
LAPLACIAN MATRIX LEARNING FOR SMOOTH GRAPH SIGNAL REPRESENTATION

Xiaowen Dong †, Dorina Thanou ‡, Pascal Frossard ‡ and Pierre Vandergheynst ‡

† Media Lab, MIT, USA
xdong@mit.edu

‡ Signal Processing Laboratories, EPFL, Switzerland
{dorina.thanou, pascal.frossard, pierre.vandergheynst}@epfl.ch

ABSTRACT

The construction of a meaningful graph plays a crucial role in the
emerging field of signal processing on graphs. In this paper, we ad-
dress the problem of learning graph Laplacians, which is similar to
learning graph topologies, such that the input data form graph signals
with smooth variations on the resulting topology. We adopt a factor
analysis model for the graph signals and impose a Gaussian proba-
bilistic prior on the latent variables that control these graph signals.
We show that the Gaussian prior leads to an efficient representation
that favours the smoothness property of the graph signals, and pro-
pose an algorithm for learning graphs that enforce such property. Ex-
periments demonstrate that the proposed framework can efficiently
infer meaningful graph topologies from only the signal observations.

Index Terms— Graph learning, graph signal processing, repre-
sentation theory, factor analysis, Gaussian prior.

1. INTRODUCTION

Modern data processing tasks often manipulate structured data,
where signal values are defined on the vertex set V of a weighted
and undirected graph G. We refer to such data as graph signals.
Due to the irregular structure of the graph domain, processing these
signals is a challenging task that combines tools form algebraic and
spectral graph theory with computational harmonic analysis [1, 2].
Currently, most of the research effort in the emerging field of signal
processing on graphs has been devoted to the analysis and process-
ing of the graph signals in both the vertex and the spectral domain
of the graph. The graph however, which is crucial for the successful
processing of these signals, is considered to be known a priori or
naturally chosen from the application domain. However, there are
cases where a good graph is not readily available. It is therefore
desirable in these situations to learn the graph topology from the
observed data such that it captures the intrinsic relationships be-
tween the entities. This is exactly the motivation and objective of
this paper.

The key challenge in the problem of graph learning is to choose
some meaningful criteria to evaluate the relationships between the
signals and the graph topology. In this paper, we are interested in a
family of signals that are smooth on a graph. Given a set of signals
X = {xi}pi=1, xi ∈ Rn, defined on a weighted and undirected
graph G of n vertices, we would like to infer an optimal topology of
G, namely, its edges and the associated weights, which results in the
smoothness of these signals on that graph. More precisely, we want
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to find an optimal Laplacian matrix for the graph G from the signal
observations.

We define the relationship between signals and graphs by revis-
iting the representation learning theory [3]. Specifically, we consider
a factor analysis model for the graph signals, and impose a Gaussian
prior on the latent variables that control the observed signals. The
transformation from the latent variables to the observed signals in-
volves information about the topology of the graph. As a result, we
can define joint properties between the signals and the graph, such
that the signal representation is consistent with the Gaussian prior.
We then propose an algorithm for graph learning that favours signal
representations which are smooth and consistent with the statistical
prior defined on the data. Specifically, given the input signal ob-
servations, our algorithm iterates between the updates of the graph
Laplacian and the signal estimates whose variations on the learned
graph are minimized upon convergence.

We test our graph learning algorithm on synthetic data, where we
show that it efficiently infers the topology of the groundtruth graphs,
by recovering the correct edge positions. We further demonstrate the
meaningfulness of the proposed framework on some meteorological
signals, where we exploit the spectral properties of the learned graph
for clustering its nodes through spectral clustering [4]. The proposed
framework is one of the first rigorous frameworks to solve the chal-
lenging problem of graph learning in graph signal processing. It
provides new insights into the understanding of the interactions be-
tween signals and graphs, which could be beneficial in many real
world applications, such as the analysis of transportation, biomedi-
cal, and social networks.

Finally, it is important to notice that the objective of our graph
learning problem is to infer a graph Laplacian operator that can be
used for analysing or processing graph signals of the same class as
the training signals. This is clearly different from the objective of
frameworks for learning Gaussian graphical models [5, 6, 7] pro-
posed in machine learning, where the estimated inverse covariance
matrix only represents the conditional dependence structure between
the random variables, and cannot be used directly for forming graph
signals of given properties1.

2. FACTOR ANALYSIS FRAMEWORK

We consider the factor analysis [8, 9] model as our signal model,
which is a generic linear statistical model that tries to explain ob-
servations of a given dimension with a potentially smaller number
of unobserved latent variables. Such latent variables usually obey

1Although the work in [7] does learn a valid graph topology, their method
is essentially similar to the classical approach for sparse inverse covariance
estimation, but with a regularized Laplacian matrix.
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given probabilistic priors and lead to effective signal representations
in the graph signal processing setting, as we show next.

We start with the definition of the Laplacian matrix of a graph
G. The unnormalized (or combinatorial) graph Laplacian matrix L
is defined as L = D −W , where D is the degree matrix that con-
tains the degrees of the vertices along the diagonal, and W is the
adjacency matrix of G. Since L is a real and symmetric matrix, it
can be decomposed as L = χΛχT , where χ is the complete set of
orthonormal eigenvectors and Λ is the diagonal eigenvalue matrix
where the eigenvalues are sorted in increasing order. The smallest
eigenvalue is 0 with a multiplicity equal to the number of connected
components of the graph [10].

We consider the following model:

x = χh+ ux + ε, (1)

where x ∈ Rn represents the observed graph signal, h ∈ Rn rep-
resents the latent variable that controls the graph signals x, χ is the
representation matrix that linearly relates the two random variables,
ux ∈ Rn is the mean of x, and ε is a multivariate Gaussian noise
with mean zero and covariance σ2

ε In. The probability density func-
tion of ε is given by:

p(ε) ∼ N (0, σ2
ε In). (2)

Moreover, we impose a Gaussian prior on the latent variable h.
Specifically, we assume that the latent variable h follows a degen-
erate zero-mean multivariate Gaussian distribution with precision
matrix defined as the eigenvalue matrix Λ of the graph Laplacian L:

p(h) ∼ N (0,Λ†). (3)

where Λ† is the Moore-Penrose pseudoinverse of Λ. The conditional
probability of x given h, and the probability of x, are respectively
given as:

p(x|h) ∼ N (χh+ ux, σ
2
ε In), (4)

p(x) ∼ N (ux, L
† + σ2

ε In), (5)

where we have used in Eq. (5) the fact that the pseudoinverse of L,
L†, admits the eigendecomposition L† = χΛ†χT .

The representation in Eq. (1) leads to smoothness properties for
the signal on the graph. To see this, recall that the latent variables
h explain the graph signal x through the representation matrix χ,
namely, the eigenvector matrix of the graph Laplacian. Given the
observation x and the multivariate Gaussian prior distribution of h
in Eq. (3), we are thus interested in a maximum a posteriori (MAP)
estimate of h. Specifically, by applying Bayes’ rule and assuming
without loss of generality that ux = 0, the MAP estimate of the
latent variable h can be written as follows [11]:

hMAP(x) := arg max
h

p(h|x) = arg max
h

p(x|h)p(h)

= arg min
h

(−log pE(x− χh)− log pH(h)) .
(6)

From the probability distributions shown in Eq. (2) and Eq. (3), the
above MAP estimate of Eq. (6) can be expressed as:

hMAP(x) = arg min
h
||x− χh||22 + α hTΛh, (7)

where α is some constant parameter. In a noise-free scenario where
x = χh, Eq. (7) corresponds to minimizing the following quantity:

hTΛh = (χTx)TΛχTx = xTχΛχTx = xTLx. (8)

The Laplacian quadratic term in Eq. (8) is usually considered as a
measure of smoothness of the signal x on G [12]. Therefore, we see
that in a factor analysis model in Eq. (1), a Gaussian prior in Eq. (3)
imposed on the latent variable h leads to smoothness properties for
the graph signal. Similar observations can be made in a noisy sce-
nario, where the main component of the signal x, namely, χh, is
smooth on the graph. We are going to make use of the above obser-
vations in our graph learning algorithm in the following section.

3. LEARNING GRAPH LAPLACIAN UNDER SIGNAL
SMOOTHNESS PRIOR

As shown above, given a Gaussian prior in the factor analysis model
of the graph signals, the MAP estimate of h in Eq. (7) implies that the
signal observations form smooth graph signals. Specifically, notice
in Eq. (7) that both the representation matrix χ and the precision
matrix Λ of the Gaussian prior distribution imposed on h come from
the graph Laplacian L. They respectively represent the eigenvector
and eigenvalue matrices of L. When the graph is unknown, we can
therefore have the following joint optimization problem of χ, Λ and
h in order to infer the graph topology:

min
χ,Λ,h

||x− χh||22 + α hTΛh. (9)

Eq. (9) can be simplified with the change of variable y = χh to:

min
L,y
||x− y||22 + α yTLy. (10)

According to the factor analysis model in Eq. (1), y can be consid-
ered as a “noiseless” version of the zero-mean observation x. Due
to the properties of the graph Laplacian L, the quadratic form yTLy
in Eq. (10) is usually considered as a measure of smoothness of the
signal y on G. Solving the problem of Eq. (10) is thus equivalent
to finding jointly the Laplacian L (which is equivalent to the topol-
ogy of the graph) and the signal y that is close to the observation x
and at the same time smooth on the learned graph G. As a result,
it enforces the smoothness property of the observed signals on the
learned graph.

We propose to solve the optimization problem of Eq. (10) with
the following objective function given in a matrix form:

min
L∈Rn×n,Y ∈Rn×p

||X − Y ||2F + α tr(Y TLY ) + β||L||2F ,

s.t. tr(L) = n, Lij = Lji ≤ 0, i 6= j, L · 1 = 0,
(11)

where X ∈ Rn×p contains the p input data samples {xi}pi=1 as
columns, α and β are two positive regularization parameters, and 1
and 0 denote the constant one and zero vectors. The first constraint
(the trace constraint) in Eq. (11) permits to avoid trivial solutions,
and the second and third constraints guarantee that the learned L is
a valid Laplacian matrix. The latter is particularly important for two
reasons: (i) only a valid Laplacian matrix can lead to the interpreta-
tion of the input data as smooth graph signals; (ii) a valid Laplacian
allows us to define notions of frequencies in the irregular graph do-
main, and use successfully already existing signal processing tools
on graphs [1]. Furthermore, under the latter constraints, the trace
constraint essentially fixes the L1-norm of L, while the Frobenius
norm is added as a penalty term in the objective function to control
the distribution of the off-diagonal entries in L, namely, the edge
weights of the learned graph.

The optimization problem of Eq. (11) is not jointly convex in
L and Y . Therefore, we adopt an alternating optimization scheme



where, at each step, we fix one variable and solve for the other vari-
able. Specifically, at the first step, for a given Y (which at the first
iteration is initialized as the input X), we solve the following opti-
mization problem with respect to L:

min
L

α tr(Y TLY ) + β||L||2F ,

s.t. tr(L) = n, Lij = Lji ≤ 0, i 6= j, L · 1 = 0.
(12)

At the second step, L is fixed and we solve the following optimiza-
tion problem with respect to Y :

min
Y
||X − Y ||2F + α tr(Y TLY ). (13)

Both Eq. (12) and Eq. (13) can be casted as convex optimization
problems. The first one is a quadratic program that can be solved
efficiently with state-of-the-art convex optimization packages, while
the second one has a closed form solution. A detailed description
about solving these two problems is presented in [13]. We then al-
ternate between these two steps to get the final solution to the prob-
lem of Eq. (11), and we generally observe convergence to a local
minimum within a few iterations.

We finally remark that the proposed learning framework has
some similarity with the one in [14], where the authors have pro-
posed a similar objective as the one in Eq. (11), based on a smooth-
ness or fitness metric of the signals on graphs. However, we rather
take here a probabilistic approach that is analogous to the one in
the traditional signal representation setting with the factor analysis
model. This gives us an extra data fitting term ||X − Y ||2F in the
objective function of the optimization problem of Eq. (11). In prac-
tice, when the power of Laplacian is chosen to be 1, the problem in
[14] corresponds to finding the solution to a single instance of the
problem of Eq. (12) by assuming that X = Y .

4. EXPERIMENTS

4.1. Experimental settings

We denote the proposed algorithm as GL-SigRep and test its perfor-
mance by comparing the graph learned from sets of synthetic or real
world observations to the groundtruth graph. We provide both vi-
sual and quantitative comparisons, where we compare the existence
of edges in the learned graph to the ones of the groundtruth graph.
In our experiments, we solve the optimization of Eq. (12) using the
convex optimization package CVX [15, 16]. The experiments are
carried out on different sets of parameters, namely, for different val-
ues of α and β in Eq. (11). Finally, we prune insignificant edges that
have a weight smaller than 10−4 in the learned graph.

We compare the proposed graph learning framework to a state-
of-the-art approach for estimating a sparse inverse covariance ma-
trix for Gaussian Markov Random Field (GMRF). Specifically, the
works in [5, 6] propose to solve the following L1-regularized log-
determinant program:

min
Lpre∈Rn×n

tr(SLpre)− log det(Lpre) + λ||Lpre||1, (14)

where Lpre is the inverse covariance matrix (or precision matrix) to
estimate, S = XXT is the sample covariance matrix, λ is a regular-
ization parameter, det(·) denotes the determinant, and || · ||1 denotes
the L1-norm. The problem of Eq. (14) is conceptually similar to
the problem of Eq. (11), in the sense that both can be interpreted
as estimating the precision matrix of a multivariate Gaussian distri-
bution. An important difference is however that the precision ma-
trix in our framework is a valid graph Laplacian, while the one in

Eq. (14) is not. Therefore, Lpre cannot be interpreted as a graph
topology for defining graph signals; it rather only reflects the partial
correlations between the random variables that control the observa-
tions. As a result, the learning of Lpre is not directly linked to the
desired properties of the input graph signals. In our experiments,
we solve the L1-regularized log-determinant program of Eq. (14)
with the ADMM [17]. We denote this algorithm as GL-LogDet.
We test GL-LogDet based on different choices of the parameter λ
in Eq. (14). In the evaluation, all the off-diagonal non-zero entries
whose absolute values are above the threshold of 10−4 are consid-
ered as valid correlations. These correlations are then considered as
learned “edges” and compared against the edges in the groundtruth
graph for performance evaluation.

4.2. Results on synthetic data

We first carry out experiments on a synthetic graph of 20 ver-
tices. More specifically, we generate the coordinates of the vertices
uniformly at random in the unit square, and compute the edge
weights between every pair of vertices using the Euclidean dis-
tances between them and a Gaussian radial basis function (RBF):
exp

(
−d(i, j)2/2σ2

)
, with the width parameter σ = 0.5. We re-

move all the edges whose weights are smaller than 0.75. We then
compute the graph Laplacian L and normalize the trace according
to Eq. (11). Moreover, we generate 100 signals X = {xi}100

i=1 that
follow the distribution shown in Eq. (5) with ux = 0 and σε = 0.5.
We then apply GL-SigRep and GL-LogDet to learn the graph
Laplacian or the precision matrix, respectively, given only X .

In Fig. 1, we show visually, from the left to the right columns,
the Laplacian matrix of the groundtruth graph, the graph Lapla-
cian learned by GL-SigRep, the precision matrix learned by GL-
LogDet, and the sample covariance matrix S = XXT , for one ran-
dom instance of the Gaussian RBF graph2. We see clearly that the
graph Laplacian matrix learned by GL-SigRep is visually more con-
sistent with the groundtruth data than the precision matrix learned by
GL-LogDet and the sample covariance matrix.

Next, we evaluate quantitatively the performance of our graph
learning algorithm in recovering the positions of the edges in the
groundtruth, and we compare to that obtained by GL-LogDet. In
Table 1, we show the best F-measure, Precision, Recall and Nor-
malized Mutual Information (NMI) [18] scores achieved by the two
algorithms averaged over ten random instances of the Gaussian RBF
graph with the associated signals X . Our algorithm clearly outper-
forms GL-LogDet in terms of all the evaluation criteria. Especially,
GL-SigRep achieves an average F-measure score close to 0.9, which
means that the learned graphs have topologies that are very similar
to the groundtruth ones. Further discussions about the influence of
the parameters in the algorithms, the number of training signals, and
the noise level, are presented in [13].

4.3. Learning meteorological graph from temperature data

We now test the proposed graph learning framework on real world
data. Specifically, we consider the average monthly temperature
data collected at 89 measuring stations in Switzerland during the
period between 1981 and 2010. This leads to 12 signals (i.e., one
per month), each of dimension 89, which correspond to the aver-
age temperatures at each of the measuring stations. By applying the

2These results are obtained based on the parameters, namely, α and β in
GL-SigRep and λ in GL-LogDet, that lead to a similar number of edges
as the ones in the groundtruth graph. The values of the sample covariance
matrix are scaled before the visualization.



(a) Gaussian RBF: Groundtruth (b) Gaussian RBF: GL-SigRep (c) Gaussian RBF: GL-LogDet (d) Gaussian RBF: Sample covariance

Fig. 1. The learned graph Laplacian or precision matrices. From the left to the right columns are the groundtruth Laplacian, the Laplacian
learned by GL-SigRep, the precision matrix learned by GL-LogDet, and the sample covariance.

Table 1. Performance comparison for GL-SigRep and GL-LogDet.

Algorithm F-measure Precision Recall NMI
GL-SigRep 0.8803 0.8535 0.9108 0.5902
GL-LogDet 0.4379 0.2918 0.8851 0.0220

proposed graph learning algorithm, we would like to infer a graph
where stations with similar temperature evolutions across the year
are connected. In other words, we aim at learning a graph on which
the observed temperature signals are smooth. In this case, the natural
choice of a geographical graph based on physical distances between
the stations does not seem appropriate for representing the similarity
of temperature values between these stations. Indeed, we observe
that the evolution of temperatures at most of the stations follows
very similar trends across the year and are thus highly correlated,
regardless of the geographical distances between them. On the other
hand, it turns out that altitude is a more reliable source of information
to determine temperature evolutions. For instance, as we observed
from the data, temperatures at two stations, Jungfraujoch and Piz
Corvatsch, follow similar trends that are clearly different from other
stations, possibly due to their similar altitudes (both are more than
3000 metres above sea level). Therefore, the goal of our experiment
is then to hopefully learn a graph that reflects the altitude relation-
ship between the stations given the observed temperature signals.

We verify our results by separating these measuring stations into
disjoint clusters based on the graph learned by GL-SigRep, such that
different clusters correspond to different characteristics of the sta-
tions. In particular, since the learned graph is a valid Laplacian, we
can apply the spectral clustering algorithm [4] to partition the vertex
set into two disjoint clusters. The results are shown in Fig. 2, where
the red and blue dots represent two different clusters of stations. As
we can see, the stations in the red cluster are mainly those built on
the mountains, such as those in the Jura Mountains and Alps, while
the ones in the blue cluster are mainly stations in flat regions. It is es-
pecially interesting to notice that, the blue stations in the Alps region
(from centre to the bottom right of the map) mainly lie in the valleys
along main roads (such as those in the canton of Valais) or in the
Lugano region. This shows that the obtained clusters indeed capture
the altitude information of the measuring stations hence confirms the
quality of the learned graph topology.

 

 

Fig. 2. Two clusters of the measuring stations obtained by applying
spectral clustering to the learned graph. The red and blue clusters
include stations at higher and lower altitudes, respectively.

5. CONCLUSION

We have presented a framework for learning graph topologies from
the signal observations under the assumption that the resulting graph
signals are smooth. The framework is based on the factor analy-
sis model and leads to the learning of a valid graph Laplacian matrix
that can be used for analysing and processing graph signals. We have
demonstrated through experimental results the efficiency of our al-
gorithm in inferring meaningful graph topologies. We believe that
the proposed graph learning framework can open new perspectives
in the field of signal processing on graphs and can also benefit appli-
cations where one is interested in exploiting spectral graph methods
for processing data whose structure is not explicitly available.
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