39,124 research outputs found

    Nonlinear Models of Neural and Genetic Network Dynamics:\ud \ud Natural Transformations of Ɓukasiewicz Logic LM-Algebras in a Ɓukasiewicz-Topos as Representations of Neural Network Development and Neoplastic Transformations \ud

    Get PDF
    A categorical and Ɓukasiewicz-Topos framework for Algebraic Logic models of nonlinear dynamics in complex functional systems such as Neural Networks, Cell Genome and Interactome Networks is introduced. Ɓukasiewicz Algebraic Logic models of both neural and genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable next-state/transfer functions is extended to a Ɓukasiewicz Topos with an N-valued Ɓukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.\u

    Ɓukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models

    Get PDF
    A categorical and Ɓukasiewicz-Topos framework for Algebraic Logic models of nonlinear dynamics in complex functional systems such as Neural Networks, Cell Genome and Interactome Networks is introduced. Ɓukasiewicz Algebraic Logic models of both neural and genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Ɓukasiewicz Topos with an n-valued Ɓukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis

    Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models

    Get PDF
    Operational logic and bioinformatics models of nonlinear dynamics in complex functional systems such as neural networks, genomes and cell interactomes are proposed. Łukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Łukasiewicz Topos with an n-valued Łukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis

    Natural Transformations of Organismic Structures

    Get PDF
    The mathematical structures underlying the theories of organismic sets, (M, R)-systems and molecular sets are shown to be transformed naturally within the theory of categories and functors. Their natural transformations allow the comparison of distinct entities, as well as the modelling of dynamics in “organismic” structures

    Organismic Supercategores: II. On Multistable Systems\ud \ud

    Get PDF
    The representation of biological systems in terms of organismic supercategories, introduced in previous papers by Baianu et al. (Bull. Math. Biophysics,30, 625–636;31, 59–70) is further discussed. To state more clearly this representation some new definitions are introduced. Also, some necessary changes in axiomatics are made. The conclusion is reached that any organismic supercategory has at least one superpushout, and this expresses the fact that biological systems are multistable. This way a connection between some results of Rashevsky’s theory of organismic sets and our results becomes obvious

    A timeband framework for modelling real-time systems

    Get PDF
    Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper
    • 

    corecore