, LUBM10, and LUBM40, of size 100,839, 1,272,871, and 

5,307,754 objects respectively. Table XXXVI shows the comparison o f response times 

for LUBM query 2 for these three algorithms after adding an existing student as a 

member o f an existing department to the knowledge base.

Table XXXVII shows the comparison o f response times for LUBM query 6 for 

these three algorithms after adding a new undergraduate student.
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TABLE XXXVI 
Q u e r y  R e s p o n s e  T im e  (m s) a f t e r  A d d in g  S t u d e n t

Hybrid Backward Forward (load +query)
LUBM1 93 490 960+3.4

LUBM10 546 1,060 7,800+150

LUBM40 2,548 9,100 350,000+5,100

TABLE XXXVII
Q u e r y  R e s p o n s e  T im e  (m s )  a f t e r  A d d in g  U n d e r g r a d u a t e  S t u d e n t

Hybrid Backward Forward Goad +query)

LUBM1 452 180 960+240

LUBM10 1,575 1,170 7,800+1,200

LUBM40 3,525 43,000 350,000+5,300

Both tables show that the hybrid algorithm, though slower on a query-by-query 

basis than forward chaining, is faster than backward chaining and at least an order o f 

magnitude faster than re-materializing the knowledge base (which is the time that would 

be required to re-materialize a knowledge base after a change). I have performed 

preliminary experiments on determining the factors that affect the performance o f the 

hybrid algorithm. I investigated the ratio o f trusted to untrusted facts in the knowledge 

base after a set o f changes and compared the performance o f the three algorithms 

(backward chaining, forward chaining and hybrid) for different sizes o f  the knowledge 

base and selected queries. The following sample scenarios in Table XXXVIII illustrate 

the results o f the preliminary experiments.

The percentage o f untrusted facts in the knowledge base after executing the 

pattern-based marking algorithm ranges from close to 0 to a high of 10% in all 

experiments. The percentage o f untrusted patterns ranges from close to zero to 5%. For
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scenarios 1 and 2, the hybrid algorithm outperforms the backward chaining algorithm in 

terms o f query response time significantly. For LUBM(50), the query response times in 

scenario 1 are 1,887ms and 3,229ms respectively. The query response times in scenario 2 

are 9,937ms and 11,216ms, respectively. In scenario 3 the backward chaining algorithm 

outperforms the hybrid algorithm in terms o f query response time (7,238ms and 5,054ms 

respectively). The reason for this is that, in scenario 3, the percentage o f  untrusted triples 

in the whole knowledge base is about 10% and the queries require resolving patterns 

mostly located in the untrusted list. For the queries selected, the hybrid algorithm 

outperforms the regular backward chaining algorithm by 30 percent on the average for 

the selected set o f experiments.

TABLE XXXVIII
S a m p l e  Sc e n a r io s

Scenario Adding Changes Query
Scenario 1 MiddleWork rdf:type rdfs:Class 

MiddleWork rdfs:subciassOf Work 
Course rdfs:subclassOf MiddleWork

?x rdf:type Work

Scenario 2 SupermemberOf rdf:type rdf:Property 
memberOf rdfs: subPropertyOf SupermemberOf

?x SupermemberOf
?y

Scenario 3 MiddledegreeFrom rdf:type rdf:Property 
MiddledegreeFrom rdfs: subPropertyOf degreeFrom 
undergraduateDegreeFromrdfs: subPropertyOf 
MiddledegreeFrom

?x degreeFrom ?y

The experiments reported here suggest that a hybrid reasoner based on trust can 

be effective on some moderately sized knowledge bases. In considering the likely 

scalability of this approach, we may consider scaling to both larger knowledge bases and 

to bases subject to more increasingly frequently change.
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Because the pattern-based trust markup is similar in structure to forward chaining, 

as the size o f the knowledge base increases, the time to assess trust should grow at a rate 

no higher than, and possibly lower than, the increase in time to re-instantiate. An 

important contributory factor will be the overall degree o f inter-connection within the 

knowledge base semantics. A loosely connected network will lead to faster termination of 

the trust marking algorithm. The experiments reported here may actually understate the 

potential savings, as I expect that LUBM is more tightly inter-connected than many 

practical knowledge bases.

6.4 Evaluation of the Trust-based Hybrid Reasoning

In this section, I further explore how the percentage o f  untrusted facts in the 

knowledge base affects the performance of the hybrid algorithm, that is, explore the 

relationship between the percentage o f untrusted facts in the knowledge base and query 

response time (clock time).

Experim ental design

The ontology data consist o f the benchmark knowledge bases LUBM (10) and 

LUBM (30), o f size 2,240,657 and 6,449,543 triples respectively. I use as test queries the 

14 queries from LUBM. Jena TDB has been adopted for the external storage o f the 

knowledge base. The percentages o f untrusted facts in the knowledge base are generated 

by making changes to the knowledge base. In this experiment, the changes to the 

knowledge base are removing different number o f students in the knowledge base 

together with any impacted triples.

Results and discussion

Table XXXIX shows the number o f students removed and the generated untrusted
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percentage.

TABLE XXXIX
The Number of Students Removed and the Generated Untrusted Percentage

LUBM
(10)

Untrusted
Percentage 8% 16% 24% 32% 40% 47% 54%

Number o f  
Students 10,000 20,000 30,000 40,000 50,000 60,000 70,000

LUBM
(30)

Untrusted
Percentage 5% 12% 16% 26% 31% 41% 55%

Number o f  
Students 20,000 40,000 60,000 100,000 120,000 160,000 220,000

Table XL shows the response times (unit: ms) for the LUBM 14 queries as a 

function of different percentages o f untrusted facts in the knowledge base LUBM (10).

TABLE XL
T h e  R e s p o n s e  T im e s  (m s) f o r  t h e  LUBM 14 Q u e r i e s  w i t h  D i f f e r e n t  P e r c e n t a g e s  o f  

U n t r u s t e d  F a c t s  in  K n o w l e d g e  B a s e  LUBM (10)

0% 8% 16% 24% 32% 40% 47% 54%
queryl 775. 1412. 2138. 2594. 3217. 3409. 3911. 5128.

query2 1649. 3493. 4283. 5196. 5317. 5940. 7441. 7672.

query3 3. 272. 530. 805. 1061. 1307. 1531. 1999.

query4 31. 323. 593. 915. 1167. 2000. 1827. 2931.

query5 5. 385. 1115. 1259. 2109. 1881. 3164. 3986.

query6 404. 2133. 2739. 3483. 4047. 5238. 6374. 7326.

query7 1331. 2930. 3408. 4052. 4721. 5412. 6228. 7166.

query8 1616. 4181. 5006. 5555. 6342. 7513. 9336. 10243.

query9 640. 2621. 3585. 4372. 4805. 5381. 6464. 8453.

query 10 79. 1845. 2029. 2793. 3292. 4415. 5799. 6087.

queryl1 9. 281. 574. 876. 1190. 1408. 1663. 2009.

query 12 16. 296. 591. 933. 1410. 1446. 2130. 2338.

queryl 3 3. 401. 731. 1270. 1662. 2288. 2435. 3004.

query 14 158. 689. 1015. 1532. 1995. 2194. 3061. 3217.

In order to show the trend o f query response time as the percentage o f  untrusted
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facts change, I normalized the query response time to:

re la tiv e tim e (x ) = (query response times x) /  (query response tim e w ith  100% 
tru s ted  fa c ts ) where x is  the % o f untrusted fa c ts .

Table XLI shows the variations o f response times for LUBM 14 queries with 

different percentages o f untrusted facts in knowledge base LUBM (10).

TABLE XLI
T h e  R e l a t i v e  R e s p o n s e  T im e s  (m s) f o r  t h e  LUBM 14 Q u e r i e s  w i t h  D i f f e r e n t  P e r c e n t a g e s  o f  

U n t r u s t e d  F a c t s  in  K n o w l e d g e  B a s e  LUBM (10)

8% 16% 24% 32% 40% 47% 54%

queryl 1.82 2.76 3.35 4.15 4.40 5.05 6.62

query2 2.118 2.597 3.151 3.224 3.60 4.512 4.652

query3 90 200 300 400 400 500 700

query4 10. 19. 30. 38. 60. 59. 94.

query5 80 200 200 400 400 600 800

query6 5.28 6.78 8.62 10.0 13.0 15.8 18.1

query7 2.201 2.560 3.044 3.547 4.066 4.679 5.384

query8 2.587 3.098 3.438 3.924 4.649 5.777 6.338

query9 4.10 5.60 6.83 7.51 8.41 10.1 13.2

queryl0 23. 26. 35. 42. 56. 73. 77.

queryl 1 30 60 l.*102 100 200 200 200

queryl2 18. 37. 58. 88. 90. 130 150

queryl 3 100 200 400 600 800 800 1000

query 14 4.36 6.42 9.70 12.6 13.9 19.4 20.4

I have calculated the Pearson product-moment correlation coefficient between the 

query response time and the untrusted percentage. All the correlation coefficient values

for the 14 queries are between 0.957 and 0.998. And the probability o f significance p- 

value [185] (one-tailed) are all below significance level 0.01 (using Student's t



distribution), showing the correlation coefficient values are statistically significant. A 

strong and positive relationship between the query response time and the untrusted 

percentage are shown in Table XLI and confirmed by the above correlation coefficient 

values. I fit curves to the data in Table XLI using exponential regression for query 7 . 1 

present the trend lines with equation and coefficient of determination in Fig. 1 8 .1 fit 

curves to the data in Table XLI using linear regression for query 13.1 present the trend 

lines with equation and coefficient o f  determination in o f Fig. 19. The x-axis on the 

figures represents the untrusted percentage while y-axis represents the query response 

time.

6

query7 (query response tim e)

5 ; y = 1.8918619345x
R2 = 0 .9 9 9 4

* ;
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2 : » -
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Fig. 18. An example o f  curve fitting using exponential regression for Query7 in LUBM  (10)

Table XLII shows the Pearson product-moment correlation coefficients o f  linear, 

exponential and power curves for the data from Table XLI. As Table XLII shows, the 

difference among the liner, exponential and power correlation coefficients is between 

0.0072 and 0.0469 for the 14 queries. There is no one correlation coefficient value that is
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significantly larger than the others for each query. So we are not able to tell if  the growth 

is linear or exponential or power due to the close correlation coefficient values.

TABLE XLII
T h e  C o r r e l a t io n  C o e f f ic ie n t s  o f  L in e a r , E x p o n e n t ia l  a n d  Po w e r  C u r v e  f o r  Q u e r y  

R e s p o n s e  T im e  a n d  t h e  U n t r u s t e d  P e r c e n t a g e  in  K n o w l e d g e  B a s e  LU B M  (10)

Query Linear Exponential Pow er
queryl 0.9784 0.9769 0.9854
query 2 0.9796 0.9819 0.9695
query 3 0.9926 0.9730 0.9980
query 4 0.9596 0.9795 0.9835
query 5 0.9574 0.9461 0.9758
query 6 0.9884 0.9982 0.9713
query 7 0.9927 0.9997 0.9672
query 8 0.9794 0.9945 0.9476
query 9 0.9659 0.9848 0.9665
query 10 0.9768 0.9913 0.9461
query 11 0.9984 0.9624 0.9994
query 12 0.9875 0.9660 0.9949
query 13 0.9959 0.9679 0.9971
query 14 0.9892 0.9822 0.9894

1200

1000

800

600

400

200

0
0%

q u e ry l3 (q u e ry  response t im e)

y = 1 8 8 8 .6x - 3 4 .7 8 8  
R2 = 0 .9 9 1 9

10% 20% 30% 40% 50% 60%

Fig. 19. An example o f  curve fitting using linear regression for Queryl 3 in LUBM (10)

Table XLIII shows the response times for LUBM 14 queries with different 

percentages of untrusted facts using the knowledge base LUBM (30).In order to show the
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trend o f query response time as the percentage o f untrusted facts change, I also did 

normalization to the original query response time. Table XLIV shows the normalized 

response times for the LUBM 14 queries with different percentages o f  untrusted facts in 

knowledge base LUBM (30).

TABLE XLIO
Response Times (ms) for LUBM 14 Queries with Different Percentages of Untrusted Facts in

Knowledge Base LUBM (30)

0% 5% 12% 16% 26% 31% 41% 55%
queryl 4858. 6345. 4445. 5893. 10055. 12741. 14581. 20641.

query2 23622. 25975. 12576. 13446. 23669. 33979. 34361. 42458.
query3 25. 562. 1155. 1740. 3031. 3565. 7939. 9416.
query4 546. 935. 1365. 3116. 4479. 6021. 7384. 11848.
query5 16. 887. 1534. 2471. 5206. 6714. 8627. 11781.
query6 5659. 12074. 7867. 10156. 15302. 21988. 23184. 32498.
query7 8216. 9559. 10093. 11942. 15823. 20997. 24054. 30402.

query8 9590. 13380. 15244. 16914. 21406. 23186. 28721. 37282.
query9 6073. 11687. 11542. 15634. 17752. 21313. 24462. 32695.

queryl0 290. 3991. 6093. 8074. 10901. 13405. 17355. 22698.
queryl 1 312. 704. 1272. 1984. 4002. 5052. 5034. 7881.
queryl2 270. 635. 1271. 2651. 3168. 4006. 6123. 8637.

queryl 3 16. 852. 1723. 2652. 4960. 6249. 7135. 13212.
query 14 1562. 1763. 2593. 4277. 4991. 6143. 8060. 10747.

I have again calculated the Pearson product-moment correlation coefficient 

between the query response time and the untrusted percentage. All the correlation 

coefficient value for the 14 queries are between 0.818 and 0.998, and 13 probability o f 

significance p-values [185] (one-tailed) are all below significance level 0.01 (using 

Student's t distribution), showing all these 13 correlation coefficient values are 

statistically significant except for one. Only one probability o f  significance p-value (one­

tailed) is 0.012, which is a little greater than significance level 0.01, but still less than
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0.05. A strong and positive relationship between the query response time and the 

untrusted percentage are shown in Table XLIV and confirmed by the above correlation 

coefficient values. I fit curves to the data in Table XLIV using exponential regression for 

query 7 .1 present the trend lines with equation and coefficient of determination in Fig.

2 0 .1 fit curves to the data in Table XLIV using linear regression for query 13.1 present 

the trend lines with equation and coefficient o f  determination in o f Fig. 21.

TABLE XLIV
T h e  R e l a t i v e  R e s p o n s e  T im e s  f o r  LUBM 14 Q u e r i e s  w i t h  D i f f e r e n t  P e r c e n t a g e s  o f  

U n t r u s t e d  F a c t s  in  K n o w l e d g e  B a s e  LUBM (30)

0.05 0.12 0.16 0.26 0.31 0.41 0.55
queryl 1.306 0.9150 1.213 2.070 2.623 3.001 4.249

query2 1.0996 0.53238 0.56922 1.0020 1.4384 1.4546 1.7974

query3 22. 46. 70. 120 140 320 380

query4 1.71 2.50 5.71 8.20 11.0 13.5 21.7

query5 55. 96. 150 320 420 540 740

query6 2.134 1.390 1.795 2.704 3.885 4.097 5.743

query7 1.163 1.228 1.454 1.926 2.556 2.928 3.700

query8 1.395 1.590 1.764 2.232 2.418 2.995 3.888

query9 1.924 1.900 2.574 2.923 3.509 4.028 5.384

query 10 13.8 21.0 27.8 37.6 46.2 59.8 78.3

queryl 1 2.26 4.08 6.36 12.8 16.2 16.1 25.2

queryl 2 2.35 4.71 9.82 11.7 14.8 22.7 32.0

query 13 53 110 160 310 390 440 820

query 14 1.129 1.660 2.738 3.195 3.933 5.16 6.880

Table XLV shows the Pearson product-moment correlation coefficients o f  linear, 

exponential and power curves for the data from Table XLIV. As Table XLV shows, the 

difference among the liner, exponential and power correlation coefficients is between 

0.0133 and 0.1720 for the 14 queries. There is no one correlation coefficient value that is



significantly larger than the others for each query. So we are not able to tell if  the growth 

is linear or exponential or power due to the close correlation coefficient values.

TABLE XLV
The Correlation Coefficients of Linear, Exponential and Power Curve for Query Response Time and the 

Untrusted Percentage in Knowledge Base LUBM (30)

Q uery Linear E xponential Pow er
query 1 0.9666 0.9357 0.8411
query 2 0.8176 0.7452 0.5732
query 3 0.9695 0.9700 0.9833
query 4 0.9887 0.9516 0.9778
query 5 0.9959 0.9529 0.9869
query 6 0.9451 0.9107 0.7941
query 7 0.9883 0.9820 0.9380
query 8 0.9925 0.9990 0.9471
query 9 0.9857 0.9825 0.9296
query 10 0.9986 0.9747 0.9900
query 11 0.9822 0.9363 0.9863
query 12 0.9889 0.9447 0.9875
query 13 0.9791 0.9608 0.9916
query 14 0.9935 0.9608 0.9842

query7

4 .5  
4

3.5 

3

2.5 

2

1.5 

1
0 .5

0

V = 0 .9 9 9 2 e 2S3i8x 
R2 = 0 .9 6 4 5 ■

0% 10% 20% 30% 40% 50% 60%

Fig. 20. An example o f  curve fitting using exponential regression for Query7 in LUBM (30)
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q u e ry l3  (query response tim e)

1000

800 y = 1478.4X - 64.415 *
R2 = 0.9587
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Fig. 21. An example o f  curve fitting using linear regression for Queryl 3 in LUBM  (30)

Based on these experiments, there is a positive relationship between the query 

response time and the untrusted percentage, however the rate of growth is never much 

worse than linear for untrusted percentages below 50%, indicating that the data point at 

which we need to run forward chaining to improve the query response time has not 

explicitly appeared before half o f the knowledge base is untrusted, and that the trust- 

based hybrid reasoning algorithm works fine when the untrusted percentages are below 

50%. I was actually expecting a faster-than-linear growth to help me to find the point at 

which we need to run forward chaining. However, I have not observed this faster-than- 

linear growth in this experiment. The nearly-linear behavior observed in these 

experiments suggests that the hybrid reasoner’s performance may degrade only smoothly 

and robustly after substantial numbers o f changes.
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CHAPTER 7 

CONTRIBUTIONS AND FUTURE WORK

7.1 Conclusions

ScienceWeb is a system that collects information about a research community and 

allows users to ask qualitative and quantitative questions related to that information using 

a reasoning engine. The more complete the knowledge base is, the more helpful answers 

the system will provide. As the size o f knowledge base increases, scalability becomes a 

challenge for the reasoning system. It may handle millions even hundreds o f  millions o f 

items in the knowledge base. As users make changes to the knowledge base and/or new 

information is collected, providing fast enough response time (ranging from seconds to a 

few minutes) is one o f the core challenges for the reasoning system.

In this thesis I researched the issues involved in designing a hybrid reasoning 

architecture and developing a scalable reasoning system whose scalability and efficiency 

are able to meet the requirements o f query and answering in a semantic web system when 

facing both a fixed knowledge base and an evolving knowledge base.

The objectives o f my thesis were:

• Support scalable reasoning o f ScienceWeb to answer qualitative questions 

effectively when facing a fixed knowledge base

• Support scalable reasoning o f ScienceWeb to answer qualitative questions 

effectively when facing an evolving knowledge base

My research has met these objectives. Interposing a backward chaining reasoner
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between an evolving knowledge base and a query manager with support o f “trust” yields 

an architecture that can support reasoning in the face of frequent changes. An optimized 

query-answering algorithm, an optimized backward chaining algorithm and a trust-based 

hybrid reasoning algorithm are three key algorithms in such an architecture. I described 

these three algorithms and the corresponding evaluations in Chapter 4, 5 and 6 

respectively. Collectively, these three algorithms are significant contributions to the field 

o f backward chaining reasoners over ontologies.

When comparing to a traditional backward-chaining reasoner, the implementation 

o f the optimized query answering algorithm is better in: 1) handling much larger 

knowledge base; 2) working with more complete rule sets (including all o f  the OWL 

rules); 3) responding to queries significantly faster in most cases.

When comparing the results with and without optimization techniques, the 

optimization techniques improved the efficiency o f  the backward chaining algorithm 

significantly in terms of time and space when compared to standard backward-chaining 

reasoners. When comparing the results with the forward-chaining reasoner in scenarios 

where the knowledge base is subject to frequent change, the optimized algorithm 

outperformed the forward-chaining reasoner.

When comparing the performance o f  a forward chaining algorithm to that o f  a 

pure backward chaining algorithm, the trust-based hybrid reasoning algorithm is better in 

almost all the cases tested.

With the support o f rule-based reasoning, the ScienceWeb is able to answer 

qualitative questions. With the support o f external storage, I extended our study to a 

knowledge base o f more than 10 Million triples, increasing the scalability o f the
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backward chaining reasoning system. With the concept o f “trust” and optimization 

techniques, I increased the efficiency o f  the reasoning system that we have proposed. In 

short, I have designed a hybrid reasoning architecture and developed a scalable reasoning 

system whose scalability and efficiency are able to meet the requirements o f  query and 

answering in a semantic web system when facing both a fixed knowledge base and an 

evolving knowledge base.

7.2 Future Work

In the future I will attempt to scale the knowledge base to the billion-triple level 

using further algorithm optimization and will design a new external storage management 

system.

I have not yet explored the impact o f long sequences o f individual changes on the 

marking algorithm time nor subsequently on the hybrid reasoner. In future work, I plan to 

explore the performance o f the trust marking algorithm and o f the hybrid reasoner as a 

function o f the fraction o f the knowledge base that is untrusted, a measure that would 

combine both the number of changes and the extent o f their impact throughout the 

semantic graph.

Finally, I would like to explore the dynamic aspects o f  the queries over time and 

to assess the impact o f the distribution o f the queries and o f the number o f changes and 

the type o f changes in the same period.
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