105 research outputs found

    A Resilient and Energy-saving Incentive System for Resource Sharing in MANETs

    Get PDF
    Despite of all progress in terms of computational power, communication bandwidth, and feature richness, limited battery capacity is the major bottleneck for using the resources of mobile devices in innovative distributed applications. Incentives are required for motivating a user to spend energy on behalf of other users and it must be ensured that providing these incentives neither consumes much energy by itself nor allows for free-riding and other types of fraud. In this paper, we present a novel incentive system that is tailored to the application scenario of energyaware resource-sharing between mobile devices. The system has low energy consumption due to avoiding the use of public key cryptography. It uses a virtual currency with reusable coins and detects forgery and other fraud when cashing coins at an off-line broker. A prototype-based measurement study indicates the energy-efficiency of the system, while simulation studies show its resilience to fraud. Even in scenarios with 75% of fraudulent users that are colluding to disguise their fraud only 3.2% of them get away with it while the energy overhead (about 3%) for the incentive system is still moderat

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    C.O.M.U.N.I.: Keeping communication alive, trustworthy, and open

    Get PDF
    With the increasing ubiquity of smartphones, their potential as emergency communication tools has become pivotal. Conventional communication tools often fall short in crises, leading to information gaps and coordination challenges among affected individuals, emergency responders, and decision-makers. This raises the need for a more robust and reliable communication system during emergencies. Despite the widespread availability of smartphones, there is a significant limitation to leveraging them as effective communication tools during emergencies. Current messaging applications have not effectively maximized their reach and utility, especially for information sharing and assistance coordination. Further, they frequently lack moderation tools and channels for official messages. The thesis aims to address this gap by proposing a smartphone application designed for emergencies. The objectives of the thesis include providing an overview of the state-of-the-art in mobile ad-hoc networks, defining specific use cases and experimentation scenarios, and ultimately designing and implementing a network architecture and a prototype application. The prototype aspires to facilitate efficient information sharing, coordinate assistance, and ensure timely access to accurate information for all stakeholders while ensuring a high quality of messages and safe access for anyone. To achieve this, the application combines technologies of peer-to-peer communication with more traditional communication via cellular networks. The proposed system incorporates features such as real-time communication, user authentication, message verification, and community moderation. A requirements-based evaluation is conducted to assess the effectiveness of the application in fulfilling user needs and enhancing communication channels during emergencies. The evaluation demonstrates that the proposed application effectively fulfills user requirements and showcases its potential to augment communication during crises. The system is further compared against existing messaging applications, highlighting its significant advantages and enhancements over the current state-of-the-art solutions

    Performance evaluation of cooperation strategies for m-health services and applications

    Get PDF
    Health telematics are becoming a major improvement for patients’ lives, especially for disabled, elderly, and chronically ill people. Information and communication technologies have rapidly grown along with the mobile Internet concept of anywhere and anytime connection. In this context, Mobile Health (m-Health) proposes healthcare services delivering, overcoming geographical, temporal and even organizational barriers. Pervasive and m-Health services aim to respond several emerging problems in health services, including the increasing number of chronic diseases related to lifestyle, high costs in existing national health services, the need to empower patients and families to self-care and manage their own healthcare, and the need to provide direct access to health services, regardless the time and place. Mobile Health (m- Health) systems include the use of mobile devices and applications that interact with patients and caretakers. However, mobile devices have several constraints (such as, processor, energy, and storage resource limitations), affecting the quality of service and user experience. Architectures based on mobile devices and wireless communications presents several challenged issues and constraints, such as, battery and storage capacity, broadcast constraints, interferences, disconnections, noises, limited bandwidths, and network delays. In this sense, cooperation-based approaches are presented as a solution to solve such limitations, focusing on increasing network connectivity, communication rates, and reliability. Cooperation is an important research topic that has been growing in recent years. With the advent of wireless networks, several recent studies present cooperation mechanisms and algorithms as a solution to improve wireless networks performance. In the absence of a stable network infrastructure, mobile nodes cooperate with each other performing all networking functionalities. For example, it can support intermediate nodes forwarding packets between two distant nodes. This Thesis proposes a novel cooperation strategy for m-Health services and applications. This reputation-based scheme uses a Web-service to handle all the nodes reputation and networking permissions. Its main goal is to provide Internet services to mobile devices without network connectivity through cooperation with neighbor devices. Therefore resolving the above mentioned network problems and resulting in a major improvement for m-Health network architectures performances. A performance evaluation of this proposal through a real network scenario demonstrating and validating this cooperative scheme using a real m-Health application is presented. A cryptography solution for m-Health applications under cooperative environments, called DE4MHA, is also proposed and evaluated using the same real network scenario and the same m-Health application. Finally, this work proposes, a generalized cooperative application framework, called MobiCoop, that extends the incentive-based cooperative scheme for m-Health applications for all mobile applications. Its performance evaluation is also presented through a real network scenario demonstrating and validating MobiCoop using different mobile applications

    Efficient, Reliable and Secure Distributed Protocols for MANETs

    Get PDF
    This thesis is divided into two parts. The first part explores the difficulties of bootstrapping and maintaining a security infrastructure for military Mobile Ad Hoc NETworks (MANETs). The assumed absence of dedicated infrastructural elements necessitates, that security services in ad hoc networks may be built from the ground up. We develop a cluster algorithm, incorporating a trust metric in the cluster head selection process to securely determine constituting nodes in a distributed Trust Authority (TA) for MANETs. Following this, we develop non-interactive key distribution protocols for the distribution of symmetric keys in MANETs. We explore the computational requirements of our protocols and simulate the key distribution process. The second part of this thesis builds upon the security infrastructure of the first part and examines two distributed protocols for MANETs. Firstly, we present a novel algorithm for enhancing the efficiency and robustness of distributed protocols for contacting TA nodes in MANETs. Our algorithm determines a quorum of trust authority nodes required for a distributed protocol run based upon a set of quality metrics, and establishes an efficient routing strategy to contact these nodes. Secondly, we present a probabilistic path authentication scheme based on message authentication codes (MACs). Our scheme minimises both communication and computation overhead in authenticating the path over which a stream of packets travels and facilitates the detection of adversarial nodes on the path

    Modeling Security and Resource Allocation for Mobile Multi-hop Wireless Neworks Using Game Theory

    Get PDF
    This dissertation presents novel approaches to modeling and analyzing security and resource allocation in mobile ad hoc networks (MANETs). The research involves the design, implementation and simulation of different models resulting in resource sharing and security’s strengthening of the network among mobile devices. Because of the mobility, the network topology may change quickly and unpredictably over time. Moreover, data-information sent from a source to a designated destination node, which is not nearby, has to route its information with the need of intermediary mobile nodes. However, not all intermediary nodes in the network are willing to participate in data-packet transfer of other nodes. The unwillingness to participate in data forwarding is because a node is built on limited resources such as energy-power and data. Due to their limited resource, nodes may not want to participate in the overall network objectives by forwarding data-packets of others in fear of depleting their energy power. To enforce cooperation among autonomous nodes, we design, implement and simulate new incentive mechanisms that used game theoretic concepts to analyze and model the strategic interactions among rationale nodes with conflicting interests. Since there is no central authority and the network is decentralized, to address the concerns of mobility of selfish nodes in MANETs, a model of security and trust relationship was designed and implemented to improve the impact of investment into trust mechanisms. A series of simulations was carried out that showed the strengthening of security in a network with selfish and malicious nodes. Our research involves bargaining for resources in a highly dynamic ad-hoc network. The design of a new arbitration mechanism for MANETs utilizes the Dirichlet distribution for fairness in allocating resources. Then, we investigated the problem of collusion nodes in mobile ad-hoc networks with an arbitrator. We model the collusion by having a group of nodes disrupting the bargaining process by not cooperating with the arbitrator. Finally, we investigated the resource allocation for a system between agility and recovery using the concept of Markov decision process. Simulation results showed that the proposed solutions may be helpful to decision-makers when allocating resources between separated teams
    corecore