113,798 research outputs found

    Molecular Joint Representation Learning via Multi-modal Information

    Full text link
    In recent years, artificial intelligence has played an important role on accelerating the whole process of drug discovery. Various of molecular representation schemes of different modals (e.g. textual sequence or graph) are developed. By digitally encoding them, different chemical information can be learned through corresponding network structures. Molecular graphs and Simplified Molecular Input Line Entry System (SMILES) are popular means for molecular representation learning in current. Previous works have done attempts by combining both of them to solve the problem of specific information loss in single-modal representation on various tasks. To further fusing such multi-modal imformation, the correspondence between learned chemical feature from different representation should be considered. To realize this, we propose a novel framework of molecular joint representation learning via Multi-Modal information of SMILES and molecular Graphs, called MMSG. We improve the self-attention mechanism by introducing bond level graph representation as attention bias in Transformer to reinforce feature correspondence between multi-modal information. We further propose a Bidirectional Message Communication Graph Neural Network (BMC GNN) to strengthen the information flow aggregated from graphs for further combination. Numerous experiments on public property prediction datasets have demonstrated the effectiveness of our model

    Learning Robust Node Representations on Graphs

    Full text link
    Graph neural networks (GNN), as a popular methodology for node representation learning on graphs, currently mainly focus on preserving the smoothness and identifiability of node representations. A robust node representation on graphs should further hold the stability property which means a node representation is resistant to slight perturbations on the input. In this paper, we introduce the stability of node representations in addition to the smoothness and identifiability, and develop a novel method called contrastive graph neural networks (CGNN) that learns robust node representations in an unsupervised manner. Specifically, CGNN maintains the stability and identifiability by a contrastive learning objective, while preserving the smoothness with existing GNN models. Furthermore, the proposed method is a generic framework that can be equipped with many other backbone models (e.g. GCN, GraphSage and GAT). Extensive experiments on four benchmarks under both transductive and inductive learning setups demonstrate the effectiveness of our method in comparison with recent supervised and unsupervised models.Comment: 16 page

    Learning Laplacian Matrix in Smooth Graph Signal Representations

    Full text link
    The construction of a meaningful graph plays a crucial role in the success of many graph-based representations and algorithms for handling structured data, especially in the emerging field of graph signal processing. However, a meaningful graph is not always readily available from the data, nor easy to define depending on the application domain. In particular, it is often desirable in graph signal processing applications that a graph is chosen such that the data admit certain regularity or smoothness on the graph. In this paper, we address the problem of learning graph Laplacians, which is equivalent to learning graph topologies, such that the input data form graph signals with smooth variations on the resulting topology. To this end, we adopt a factor analysis model for the graph signals and impose a Gaussian probabilistic prior on the latent variables that control these signals. We show that the Gaussian prior leads to an efficient representation that favors the smoothness property of the graph signals. We then propose an algorithm for learning graphs that enforces such property and is based on minimizing the variations of the signals on the learned graph. Experiments on both synthetic and real world data demonstrate that the proposed graph learning framework can efficiently infer meaningful graph topologies from signal observations under the smoothness prior

    Leveraging Orbital Information and Atomic Feature in Deep Learning Model

    Full text link
    Predicting material properties base on micro structure of materials has long been a challenging problem. Recently many deep learning methods have been developed for material property prediction. In this study, we propose a crystal representation learning framework, Orbital CrystalNet, OCrystalNet, which consists of two parts: atomic descriptor generation and graph representation learning. In OCrystalNet, we first incorporate orbital field matrix (OFM) and atomic features to construct OFM-feature atomic descriptor, and then the atomic descriptor is used as atom embedding in the atom-bond message passing module which takes advantage of the topological structure of crystal graphs to learn crystal representation. To demonstrate the capabilities of OCrystalNet we performed a number of prediction tasks on Material Project dataset and JARVIS dataset and compared our model with other baselines and state of art methods. To further present the effectiveness of OCrystalNet, we conducted ablation study and case study of our model. The results show that our model have various advantages over other state of art models

    Hyperbolic Graph Representation Learning: A Tutorial

    Full text link
    Graph-structured data are widespread in real-world applications, such as social networks, recommender systems, knowledge graphs, chemical molecules etc. Despite the success of Euclidean space for graph-related learning tasks, its ability to model complex patterns is essentially constrained by its polynomially growing capacity. Recently, hyperbolic spaces have emerged as a promising alternative for processing graph data with tree-like structure or power-law distribution, owing to the exponential growth property. Different from Euclidean space, which expands polynomially, the hyperbolic space grows exponentially which makes it gains natural advantages in abstracting tree-like or scale-free graphs with hierarchical organizations. In this tutorial, we aim to give an introduction to this emerging field of graph representation learning with the express purpose of being accessible to all audiences. We first give a brief introduction to graph representation learning as well as some preliminary Riemannian and hyperbolic geometry. We then comprehensively revisit the hyperbolic embedding techniques, including hyperbolic shallow models and hyperbolic neural networks. In addition, we introduce the technical details of the current hyperbolic graph neural networks by unifying them into a general framework and summarizing the variants of each component. Moreover, we further introduce a series of related applications in a variety of fields. In the last part, we discuss several advanced topics about hyperbolic geometry for graph representation learning, which potentially serve as guidelines for further flourishing the non-Euclidean graph learning community.Comment: Accepted as ECML-PKDD 2022 Tutoria

    Laplacian Matrix Learning for Smooth Graph Signal Representation

    Get PDF
    The construction of a meaningful graph plays a crucial role in the emerging field of signal processing on graphs. In this paper, we address the problem of learning graph Laplacians, which is similar to learning graph topologies, such that the input data form graph signals with smooth variations on the resulting topology. We adopt a factor analysis model for the graph signals and impose a Gaussian probabilistic prior on the latent variables that control these graph signals. We show that the Gaussian prior leads to an efficient representation that favours the smoothness property of the graph signals, and propose an algorithm for learning graphs that enforce such property. Experiments demonstrate that the proposed framework can efficiently infer meaningful graph topologies from only the signal observations

    A Universal Knowledge Model and Cognitive Architecture for Prototyping AGI

    Full text link
    The article identified 42 cognitive architectures for creating general artificial intelligence (AGI) and proposed a set of interrelated functional blocks that an agent approaching AGI in its capabilities should possess. Since the required set of blocks is not found in any of the existing architectures, the article proposes a new cognitive architecture for intelligent systems approaching AGI in their capabilities. As one of the key solutions within the framework of the architecture, a universal method of knowledge representation is proposed, which allows combining various non-formalized, partially and fully formalized methods of knowledge representation in a single knowledge base, such as texts in natural languages, images, audio and video recordings, graphs, algorithms, databases, neural networks, knowledge graphs, ontologies, frames, essence-property-relation models, production systems, predicate calculus models, conceptual models, and others. To combine and structure various fragments of knowledge, archigraph models are used, constructed as a development of annotated metagraphs. As components, the cognitive architecture being developed includes machine consciousness, machine subconsciousness, blocks of interaction with the external environment, a goal management block, an emotional control system, a block of social interaction, a block of reflection, an ethics block and a worldview block, a learning block, a monitoring block, blocks of statement and solving problems, self-organization and meta learning block

    Causal discovery with ancestral graphs

    Get PDF
    Graphical models serve as a visual representation that captures the underlying conditional independence relationships within distributions, employing either directed or undirected graphs. In this thesis, we explore maximal ancestral graphs (MAGs), which is an extension to the conventionaldirected acyclic graphs (DAGs). While DAGs excel in illustrating causal relationships, they fail to capture all the conditional independences on the margin in the absence of latent confounders and selection bias. MAGs provide a more comprehensive depiction of complex dependencies by encompassing both direct causal connections and indirect influences stemming from latent variables and selection bias. The scalability and accuracy of MAG learning algorithms have been some problems due to the complexity of the space of Markov equivalence classes (MECs) of MAGs and instability of scoring criteria. We first use the concept of heads, tails and parametrizing sets to characterize Markov equivalent MAGs. Then we study imsets of MAGs to address the above issues. The framework of imsets (Studeny, 2006) is an algebraic approach to represent conditional independences. Given the remarkable success of standard imsets within DAGs, where they efficiently represent MECs and offer reliable scoring criteria, we endeavor to extend this framework to MAGs. Through an exploration of 0-1 imsets defined by parametrizing sets, we show under which conditions does this extended `standard imset' of MAGs define the correct model. Consequently, we refine the ordered local Markov property of MAGs (Richardson, 2003), demonstrating that the newly proposed refined Markov property can be constructed in polynomial time if we bound maximal head size. Finally, we apply the above results to develop novel score-based learning algorithms for MAGs. To efficiently traverse between MECs of MAGs, we identify some important graphical features within MAGs whose independence models are subsets of others. Leveraging the imsets derived from the refined Markov property, we establish a consistent scoring criterion, offering an alternative to BIC by relying solely on estimates of entropy over subsets of variables. Empirical experiments show promising results when compared to state-of-the-art algorithms
    • …
    corecore