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Abstract

Graphical models serve as a visual representation that captures the un-

derlying conditional independence relationships within distributions, em-

ploying either directed or undirected graphs. In this thesis, we explore

maximal ancestral graphs (MAGs), which is an extension to the conven-

tional directed acyclic graphs (DAGs). While DAGs excel in illustrating

causal relationships, they fail to capture all the conditional indepen-

dences on the margin in the absence of latent confounders and selection

bias. MAGs provide a more comprehensive depiction of complex de-

pendencies by encompassing both direct causal connections and indirect

influences stemming from latent variables and selection bias.

The scalability and accuracy of MAG learning algorithms have been

some problems due to the complexity of the space of Markov equivalence

classes (MECs) of MAGs and instability of scoring criteria. We first use

the concept of heads, tails and parametrizing sets to characterize Markov

equivalent MAGs. Then we study imsets of MAGs to address the above

issues.

The framework of imsets (Studený, 2006) is an algebraic approach to

represent conditional independences. Given the remarkable success of

standard imsets within DAGs, where they efficiently represent MECs

and offer reliable scoring criteria, we endeavor to extend this framework

to MAGs. Through an exploration of 0-1 imsets defined by parametriz-

ing sets, we show under which conditions does this extended ‘standard

imset’ of MAGs define the correct model. Consequently, we refine the

ordered local Markov property of MAGs (Richardson, 2003), demonstrat-

ing that the newly proposed refined Markov property can be constructed

in polynomial time if we bound maximal head size.

Finally, we apply the above results to develop novel score-based learning

algorithms for MAGs. To efficiently traverse between MECs of MAGs,

we identify some important graphical features within MAGs whose in-

dependence models are subsets of others. Leveraging the imsets derived



from the refined Markov property, we establish a consistent scoring cri-

terion, offering an alternative to BIC by relying solely on estimates of

entropy over subsets of variables. Empirical experiments show promising

results when compared to state-of-the-art algorithms.
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Preface

This thesis studies maximal ancestral graphs (MAGs), which are a class of graphical

models and strictly extend DAGs models. We try to fit it into the framework of im-

sets and our results can address several issues in existing graph learning algorithms.

Chapter 1 begins with detailed introduction to MAGs and imsets, then follows

with formal definitions. The first main result is in Chapter 2, which gives a graphical

characterization of MECs of MAGs. This non-parametric characterization uses the

concept of parametrizing sets and results in polynomial time algorithms to

(i) verify equivalence between two MAGs, and

(ii) project an acyclic directed mixed graph (ADMGs) to a Markov equivalent

MAG.

Then in Chapter 3, we present the following results:

(i) the formula of the ‘standard’ imset uG using parametrizing sets, and its prop-

erties;

(ii) when the MAGs are simple (no head of size three or more), the imset does

define the right model;

(iii) a proof that IuG ⊆ IG for all MAGs G (provided that IuG is well-defined),

where IuG and IG are lists of conditional independences implied by the imset

uG or graph G,

If IuG ⊊ IG, this means that when the imset we defined does not include all the

conditional independences implied by the graph. See full definitions in Section 1.2.

Then we introduce the idea of power DAGs1, inspired by the decomposition of uG

of general MAGs. Using the power DAGs, we introduce a new Markov property,

simpler than the local Markov property and can be constructed in polynomial time

under mild assumptions on the corresponding graphs.

1The name of our power DAG is inspired by the intrinsic power DAG in Richardson et al.
(2017), though we have developed this idea independently.

1



Later in Chapter 3, we focus on imsets of bidirected graphs and show that for a

subclass of bidirected graphs, the imset defines the right model. Also we show that if

some specific patterns are shown in subgraphs induced by ancestral sets, then either

IuG is not defined, or IuG ̸= IG. In Section 3.6, we will also report our experimental

results on which graphs are perfectly Markovian (IG = IuG) when |V | ≤ 7.

Moreover, we present applications of the above results to MAG learning algo-

rithms in Chapter 4. Finally, discussion is given in Chapter 5.

In this thesis, our main emphasis is on directed MAGs, specifically those with-

out any undirected components. Although Section 2.5 extends some findings from

previous Sections in Chapter 2 to MAGs incorporating undirected components, it’s

essential to note that the remaining portion of the thesis solely discusses directed

MAGs.
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Chapter 1

Preliminary

1.1 Graphical Models: MAGs

Maximal ancestral graphs (MAGs) (Richardson and Spirtes, 2002) are used to model

distributions via conditional independence (CI) relations. They are an extension of

directed acyclic graphs (DAGs) as MAGs remove the assumption of no latent con-

founders, and allow data arising from distributions with more general independence

structure. These graphs have been proven to be useful in various scenarios, for ex-

ample, to infer causal effects from observational data. Therefore learning the best

graph associated with the data is an important task.

There are three classic types of learning algorithms for graphical models: there

are constraint-based and score-based methods, and then hybrid methods that com-

bine the first two approaches. The canonical constraint-based method for learning

DAGs/MAGs is the PC/FCI algorithm (Spirtes et al., 2000). Briefly speaking, this

type of method tests for conditional independences in the empirical distribution, and

uses the results to reconstruct the graph. The problem of constraint-based methods

is that when the group of variables is large, it is likely that a mistake in testing a

conditional independence will be made; this error can be propagated through the

algorithm, and the resulting graph will not reflect the true independence structure

generating the data (see, e.g. Ramsey et al., 2006; Evans, 2020).

Score-based methods tend to be more robust provided an appropriate parametric

model. The main idea is that they go through many graphs and select those with the

highest score. There now exist several score-based methods for MAGs (Triantafil-

lou and Tsamardinos, 2016; Rantanen et al., 2021; Chen et al., 2021; Claassen and

Bucur, 2022). There are two main problems with these approaches. First, the score

used for DAGs is generally the BIC score (Chickering, 2002; Jaakkola et al., 2010),

which is also used by the above methods for MAGs. However, although methods for

fitting Gaussian or discrete MAG models via maximum likelihood have been given
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by Drton et al. (2009) and Evans and Richardson (2010, 2014) (therefore the corre-

sponding BIC score can be obtained), MLEs are not available in closed-form, and

therefore they need to be computed iteratively using a numerical method. Moreover,

the factorisation of distributions in MAG models is complicated (Richardson, 2009),

and the scores are only decomposable with respected to the components connected

by bidirected paths, also known as districts or c-components. In contrast, for DAGs

the MLE is available in closed form and the BIC score can be decomposed in terms

of individual variables and their parent sets.

Another problem is how to reduce the number of graphs visited. Logically we

could score every graph, but this is obviously hopelessly inefficient. Graphs that

represent the same CI relations are said to be in the same Markov equivalence class

(MEC). The concept of MECs is important because graphs in the same MEC have

the same score and it is a waste of time to score graphs in the visited MEC again.

Among the previous works mentioned, only Claassen and Bucur (2022) explore

graphs in the space of MECs. However in the paper, they use the BIC score which

is computationally inefficient for the reasons mentioned above. In principal their

search procedure can be equipped with any consistent scoring criteria.

In this thesis, we explore MAGs and study the concept of heads and tails arising

from factorization of MAG models (Richardson, 2009) and discrete parametrizing

of MAG models (Evans and Richardson, 2010). We will see that the framework

of imsets (Studený, 2006) combined with another representation of MECs (Hu and

Evans, 2020), which Chapter 2 describes, provides a solution to address the above

two issues at the same time.

1.2 Definitions

A graph G consists of a vertex set V and an edge set E of pairs of distinct vertices.

We consider mixed graphs with two types of edge: directed (→) and bidirected (↔).

For an edge in E connecting vertices a and b, we say these two vertices are the

endpoints of the edge and the two vertices are adjacent (if there is no edge between

a and b, they are nonadjacent).

A path of length k is an alternating sequence of k + 1 distinct vertices vi, with

an edge connecting vi and vi+1 for i = 0, . . . , k − 1. Note the graphs we consider

are all simple, so there is at most one edge between any pair of vertices. A path is

directed if its edges are all directed and point from vi to vi+1. A directed cycle is a

directed path of length k plus the edge vk → v0, and a graph G is acyclic if it has

5



no directed cycle. A graph G is called an acyclic directed mixed graph (ADMG) if it

is acyclic and contains only directed and bidirected edges.

For a vertex v in an ADMG G, we define the following sets:

paG(v) = {w : w → v in G}

sibG(v) = {w : w ↔ v in G}

anG(v) = {w : w → · · · → v in G or w = v}

deG(v) = {w : v → · · · → w in G or w = v}

disG(v) = {w : w ↔ · · · ↔ v in G or w = v}.

They are known as the parents, siblings, ancestors, descendants and district of v,

respectively. These operators are also defined disjunctively for a set of vertices

W ⊆ V . For example paG(W ) =
⋃

w∈W paG(w). Vertices in the same district are

connected by a bidirected path and this is an equivalence relation, so we can partition

V and denote the districts of a graph G by D(G). We sometimes ignore the subscript

if the graph we refer to is clear, for example an(v) instead of anG(v).

A topological ordering is a ordering on the vertices such that if w ∈ anG(v) then

w preceeds v in the ordering. There might be several topological orderings for any

single graph.

For an ADMG G, given a subset W ⊆ V , the induced subgraph GW is defined

as the graph with vertex set W and edges in G whose endpoints are both in W .

Also for the district of a vertex v in an induced subgraph GW , we may denote it by

disW (v) := disGW
(v).

Graphs are associated with conditional independence relations via a separation

criterion; in the case of ADMGs, we use m-separation.

For a path π with vertices vi, 0 ≤ i ≤ k we call v0 and vk the endpoints of π and

any other vertices the nonendpoints of π. For a nonendpoint w in π, it is a collider

if ?→ w ←? on π and a noncollider otherwise (an edge ?→ is either → or ↔). For

two vertices a, b and a set of vertices C (a, b /∈ C) in G (C might be empty), a path

π is m-connecting a, b given C if (i) a, b are endpoints of π, (ii) every noncollider is

not in C and (iii) every collider is in anG(C). A collider path is a path where all the

nonendpoints are colliders.

Definition 1.2.1. For three disjoint sets A,B and C (A,B are non-empty), A and

B are m-separated by C in G if there is no m-connecting path between any a ∈ A

and any b ∈ B given C. We denote m-separation by A ⊥m B | C.
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1 2

3 4

(i)

1 2

3

(ii)

1 2

3 4

(iii)

Figure 1.1: (i) An ancestral graph that is not maximal. (ii) A maximal graph that is
not ancestral. (iii) A maximal ancestral graph.

Definition 1.2.2. A distribution P (XV ) is said to satisfy the global Markov property

with respect to an ADMG G if whenever A ⊥m B | C in G, we have XA ⊥⊥ XB | XC

under P .

An alternative Markov property that associates a distribution with a graph is

called the local Markov property introduced by Richardson (2003). It is equivalent

to the global Markov property in the sense that any conditional independence in the

global Markov property can be deduced using semi-graphoids (Richardson, 2003)

from the local Markov property. We will employ the local property later because it

contains fewer conditional independence statements than the global property, and

hence it is easier to show that a distribution is Markov with respect to a given graph.

To define the local Markov property, we need a few more definitions.

Definition 1.2.3. If a set A satisfies anG(A) = A, then it is an ancestral set.

If A is an ancestral set in an ADMG G, and v is a vertex in A such that chG(v)∩
A = ∅, then the Markov blanket of v with respect to A is defined as:

mbG(v,A) = paGA
(disGA

(v)) ∪ disGA
(v) \ {v}.

Definition 1.2.4. A distribution P (XV ) is said to satisfy the local Markov property

with respect to an ADMG G if for any ancestral set A and a childless vertex v in A,

Xv ⊥⊥ XA\(mb(v,A)∪{v}) | Xmb(v,A) [P ].

1.2.1 MAGs

Definition 1.2.5. An ADMG G is called a maximal ancestral graph (MAG), if:

(i) for every pair of nonadjacent vertices a and b, there exists some set C such

that a, b are m-separated given C in G (maximality);

(ii) for every v ∈ V , sibG(v) ∩ anG(v) = ∅ (ancestrality).
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For example, the graph in Figure 1.1(i) is not maximal because 3 and 4 are not

adjacent, but no subset of {1, 2} will m-separate them. (ii) is not ancestral as 1 is

a sibling of 3, which is also one of its descendants. (iii) is a MAG in which the only

conditional independence is X1 ⊥⊥ X3 | X4.

Definition 1.2.6. Two graphs G1 and G2 with the same vertex sets, are said to be

Markov equivalent if any m-separation holds in G1 if and only if it holds in G2.

For example, Figure 1.2 (i) and (ii) are Markov equivalent.

For every ADMG G, we can project it to a MAG Gm such that G is Markov

equivalent to Gm, and Gm preserves the ancestral relations in G (Richardson and

Spirtes, 2002). Moreover, Hu and Evans (2020) show that the heads and tails

defined below (and so the parametrizing sets) are preserved through the projection.

Hence in this thesis, we will only consider MAGs.

1.2.2 Heads and Tails

A head is a subset of vertices with a corresponding tail. The concept of heads and

tails originates from Richardson (2009), which provides a factorization theorem for

the ADMGs. Intuitively, heads together with any subset of its tail are the subsets of

vertices such that between any two vertices in the set, conditioning on the remaining

vertices and any other vertex outside the head, they are always m-connected.

Definition 1.2.7. For a vertex set W ⊆ V , we define the barren subset of W as:

barrenG(W ) = {w ∈ W : deG(w) ∩W = {w}}.

A vertex set H is called a head if:

(i) barrenG(H) = H;

(ii) H is contained in a single district in Gan(H).

For an ADMG G, we denote the set of all heads in G by H(G).
The tail of a head is defined as:

tailG(H) = (disan(H)(H) \H) ∪ paG(disan(H)(H)).

The parametrizing sets of G, denoted by S(G) are defined as:

S(G) = {H ∪ A : H ∈ H(G) and ∅ ⊆ A ⊆ tailG(H)}.

We further define Sk(G) as:

Sk(G) = {S ∈ S(G) : |S| = k}
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(ii)
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(iii)

Figure 1.2: Three MAGs where (i) and (ii) are Markov equivalent but (iii) is not.

In particular, we are interested in:

S̃3(G) = {S ∈ S3(G) : there are 1 or 2 adjacencies

among the vertices in S}.

We write S,Sk, S̃3 if the graph G we are referring to is clear.

Remark 1. Note that for a head H and each h ∈ H, the set (H \ {h}) ∪ tailG(H)

is the Markov blanket of h within anG(H).

We are not considering any singleton sets in Sk(G) or S̃3(G); these are just all

vertices because {v} is trivially a head. For a MAG G, a pair of vertices are in S(G)
if and only if the two vertices are adjacent, which is easy to prove).

We give an example to illustrate what the sets defined above are. Consider the

three MAGs in Figure 1.2, Table 1.1 lists their heads and tails, Table 1.2 lists their

parametrizing sets S and Table 1.3 lists their S3 and S̃3.

Table 1.1: Heads and tails of graphs in Figure 1.2

Figure heads tails Figure heads tails

1.2(i)

1 3

1.2(iii)

1 ∅
2 ∅ 2 ∅
3 ∅ 3 ∅
4 2,3 4 2
1,2 3 1,2 ∅
2,3 ∅ 1,3 ∅

1.2(ii)

1 2,3 2,3 ∅
2 4 3,4 2
3 2,4 1,2,3 ∅
4 ∅ 1,3,4 2

In Figure 1.2, (i) is Markov equivalent to (ii) and they also have the same

parametrizing sets; however, (iii) has a different parametrizing set and is not Markov

equivalent to either (i) or (ii). In Figure 1.2(i) and (ii), 1 ⊥m 4 | 2, 3 is the only

9



Table 1.2: Parametrizing set of graphs in Figure 1.2

Figure parametrizing sets missing sets

1.2(i)(ii)

{1}, {2}, {3}, {4} {1, 4}
{1, 2}, {1, 3}, {2, 3} {1, 2, 4}
{2, 4}, {3, 4} {1, 3, 4}
{1, 2, 3}, {2, 3, 4} {1, 2, 3, 4}

1.2(iii)

{1}, {2}, {3}, {4} {1, 4}
{1, 2}, {1, 3}, {2, 3} {1, 2, 4}
{2, 4}, {3, 4}

{1, 2, 3}, {1, 3, 4}, {2, 3, 4}
{1, 2, 3, 4}

Table 1.3: S3 and S̃3 graphs in Figure 1.2

Figure S3 S̃3

1.2(i)(ii)
{1, 2}, {1, 3}, {2, 3} {1, 2}, {1, 3}
{2, 4}, {3, 4} {2, 3}, {2, 4}
{1, 2, 3}, {2, 3, 4} {3, 4}

1.2(iii)

{1, 2}, {1, 3}, {2, 3} {1, 2}, {1, 3}
{2, 4}, {3, 4} {2, 3}, {2, 4}
{1, 2, 3}, {2, 3, 4} {3, 4}
{1, 3, 4} {1, 3, 4}

m-separation while Figure 1.2(iii) encodes 1 ⊥m 4 | 2. Note that these condi-

tional independences correspond precisely to the missing sets which are in the form

{a, b} ∪ C ′ where a ⊥m b | C and C ′ ⊆ C. Thus it is reasonable to conjecture that

equivalent graphs should have the same parametrizing sets. It turns out that not

only is this true, but in fact equivalence conditions can be refined even further and

it is sufficient to consider S3 or S̃3.
For a conditional independence I = {XA ⊥⊥ XB |XC}, let

S̄(I) = {A′ ∪B′ ∪ C ′ : ∅ ⊂ A′ ⊆ A, ∅ ⊂ B′ ⊆ B, ∅ ⊆ C ′ ⊆ C}.

One can think of S̄(I) as the constrained set ‘explained’ by I, and we say S̄(I) are
the sets associated with the conditional independence I. Proposition 2.2.2 proves

that a set S is not in S(G) if and only if it is associated with an independence

entailed by the graph.
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Chapter 2

Parametrizing sets of MAGs

In this chapter, we give a graphical condition for when two MAGs are Markov equiv-

alent. There have been several graphical characterizations that give necessary and

sufficient conditions for when two MAGs are equivalent. Among those criteria, Ali

et al. (2009) firstly provide a polynomial time algorithm to verify Markov equiva-

lence. More recently Claassen and Bucur (2022) and Wienöbst et al. (2022) show

that equivalence between MAGs can be verified in O(n3) in general and even O(nd2)

for sparse graphs with maximal degree d. Zhao et al. (2005) characterize MAGs by

minimal collider paths (MCPs). The criterion of Spirtes and Richardson (1997) uses

discriminating paths, which we will define in Section 3 (we will employ them in our

proofs). This chapter gives a new characterization and it lead to a faster algorithm

to test equivalence compared to existing ones. Also we show a similar equivalence

criterion for wider classes of acyclic graphs, ADMGs.

In Section 2.1, we present some past work that are employed in our proof. The

main result for Markov equivalence between MAGs is in Section 2.2, which is then

extended to ADMGs in Section 2.3. Algorithms for checking Markov equivalence and

analysis of their complexity are given in Section 2.4. We further extend our criterion

to summary graphs (Wermuth, 2011) in Section 2.5. We also show how to deduce

conditional independences (not all of them) from parametrizing sets in Section 2.6.

In the final section, we demonstrate how to construct the partial ancestral graphs

(PAGs) given the parametrizing sets.

2.1 Previous Work

The first theorem on Markov equivalence of MAGs is from Spirtes and Richardson

(1997).

Theorem 2.1.1. Two MAGs G1 and G2 are Markov equivalent if and only if (i) G1
and G2 have the same adjacencies, (ii) G1 and G2 have the same unshielded colliders
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and (iii) if π forms a discriminating path for b in G1 and G2, then b is a collider on

the path π in G1 if and only it is a collider on the path π in G2.

For x and y nonadjacent, a discriminating path π = ⟨x, q1, . . . , qm, b, y⟩, m ≥ 1

for b, is a subgraph comprised of a collection of paths:

x ?→ q1 ↔ · · · ↔ qi → y, 1 ≤ i ≤ m;

x ?→ q1 ↔ · · · ↔ qm←? b ?→ y.

For example, ⟨1, 2, 3, 4⟩ forms a discriminating path for 3 in both Figure 1.2(i)

and (iii), but not (ii). The vertex 3 is a collider on the path in (iii) but not (i), so

(i) and (iii) are not equivalent; however (i) and (ii) are equivalent. In general, the

cost of identifying all the discriminating paths is not polynomial in the number of

vertices and edges. However, we will make use of Theorem 2.1.1 in later proofs.

2.2 Markov Equivalence of MAGs

We now present the main result of this chapter, which is also published in Hu and

Evans (2020).

Theorem 2.2.1. Let G1 and G2 be two MAGs. Then G1 and G2 are Markov equiv-

alent if and only if S(G1) = S(G2).

Theorem 2.2.1 already provides a method to find equivalence between two MAGs

by searching all the heads and corresponding tails, however, the number of heads is

not polynomial in the size of the graph.

Corollary 2.2.1.1. Let G1 and G2 be two MAGs. Then G1 and G2 are Markov

equivalent if and only if S3(G1) = S3(G2). This in turn occurs if and only if S̃3(G1) =
S̃3(G2).

The motivation for defining S̃3(G) is that we cannot obtain the same complexity

if we allow triangles to be included, as in S3. To see this, consider a complete

bidirected graph with e edges: this will require O(e3) operations to list all the

triangles (which are all heads). Note we do not care about triples with three or zero

adjacencies. Theorem 2.1.1 tells us that apart from adjacencies between pairs of

vertices, and unshielded triples which lack one adjacency, we only need to find that

for a discriminating path π = ⟨x, q1, . . . , qm, b, y⟩, whether b is a collider on the path

or not. Later we will show that {x, b, y} ∈ S(G) if and only if b is a collider on π,

and note that b, y are adjacent but x, y are not.
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Corollary 2.2.1.1 is particularly important for identifying Markov equivalence. It

not only allows the algorithm to run in polynomial time as we only need to check

heads with size at most 3, but also accelerates it further as we do not need to find

triples with full adjacencies or no adjacencies, nor to store lots of triangles from the

dense part of the graph.

To prove Theorem 2.2.1 and Corollary 2.2.1.1, we first prove the following propo-

sitions.

Proposition 2.2.2. Let G be a MAG with vertex set V. For a set W ⊆ V, W /∈ S(G)
if and only if there are two vertices a, b in W such that we can m-separate them by

a set C such that a, b /∈ C with W ⊆ C ∪ {a, b}.

Proof. We prove an equivalent statement of this proposition, that is: W ∈ S(G) if
and only if for any two vertices a, b in W we cannot m-separate them by a set C

such that a, b /∈ C with W ⊆ C ∪ {a, b}.
To prove ⇒: if W ∈ S(G), then there is a nonempty subset W ′ ⊆ W such

that W ′ is a head and W ⊆ W ′ ∪ tail(W ′). Because tail(W ′) ⊆ an(W ′), we have

W ′ ∪ tail(W ′) ⊆ an(W ′). By definition of the heads and tails, any two vertices a, b

in W ⊆ W ′ ∪ tail(W ′) are connected by a collider path π where all the colliders are

in an(W ′) ⊆ an(C ∪ {a, b}). Let di, 1≤ i ≤ n be intermediate vertices in the path.

Now if all of di are ancestors of C then this path m-connects a and b. So some of di

are only ancestors of a, b.

Suppose there exists some di ∈ anG(a)\anG(C), let dj be the furthest one on path

π from a, so there exists a directed path π′ : a← · · · ← dj such that none of vertices

in π′ after a is an ancestor of C and hence not in C. If all dk after dj belong to anG(C)

then we find a m-connecting path between a and b: a← · · · ← dj ↔ · · · ↔ dn←? b.

If not, let dm be the first one after dj such that dm ∈ anG(b) \ anG(C) then again we

find a m-connecting path between a and b: a← · · · ← dj ↔ · · · ↔ dm → · · · → b.

If all di /∈ anG(C) are ancestors of b then let dj be the closest one to a in path

π which also leads to a m-connecting path between a and b: a ?→ d1 ↔ · · · ↔
dj → · · · → b. Hence in all cases any a, b in W are not m-separated given any

C ⊇ W \ {a, b}.
To prove ⇐: define W ′ = barren(W ). We claim that it is a head. Suppose it

is not a head, by the definitions of a barren set and a head, W ′ does not lie in a

single district in Gan(W ′). Let Di ⊂ W ′ index bidirected-connected components of

W ′ in anG(W
′) where 1 ≤ i ≤ m. Clearly by assumption m > 1, and now consider

D1 and D2. For any edge in Gan(W ′) which has an endpoint a ∈ W ′, it is of the form

a←? by definition of a barren set, so if there is a collider path between D1 and D2,
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it would be a bidirected path which is a contradiction to the definition of D1 and

D2. This means that any path in anG(W
′) between D1 and D2 contains at least one

non-collider which is not in W ′ and hence it is in anG(W
′) \W ′. Thus for any two

vertices in D1 and D2, given anG(W
′) \W ′, they are m-separated in anG(W

′). Since

anG(W
′) is ancestral, the m-separation also holds in the whole graph. Thus W ′ is a

head.

By Remark 4.14 in Evans and Richardson (2014), for any head H we have H ⊥m

anG(H) \ (H ∪ tail(H)) | tail(H). Thus if (W \W ′) is not in tail(W ′), we can m-

separate a vertex in (W \W ′) \ tail(W ′) and a vertex in W ′ given the remaining

vertices in anG(W
′), which is a contradiction.

Proposition 2.2.3. For a MAG G, we have (i) any two vertices a and b are ad-

jacent in G if and only if {a, b} ∈ S(G); (ii) for any unshielded triple (a, b, c) in G,
{a, b, c} ∈ S(G) if and only if b is a collider on the triple (a, b, c); (iii) if π forms a

discriminating path for b with two end vertices x and y in G then {x, b, y} ∈ S(G)
if and only if b is a collider on the path π.

Proof. For (i), by maximality, any two vertices a and b are adjacent in a MAG if

and only if we can not m-separate them by a set C, hence by Proposition 2.2.2 if

and only if {a, b} ∈ S(G).
For (ii), the only nonadjacent pair of vertices are a, c, for any set C that m-

seperates them, b /∈ C if and only if b is a collider on the triple (a, b, c), hence by

Proposition 2.2.2 if and only if {a, b, c} ∈ S(G).
For (iii), if x, b are not adjacent, then for any set that m-separates them, y is

not in the set, as the path x ?→ q1 ↔ · · · ↔ qm←? b would be m-connecting x and

b. Since x, y are not adjacent, there exists some set C such that x ⊥m y | C. From

page 11 in Ali et al. (2009), we know that for any such C, qi ∈ C for all i ≤ n

and b is a collider if and only if b /∈ C, hence by Proposition 2.2.2 if and only if

{x, b, y} ∈ S(G).

Now we are able to prove Theorem 2.2.1 and Corollary 2.2.1.1

Proof of Theorem 2.2.1. (⇒) Proposition 2.2.2 ensures that missing sets in S(G) are
only due to m-separations in graphs. But as Markov equivalence is characterized

by m-separations, S(G1) and S(G2) in two equivalent MAGs G1 and G2 are the

same. (⇐) Proposition 2.2.3 implies that any violation of conditions in Theorem

2.1.1 result in different S(G1) and S(G2). Hence if S(G1) = S(G2), G1 is Markov

equivalent to G2.
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Proof of Corollary 2.2.1.1. (⇒) This follows from Theorem 2.2.1 and the fact that

Markov equivalent MAGs have the same adjacencies. (⇐) This follows from the

fact that in the proof the ‘if’ part of Theorem 2.2.1, we only consider sets in S̃3(G1)
and S̃3(G2).

Frydenberg (1990) gives conditions for when two DAGs are equivalent, i.e. if and

only if they have the same adjacencies and unshielded colliders. DAGs are a subclass

of MAGs so Corollary 2.2.1.1 also applies to them. When G is just a DAG, S̃3(G)
(and indeed S3(G)) contains the exact information of G’s adjacencies and unshielded

colliders. By Proposition 2.2.3, {a, b} ∈ S̃3(G) if and only if a, b are adjacent. And

a triple is in S̃3(G) if and only if it is an unshielded collider; this is because in

DAGs, heads are precisely the individual vertices, and the corresponding tails are

their parent sets.

2.3 ADMGs

Richardson and Spirtes (2002) give a projection that projects a DAG G with latent

variables L to a Markov equivalent MAG Gm: (i) every pair of vertices a, b ∈ V
in G that are connected by an inducing path becomes adjacent in Gm; (ii) an edge

connecting a, b in Gm is oriented as follows: if a ∈ anG(b) then a→ b; if b ∈ anG(a)

then b → a; if neither is the case, then a ↔ b. An inducing path between a, b is a

path such that every collider in the path is in an({a, b}), and every noncollider is in

L. Note if we already have an ADMG G, we can apply the projection to G with no

latent variable to construct the corresponding Gm, so an inducing path in this case

is just a collider path with every collider in an({a, b}). In addition, the projection

preserves ancestral relations from the original graph.

To extend previous theorems to G we need following lemmas to link G and Gm.

Lemma 2.3.1. If v, w are connected by a collider path π1 in an ADMG G then they

are connected by a collider path π2 in Gm where π2 uses a subset of the internal

vertices of π1. Also, if π1 starts with v →, so does π2.

Proof. Any adjacent pair in G is also adjacent in Gm as any edge is a trivial collider

path. So the path π1 is still present in Gm however it may not be a collider path (if

it is then we are done) and we aim to find a collider path π2.

Suppose a is an internal vertex and is a noncollider in π1 in Gm where a↔ b in

G is changed to a→ b in Gm. This is because a ∈ anG(b). Consider the vertex c on

the other side of a, suppose it is c ↔ a in G. Then b ↔ a ↔ c is a collider path

where a ∈ anG({b, c}) so b, c becomes adjacent in Gm and we can remove a from the
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path. If c → a, i.e. c is one of end vertices, then in the projected graph we have

c→ a. We can do this repeatedly until it terminates and the final path is a collider

path in Gm that connects v, w.

Lemma 2.3.1 is in analogue to Lemma 23 in Shpitser et al. (2018). Now we show

heads and tails are preserved through the projection.

Proposition 2.3.2. If G is an ADMG, H(G) = H(Gm) and for every H ∈ H(G),
tailG(H) = tailGm(H).

Proof. Suppose H is a head in G. Then it is bidirected-connected in Gan(H), so

by Lemma 2.3.1 each bidirected path connecting vertices in H is preserved as a

collider path in Gman(H). Further as the projection preserves ancestral relation and

H = barren(an(H)), each path is bidirected. Hence any head H in G is a head in

Gm. By similar argument, we can see that for a head H in G, any w ∈ tailG(H) is

in tailGm(H).

SupposeH is a head in Gm so it is bidirected-connected in an(H) in Gm. But each
bidirected edge in Gm corresponds to a collider path in G with intermediate colliders

in ancestors of endpoints; hence as the projection preserves ancestral relations, the

path is bidirected. Therefore H is also a head in G. Note in general for any v ↔ w

in Gm, there is a bidirected path between them in G.
Let z ∈ tailGm(H) so there is a collider path π between z and h ∈ H in Gm ending

· · · ↔ h. We know every bidirected edge in the path π corresponds to a bidirected

path in an(H) in G. If the path π begins with z ↔ then z is bidirected-connected

to h in an(H) so z ∈ tailG(H). If the path π begins with z → w1 then in G we have

a collider path between z and w1 in an(H), which ends with ↔ w1. Thus z is also

in tailG(H).

Definitions of heads and tails are closely related to the projection of ADMGs.

The next lemma allows us to project an ADMG to a Markov equivalent MAG in

polynomial time. The algorithm is shown in next section. Let G be a ADMG and

Gm be its projected MAG.

Lemma 2.3.3. Let v, w be two vertices then (i) v → w in Gm if and only if v ∈
tailG(w) and (ii) v ↔ w in Gm if and only if {v, w} ∈ H(G).

Proof. For (i), if v → w in Gm then v ∈ anG(w) and in G there is an inducing path

between v and w (a collider path). If v → w in G then we are done. Otherwise

any intermediate vertex on the path is in anG({v, w}) = anG(w) hence v ?→ ...↔ w.

Therefore v ∈ tailG(w). Conversely, v ∈ tailG(w) implies that v ∈ anG(w) and there

16



is a collider path between v and w with any intermediate vertex in anG(w) hence

the path is an inducing path and v → w in Gm.
For (ii), if v ↔ w in Gm then there is an inducing path between v and w (a

collider path) in G and v, w are not ancestors to each other. Also any intermediate

vertex on the path is in anG({v, w}) which suggests that the path is a bidirected

path. Therefore, {v, w} forms a head. On the other hand, if {v, w} is a head in G
then they are not ancestors to each other and there is a bidirected path between

them with any intermediate vertex in anG({v, w}) so this path is an inducing path

and v ↔ w in Gm.

Since there is at most one edge between any two vertices in a MAG, if we know

the tails of every vertex in Gd and every head of size 2, this is sufficient to construct

Gm.
Consider Figure 1.2.5(i), this is an ADMG but not a MAG. Tails of 1, 2, 3, 4 are

∅, ∅, {2}, {1}, respectively. Heads of size 2 are {1, 2}, {1, 3}, {2, 4}, {3, 4}, hence a

Markov equivalent MAG of Figure 1.2.5(i) preserves all the original edges and adds

one edge 3↔ 4.

2.3.1 Markov Equivalence of ADMGs

We now show that Theorem 2.2.1 and Corollary 2.2.1.1 can be extended to ADMGs.

Note that in general two Markov equivalent ADMGs do not necessarily have the

same adjacencies defined with respect to edges; thus we need to redefine adjacencies

in terms of m-separations.

Definition 2.3.1. For a ADMG G and two vertices v, w in G, v and w are adjacent

if and only if there is no set C such that v ⊥m w | C with v, w /∈ C.

Two vertices that are connected by an edge are clearly adjacent, we are excluding

pairs that do not share any edges and yet have no conditional independence. In

maximal graphs, these two definitions are equivalent.

Theorem 2.3.4. For two ADMGs G1 and G2, they are Markov equivalent if and

only S(G1) = S(G2).

Proof. This follows from Proposition 2.3.2 and Theorem 2.2.1.

Corollary 2.3.4.1. Two ADMGs G1 and G2 are Markov equivalent if and only if

S3(G1) = S3(G2), and this occurs if and only if S̃3(G1) = S̃3(G2).

Proof. By Proposition 2.3.2, S3 are preserved in (G1)m and (G2)m, and with the new

definition of adjacencies, the outputs of S̃3 are also preserved. Hence the statement

follows from Corollary 2.2.1.1.
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2.4 Algorithm

In this section, n, e denote number of vertices and total edges, respectively.

Input: A MAG G(V , E)
Result: S̃3(G)

1 S ← ∅;
2 for each v ∈ V do
3 obtain anG(v) = {v} ∪ anG(paG(v));
4 for each w ∈ paG(v) do
5 S ← S ∪ {v, w};
6 end
7 for each z, w ∈ paG(v) with z ̸= w and z not adjacent to w do
8 S ← S ∪ {v, w, z};
9 end

10 end
11 for each v ↔ w do
12 S ← S ∪ {v, w};
13 tail({v, w})← disan({v,w})(v) ∪ paG(disan({v,w})(v)) \ {v, w};
14 for each z ∈ tail({v, w}) with z not adjacent to both v and w do
15 S ← S ∪ {v, w, z};
16 end
17 for each z ∈ sibG(anG({v, w})) ∩ disG(v) \ (anG({v, w}) ∪ deG({v, w}))

and not adjacent to v, w do
18 obtain disan({v,w,z})(v);
19 if z ∈ disan({v,w,z})(v) then
20 S ← S ∪ {v, w, z};
21 end

22 end

23 end
24 return S;

Algorithm 1: Obtain S̃3(G) for a MAG G

2.4.1 Complexity of algorithms for MAGs

We assume that n = O(e), since otherwise the graph will be disconnected. Firstly,

we propose an algorithm to identify S̃3(G) of a given MAG G and show that it runs

in polynomial time (O(ne2)). To test equivalence of two MAGs, it is sufficient to

compare their S̃3, by Corollary 2.2.1.1. Vertices are assumed to be in topological

order. If not, this can be achieved with an O(n+ e) sort. We assume we have access

to paG(v) and sibG(v) for each v ∈ V .
Let A1(G) denote the output of Algorithm 1 when applied to a MAG, G. We

will show that for a MAG G, A1(G) = S̃3(G)
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Input: An ADMG G(V , E)
Result: A Markov equivalent MAG Gm(V , Em)

1 Start with Gm that has the same vertices as G but no adjacencies;
2 for each v ∈ V do
3 obtain anG(v) = {v} ∪ anG(paG(v));
4 tail(v) = disan(v)(v) ∪ paG(disan(v)(v)) \ {v};
5 add w → v ∈ Em for each w ∈ tail(v);

6 end
7 for each v, w ∈ V with no ancestral relation and in the same district do
8 obtain disan({v,w})(v);
9 if w ∈ disan({v,w})(v) then

10 add v ↔ w ∈ Em;
11 end

12 end
13 return Gm;

Algorithm 2: Obtain a MAG Gm for an ADMG G

2.4.2 Proof that Algorithm 1 outputs S̃3
Let A1(G) be the output of Algorithm 1 and A′

1(G) be the output of Algorithm 1

without checking adjacencies in lines 7, 14 and 17. We also define the following sets

for a MAG G:

H1(G) = {{v, w, z} : v ∈ V and w, z ∈ paG(v)}

H2(G) = {{v, w, z} : v ↔ w, z ∈ tail({v, w})}

Ha
3 (G) = all heads of size 3 with some adjacencies

Hn
3 (G) = all heads of size 3 with no adjacencies

H3(G) = all heads of size 3 = Ha
3 (G) ∪Hn

3 (G)

Ŝ3(G) = {S ∈ S3(G) : there are some adjacencies in S}

U3(G) = {S ⊆ V(Gu) : |S| = 3 and S is complete}.

Note Gu is defined in Definition 2.3.2.

Thus by definition S̃3(G) ⊆ Ŝ3(G) ⊆ S3(G) and S2(G), H1(G), H2(G), Ha
3 (G),

Hn
3 (G), U3(G) are disjoint.

Lemma 2.4.1. In a MAG G, for any single vertex a, tail(a) = paG(a), and {v, w}
is a head if and only if v ↔ w.

Proof. If a ⊂ disan(a)(a) then there is a vertex b such that b ↔ a and b ∈ anG(a),

which contradicts ancestrality. Hence tail(a) = paG(a).

If v ↔ w then v, w have no ancestral relation so by definition, it is a head. Sup-

pose {v, w} is a head, so {v, w} ∈ S(G) then they must be adjacent by Proposition

3.4 and the adjacency can not be undirected or directed, thus v ↔ w.
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Thus H1(G) and H2(G) are precisely the sets in S3(G) that arise from heads of

size one and two, respectively.

Lemma 2.4.2. For a MAG G, we have

S3(G) = S2(G) ∪H1(G) ∪H2(G) ∪H3(G) ∪ U3(G)

Ŝ3(G) = S2(G) ∪H1(G) ∪H2(G) ∪Ha
3 (G) ∪ U3(G).

Proof. Consider the first equality, for S = {v, w} ∈ S3(G), by Proposition 2.2.3, v, w

are adjacent in G so S ∈ S2; For S ∈ S3(G) and |S| = 3, it is a clique in Gu or it

origins from heads of size either 1 or 2 or 3. Thus by Lemma 4.1 and Lemma 4.1,

S ∈ H1(G) ∪H2(G) ∪H3(G) ∪ U3(G); For S in the right hand side, it is in S3(G) by
definition.

For the second equality, by definition Ŝ3(G) excludes all S ∈ S3(G) that have no
adjacencies, but note that all S ∈ S2(G)∪H1(G)∪H2(G)∪U3(G) have some adjacen-

cies. And by definition Ha
3 (G) extract all heads of size 3 with some adjacencies.

Lemma 2.4.3. For a MAG G, A′
1(G) ∪ U3(G) = Ŝ3(G).

Proof. S ∈ A′
1(G) obtained at line 5, 8, 12, 15, 20 and 24, correspond to sets in

S2(G), H1(G), S2(G), H2(G), Ha
3 (G) and S2(G), respectively. So by Lemma 2.4.2,

A′
1(G) ∪ U3(G) ⊆ Ŝ3(G) Conversely, all sets in Ŝ3(G) \ U3(G) can be obtained at

corresponding lines.

Proposition 2.4.4. For a MAG G, A1(G) = S̃3(G).

Proof. Compared to Ŝ3(G), S̃3(G) excludes all sets of size 3 that have 3 adjacencies.

If the set is clique in Gu except for edges, it is not added in Algorithm 1. Otherwise

note that when sets of size 3 are obtained, lines 7, 14 and 17 check their adjacencies.

Notice that Algorithm 1 naturally identifies Ŝ3(G) \U3(G), but to obtain the full

Ŝ3(G) one also needs to identify all triangles in the undirected component; S̃3(G)
excludes this set.

Complexity of Algorithm 1

The first loop from line 2 to line 10 runs at most O(e2) times as the worst case

is that one vertex have all others as its parents. There are at most e bidirected

edges so the second loop from line 11 to line 23 repeats at most e times. There

are three esrial tasks inside the second loop. The first one is line 13 which obtains

the tails of {v, w}. The computation of obtaining tails given parents is O(n + e).
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The second task, i.e. the first subloop from line 14 to line 16, is carried at most

n− 2 times as the size of each tail is at most n− 2. For the third task from line 17

to line 22, there are at most n − 2 potential candidates for the third member, and

obtaining the district costs O(n+ e). Thus the overall complexity of Algorithm 1 is

O(e2 + e((n+ e) + n+ n(n+ e))) = O(ne2).

Note that the number of potential candidates for third member of heads of size

3 depends on sizes of districts. If the number is high then it means districts are

large so there are at least as many bidirected edges as potential candidates, so if

the graph is sparse we can use e to represent the number of candidates instead of n

when computing complexity. There are most O(e2) sets in S̃3(G), and some graphs

achieve this bound, for example, a DAG where one vertex have all others as its

parents.

To test ordinary Markov equivalence of two MAGs, it is sufficient to compare

their output of Algorithm 1 after a sort of order O(e2 log e2) = O(e2 log e). Note that

log e = O(log n), therefore the complexity of verifying Markov equivalence between

two MAGs is still O(ne2). Thus our algorithm is faster than the one proposed by

Ali et al. (2009), which is only O(ne4).

2.4.3 ADMGs

Algorithm 2 converts an ADMG G to a Markov equivalent MAG Gm, as proven by

Lemma 2.3.3. To test Markov equivalence between two ADMGs, it is sufficient to

put their equivalent MAGs in Algorithm 1 to obtain the corresponding sets S̃3 and

compare the sets.

Complexity Of Algorithm 2

For the first loop from line 2 to 6, it costs O(n(n + e)) since there are n vertices

and it takes O(n + e) to obtain a district. The second loop from line 7 to 12 is at

O(n2(n+e)). Thus the overall complexity is O(n(n+e)+n2(n+e)) = O(n3+n2e) =

O(n2e). The total cost for identifying Markov equivalence between two ADMGs is

therefore O(ne2).

2.4.4 Comparison To Previous Algorithms

Among previous characterizations of MAGs, Ali et al. (2009) provide a polynomial

time algorithm to verify Markov equivalence. They consider all triples in a discrim-

inating path; in order to do this, they iterate through (up to) n − 2 levels; at each
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Figure 2.1: Empirical complexity against n2

level they consider all remaining colliders (O(e2)) and then check each set of reach-

able edges (O(e2)). Conversely, we ignore any triples for which all three adjacencies

are present (since they will trivially always be present).

In addition to the reduction in complexity, if we modify Algorithm 1 to compute

S3(G), the output contains more information. By Proposition 2.2.2, a set {a1, a2, a3}
is missing from S3 if and only if there is a corresponding m-separation between (say)

a1, a2 conditional on a set that includes a3. Thus we can view the parametrizing set

as a summary of independence information in the graph. This is a novel perspective

compared to previous theorems, which characterize graphs by structures like minimal

collider paths or colliders with order, and have a more straightforward connection

to conditional independence.

2.4.5 Empirical Complexity

An experiment on random graphs shows that empirical complexity of Algorithm 1

is at O(e2) for sparse graphs (e = O(n)). One random graph (ADMG) is generated

in the following way. We first fix a topological ordering and the total number of

edges (e = 3n). Then two vertices become adjacent with uniform probability. Once

skeleton is determined, an edge is independently either directed or bidirected with

p = 0.5. For each n = 20, 40, 60, 80, 100, we generate N = 250 random graphs then

average the empirical complexity. Figure 2.1 is the empirical complexity against n2.

Suppose directed edges are added independently with probability r/n according

to a predetermined topological order, where n is the number of vertices and r ∈ R+

is constant. The following proposition bounds the size of the ancestor sets in our

sparse random graphs. In particular, the largest average number of ancestors is at

most er.

Proposition 2.4.5. Let Ai be the number of ancestors of the vertex i. Then

EAi =
(
1 +

r

n

)i−1

.
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In particular,

EAn =
(
1 +

r

n

)n−1

−→ er.

Proof. We proceed by induction. The result is trivially true for A2 = 1+ r
n
. Suppose

the result holds for Aj. Then

EAj+1 = 1 +

j∑
i=1

E1{i→j+1}Ai

= 1 +
r

n

j∑
i=1

(
1 +

r

n

)i−1

,

using independence of the edge and Ai and the induction hypothesis. Hence

EAj+1 = 1 +

j∑
i=1

i−1∑
k=0

(
i− 1

k

)( r

n

)k+1

= 1 +

j−1∑
k=0

( r

n

)k+1
j−1∑

i=k+1

(
i− 1

k

)

= 1 +

j−1∑
k=0

( r

n

)k+1
(

j

k + 1

)

= 1 +

j∑
k=1

( r

n

)k
(
j

k

)
.

by a standard result about binomial coefficients. This gives the result.

Markov’s inequality gives us an easy corollary.

Corollary 2.4.5.1. P(Ai ≥ k) ≤ er/k for any 1 ≤ i ≤ n and k ≥ 1.

Now it is straightforward to show that for sparse graphs, the complexity will be

O(e2). This is because the main contribution of the complexity comes from counting

heads of size 3. By bounding the sizes of ancestor sets, line 15 will run in constant

time O(1) instead of O(n + e). Thus the overall complexity for sparse graphs is at

O(e2 + e((n+ e) + n+ n)) = O(e2).

An example for which the upper bound of complexity of Algorithm 1 is reached

is given in Figure 2.2. For every i and j, {vi, w, zj} forms a head of size 3. If N,M,L

are at O(n) then the cost for identifying all these heads is at O(ne2).
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w

x1

...

xM

z1

...

zM

y1

...

yℓ

...

yL

v1

...

vN

Figure 2.2: A sequence of graphs in which the maximum complexity is achieved by
Algorithm 1. Note that y1 is connected by a bidirected edge to every xi, and yL to every

zi.

2.5 Extension to Summary Graphs and MAGs

with undirected edges

MAGs defined in Richardson and Spirtes (2002) contain undirected edges which ne-

cessitate additional conditions of ancestrality. In addition to the previous condition

(sibG(v) ∩ anG(v) = ∅ and this is referred as condition 1 of ancestrality), one also

requires that if an undirected edge is present between two vertices v and w then

there is no arrow into v or w. We refer to this as condition 2 of ancestrality.

Definition 2.5.1. A graph G is ancestral if: (1) for every v ∈ V , sibG(v)∩anG(v) = ∅;
(2) if there is an undirected edge x− y then x, y have no parents and no siblings.

A direct consequence of this definition is that vertices with undirected edges

are ‘at the top’ of the graph G. For an acyclic graph G with three types of edges

and only satisfying condition 2 of ancestrality, it can be seen as an ADMG with an

undirected component among vertices without parents or siblings and therefore the

component is ”at the top” of the graph.

Summary graphs defined in Wermuth (2011) are actually the same as ADMGs

with undirected components at the top. Graphically, one just needs to change the

dashed lines to bidirected edges and they encode the same conditional independence.

For simplicity, we will refer to this type of graphs as summary graphs. Among the

three graphs in Figure 2.3, (ii) is the only summary graph.

Definition 2.5.2. For a summary graph G, let U = {v ∈ V : v−w for some w ∈ V}
and D = V \ U . Define Gu = GU and Gd = GD.
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1 2

3 4

(i)

1 2

3 4

(ii)

1 2

3 4

(iii)

Figure 2.3: (i) A graph that satisfies only condition 1 of ancestrality. (ii) A graph that
satisfies only condition 2 of ancestrality. (iii) A graph that does not satisfy either

condition 1 or 2 of ancestrality.

It is shown by Richardson and Spirtes (2002) that we can always split a summary

graph into two disjoint subgraphs. One is an undirected subgraph Gu and another

one is a subgraph with only directed and bidirected edges Gd. Note that heads and

barren sets are only defined in Gd, and tails may include vertices in both Gu and Gd.
For example, Figure 2.3(ii) can be split as Gu = 1 − 2 and Gd = 3 ← 4, 3 ↔ 4.

Its heads are {3} and {4} and the corresponding tails are {2, 4} and {2}.
A vertex a is said to be anterior to b if there is a path π on which every edge is

either undirected or directed towards b, or if a = b. We denote the collection of all

vertices anterior to b by antG(b).

An undirected graph (UG) is a graph with only undirected edges. A clique in

an UG is defined as a complete subset of vertices, that is: every pair of vertices is

connected by an undirected edge.

For summary graphs, including MAGs, a clique is defined in the same manner for

vertices in Gu, with completeness referring only to adjacencies by undirected edges.

Remark 2. We extend the definition of parametrizing set by adding all the cliques

to the set.

2.5.1 Extension to MAGs With Undirected Edges

We only need to add a few line of argument to extend previous propositions and

theorems.

For ⇒ of Proposition 3.3: if W ∈ S(G), then either W is a clique or there is a

nonempty subset W ′ ⊆ W such that W ′ is a head and W ⊆ W ′ ∪ tail(W ′). The

latter case has been proved. For the former case, it clearly implies that we can not

m-separate any two vertices in W , given the remaining vertices in W .

For ⇐ of Proposition 3.3: For W that does not lie entirely in Gu we can define

W ′ = barren(W ). For W lying in Gu, if we cannot m-separate any two vertices in

W then clearly W is a clique and W ∈ S(G).
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Proposition 3.4 does not change if we add undirected edges in MAGs, thus The-

orem 3.2 and Corollary 3.2.1 hold for MAGs with undirected edges.

2.5.2 Extension to Summary Graphs

The projection described in Section 3.3 can be extended to summary graphs with

latent variables L as stated in Richardson and Spirtes (2002). The modified projec-

tion is: (i) every pair of vertices a, b ∈ V in G that are connected by an inducing

path becomes adjacent in Gm; (ii) an edge connecting a, b in Gm is oriented as fol-

lows: if a ∈ antG(b) then a → b; if b ∈ antG(a) then b → a; if neither is the case,

then a ↔ b; if they are both anterior to one another then the edge is undirected.

An inducing path between a, b is a path such that every collider in the path is in

an({a, b}), and every noncollider is in L. Again, we only consider projections with

no latent variables, so an inducing path is just a collider path with every collider in

an({a, b}). And the projection still preserves ancestral relations from the original

graph. We first show that undirected edges are preserved through projections.

Lemma 2.5.1. If G is a summary graph and Gm is its corresponding projected MAG,

then Gu = (Gm)u and (Gd)m = (Gm)d.

Proof. For the first statement, we can prove it by showing that undirected edges

are the same. First of all, notice that all undirected edges in G are preserved in

Gm. Secondly, no additional undirected edges can be added. If a and b are both

in Gu then if they are not adjacent before, they are still nonadjacent since there is

no inducing path between them (they are already at the top of the graph). If a

and b are both in Gd then they cannot be anterior to each other, this would violate

condition (ii) of ancestrality or the fact that G is acyclic. If a ∈ Gu and b ∈ Gd then

obviously b cannot be anterior to a.

For the second statement, note the two subgraphs have the same vertices due

to the first statement. For vertices in Gd, ancestral relations are the same in G as

there is no directed path passing Gu. Also when we consider inducing paths, any

such path would not contain any vertex in Gu.

We now show that Proposition 2.3.2 also holds for summary graphs, i.e. heads

and tails are preserved through projection.

Proof. So we have proved that for ADMGs, heads and tails are preserved through the

projection. Now heads are only defined in Gd and (Gm)d, thus by Lemma 2.5.1, for

a summary graph, heads are preserved in Gm. Also for tails that are in Gd, they are

preserved. It remains to show that the result holds when tails are in Gu. For a head
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H, let w ∈ Gu. If w ∈ tailG(H) then we know there is a path π : w → w1 ↔ · · · ↔ h,

for h ∈ H with intermediate vertices in an(H). Although w /∈ Gd, with the same

argument in Lemma 3.5, this path is preserved as a collider path in an(H) in Gm

with ↔ h (h is in a head) hence w ∈ tailGm(H). Suppose now w ∈ tailGm(H), so

there is a path π : w → w1 ↔ · · · ↔ h with intermediate vertices in an(H), we know

every bidirected edge corresponds to a bidirected path in an(H) in G, and the first

directed edge correspond to a path π′ : w → w1 ↔ · · · ↔ w2 in G with intermediate

vertices in an(w2) ⊆ an(H), thus w ∈ tailG(H).

Since Proposition 3.6 holds for summary graphs, if we change the definition of

adjacencies in summary graphs in the same manner as ADMGs by referring to

m-separations, Theorem 3.8 and Corollary 3.8.1 also hold for summary graphs.

2.5.3 Extension for Algorithms

For Algorithm 1, we only add a line at the end of the algorithm (after line 17) to

obtain the connected pairs in Gu (referred as line 18 in the next section). This costs

O(e) and hence does not contribute to the overall complexity.

For Algorithm 2, as shown by Lemma 2.5.1, undirected edges are preserved, it

is sufficient to add a line at the end of the algorithm (after line 9) to keep all the

undirected edges. This costs O(e) and hence does not contribute to the overall

complexity.

2.6 Independence from Parametrizing Sets

This section shows that maximal independences can be deduced from the parametriz-

ing sets directly without explicit knowledge of graphs. We don’t have any use of

these results yet but this provides some insight.

Lemma 2.6.1. Let G be a MAG if W /∈ S(G) then for any d ∈ an(W ), {d}∪W = Ŵ

is not in S(G).

Proof. Since d ∈ an(W ) we have barrenG(W ) = barrenG(Ŵ ); denote this set by H.

If H is not a head then obviously Ŵ /∈ S(G). If H is a head then the reason that

W is not in S(G) is because there are vertices in W that are in an(H) but not in

tail(H). Since adding d does not change this fact, Ŵ is not in S(G).

Proposition 2.6.2. Let G be a MAG and consider W /∈ S(G) where W = {a, b}∪C
such that a, b /∈ C, if the following conditions hold:

(i) : for any S ⊃ W we have S ∈ S(G)
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(ii) : for any C ′ ⊆ C we have {a, b} ∪ C ′ = W ′ /∈ S(G);

then a ⊥m b | C in G

Proof. Suppose there are m-connecting paths between a and b given C. The goal

is to find a head H such that {a, b} ∪ C ′ ⊆ H ∪ tail(H) for some C ′ ⊆ C so it

contradicts to the condition (ii).

Firstly, we show that any collider on any of these m-connecting paths is in C.

Suppose one of them is not in C, denote it by d. Since it is on a m-connecting path,

we know d ∈ an(C) ⊆ an(W ). By Lemma 2.6.1, Ŵ = {d}∪W is not in S(G) which
is a contradiction to the condition (i). Hence all the colliders are in C.

Secondly, we show that there is no non-collider on any of these m-connecting

paths. Suppose there is a non-collider d, then it is not in W and it must be an

ancestor of one of the colliders on the path or endpoints a, b thus d ∈ an(W ). By

Lemma 2.6.1, Ŵ = {d}∪W is not in S(G) which is a contradiction to the condition

(i).

Now consider any collider path π m-connecting a and b given C. Denote the

colliders on the path by C ′′ ⊆ C. Then consider Ŵ = {a, b} ∪ C ′′, H = barren(Ŵ )

must be a head because there is a collider path between any two vertices in it.

Similarly all the remaining vertices must be in tail(H). Hence Ŵ is in S(G) and

this contradicts to the condition (ii).

Lemma 2.6.3. Let G be a MAG and consider W /∈ S(G) such that for any S ⊃ W

we have S ∈ S(G), then there exists a pair {a, b} in W such that a ⊥m b | W \{a, b}
in G.

Proof. By Proposition 2.2.2, there exists a m-separation a ⊥m b | C in G, such that

{a, b} ⊆ W ⊆ {a, b} ∪ C. Since there is no strictly larger set of W that is not in

S(G), we have W = {a, b} ∪ C.

For a missing set, it is possible that we have to condition on a strictly larger set

to m-separate two vertices in it. For example, consider the graph 1 ↔ 2 ← 3 ← 4.

{1, 2, 4} is not in the parameterizing set, but in order to m-separate {1, 4} or {2, 4}
we have to include 3 in the conditioning set.

2.7 PAG and the parametrizing set

Given a MAG G, Zhang (2007b) uses its partial ancestral graph (PAG) to character-

ize [G], which denotes the MEC of G and captures all the arrowheads and tails that

are present in every MAG in [G]. Because the parametrizing set also characterize

28



[G], we should be able to construct the PAG given the parametrizing set. The PAG

will be useful when we move to Chapter 4 where we use PAGs as the representation

of MECs of MAGs, which is more efficient than the parametrizing set.

2.7.1 Definition of PAGs

Given a MAG G, an edge mark in G is invariant if it is present in every graph in

[G].

Definition 2.7.1. Given a MAG G, the partial ancestral graph (PAG) for [G], PG,

is a graph with three kind of edge marks: arrowheads, tails and circles (six kinds of

edges: −, →, ↔, −, − , →)1, such that:

• PG has the same adjacencies as any member of [G];

• a mark of arrowhead is in PG if and only if it is invariant in [G];

• a mark of tail is in PG if and only if it is invariant in [G].

Zhang (2007b) present an algorithm, including a set of rules, R0 to R10 to con-

struct the PAG of a given MAG. The algorithm is shown to be sound and complete,

it begins with a graph P that has the same adjacencies as G and only one kind

of edge − . Then we exhaustively apply the orientation rules until no more edge

marks can be changed. The orientation rules are listed here.

The first five rules R0 to R4 developed by Spirtes et al. (2000) is to find all the

invariant arrow heads.

R0 For every unshielded triple of vertices (a, b, c), if it is an unshielded collider in

G, then orient the triple as a ∗→ b←∗ c. (The mark ∗ means we do not care

what the original mark is and keep the mark after applying the orientation

rules.)

R1 If a ∗→ b −∗ c and a, c are not adjacent, then orient the triple as a ∗→ b→ c.

R2 If a→ b ∗→ c or a ∗→ b→ c, and c −∗ a, then orient c −∗ a as c←∗ a.

R3 If a ∗→ b ←∗ c, a ∗− d −∗ c, a and c are not adjacent, and d ∗− b, then

orient d ∗− b as d ∗→ b

R4 If π = ⟨d, . . . , a, b, c⟩ is a discriminating path between d and c for b in P , and
b −∗ c; then if the edge b→ c is present in G, orient b −∗ c as b→ c; otherwise,

orient the triple (a, b, c) as a↔ b↔ c.

1As we consider only directed MAGs, there are only four kinds of edges
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Then Zhang (2007b) developed the remaining rules R5 to R10 to identify all the

invariant tails.

We need the following definitions first. A PMG is a mixed graph used during

construction of the PAG.

Definition 2.7.2. In a PMG, a path π = ⟨v0, . . . , vn⟩ is said to be uncovered if for

every 1 ≤ i ≤ n− 1, vi−1 and vi+1 are not adjacent.

Definition 2.7.3. In a PMG, a path π = ⟨v0, . . . , vn⟩ is said to be potentially

directed (p.d.) from v0 to vn if for every 1 ≤ i ≤ n, the edge between vi−1 and vi is

not into vi−1 or out of vi.

Definition 2.7.4. In a PMG, a path π is a circle path if every edge on the path is

of the form − .

The additional rules provided by Zhang (2007b) are:

R5 For every a − b if there is an uncovered circle path π = ⟨a, c, . . . , d, b⟩ for a, b
such that a, d are not adjacent and b, c are not adjacent, then orient a − b

and all the edges on π as undirected edges;

R6 If a− b −∗ c, then orient b −∗ c as b−∗ c;

R7 If a− b −∗ c, and a, c are not adjacent, then orient b −∗ c as b−∗ c;

R8 If a→ b→ c or a− b→ c, and a → c, then orient a → c as a→ c.

R9 If a → c, and π = ⟨a, b, . . . , c⟩ is an uncovered p.d. path from a to c such that

b and c are not adjacent, then orient a → c as a→ c.

R10 Suppose a → c, b→ c← d, π1 is an uncovered p.d. path from a to b, and π2

is an uncovered p.d. path from a to d. Let x be the vertex adjacent to a on

π1, and y be the vertex adjacent to a on π2. If x and y are distinct, and are

not adjacent, then orient a → c as a→ c.

Now we are ready to show how to construct PAG given parametrizing set.

2.7.2 Construct PAG given parametrizing set

We define [S] to be the set of all MAGs that have the parameterizing set S, so given

a MAG G, [G] = [S(G)] and naturally we can define PS to denote the PAG that

characterizes the Markov equivalent class [S] in the same manner as Definition 2.7.1.

Because the parameterizing sets also characterise [G], we should be able to compute

30



PS given a S. Now we demonstrate how to achieve this. The method relies much

on Zhang (2007b); Ali et al. (2005).

Given a MAG, the algorithm to construct the PAG begins with a graph P that

has the same adjacencies as G and only one kind of edge − . Then exhaustively

apply the orientation rules.

Instead of a MAG G, suppose now we are only given a parameterizing set S (we

may not necessarily know G). We will show that with a slight change of the above

rules, we are able to identify all the invariant arrow heads in PS .

Firstly notice that we can obtain adjacencies from S, so we can construct the

initial graph P as Zhang (2007b) does. Also notice that only R0 and R4 require

information from graphs so it is sufficient to construct equivalent rules to replace

these two rules. The adapted rules are:

R0′ For every unshielded triple of vertices (a, b, c), if it is in S, then orient the

triple as a ∗→ b←∗ c.

R4′ If π = ⟨d, . . . , a, b, c⟩ is a discriminating path between d and c for b in P , and
b −∗ c; then if the triple (d, b, c) is present in S, orient b −∗ c as b → c;

otherwise, orient the triple (a, b, c) as a↔ b↔ c.

Proposition 2.7.1. The orientation rules: R0′, R1, R2, R3, R4′ and R5 to R10
are sound and complete for constructing PS given S. Further if we are only given

S̃3, these rules are sufficient to construct PS .

Proof. This follows immediately from Proposition 3.4 in Hu and Evans (2020). Note

that if a discriminating path is present in PS then it is present in all MAGs in [S].

2.7.3 Possible Improvement

The fact that an unshielded triple is in S if and only it is an unshielded collider

contributes to identify two invariant arrowheads. In addition to this, one may notice

that apart from unshielded triples, triples with one adjacency in S also inherit

information of invariant arrowheads.

Lemma 2.7.2. For a triple {a, b, c} in S with one adjacency (WLOG, a and b are

adjacent), any MAGs in [S] has the edge a↔ b. In other words, a↔ b in PS .

Proof. Consider the head of the triple {a, b, c}. It cannot be a single vertex because

{a, b, c} has only one adjacency and we know the tail of a single vertex are its

parents. If the head is of size 2, it has to be a and b, because we know a pair of

vertices {a, b} is a head if and only if a↔ b and thus a↔ b. If the head is of size 3,
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then the adjacency must be a bidirected edge because there is no ancestral relation

inside a head.

For the arrowheads identified in Step 6, we can recover 7↔ 8 directly by Lemma

2.7.2. Also we can argue the arrowhead from 6 to 8 by the following: if 6→ 8 then

the triple {2, 7, 8} would not be in S̃3.
Here we give an example on how to recover the PAG given a parametrizing set

S̃3. Suppose we are given the S̃3 in Table 2.1.

Table 2.1: S̃3

adjacencies unshielded colliders triples with one adjacency

S̃3
{1, 2}, {1, 3}, {2, 4} {2, 5, 6}, {5, 6, 8} {2, 7, 8}
{3, 4}, {2, 5}, {5, 6} {5, 7, 8}
{5, 7}, {6, 7}, {6, 8}

{7, 8}

We first identify all the invariant tails. Steps below correspond to figures in

Figure 2.4:

Step 1 Begin with a graph with the adjacencies in S̃3 and all the edges are − ;

Step 2 ApplyR0′ to identify the invariant arrowhead from unshielded triples {2, 5, 6},
{5, 6, 8}, {5, 7, 8};

Step 3 Apply R1 to {2, 5, 7} so 5 → 7 becomes 5→ 7;

Step 4 Apply R2 to the triple {6, 5, 7} to recover 6 → 7;

Step 5 The path π = ⟨2, 5, 6, 7⟩ forms a discriminating path for 6 thus byR4′ ({2, 6, 7}
is not in S̃3), we can recover 6→ 7;

Step 6 The path π = ⟨2, 5, 6, 8, 7⟩ forms a discriminating path for 8, thus by R4′

({2, 7, 8} is in S̃3), we can recover 6↔ 8↔ 7;

And no further arrowhead can be identified. We now identify the invariant tails:

Step 7 Apply R5 to 1 − 2 − 4 − 3 − 1. So all the circle edges become undirected

edges;

Step 8 Apply R6 to 4− 2 → 5 to recover 2→ 5.
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Figure 2.4: Steps for recovering the PAG given the S̃3 in Table 2.1

And we can see that there is no circle mark in the graph now so the last figure in

Figure 2.4 is the PAG from the parametrizing set S̃3 in Table 2.1. Also this is the

only MAG that have the corresponding S̃3.
From Lemma 2.7.2, we may argue the edge mark by the presence or missingness

of certain triples in S̃3. For example in Step 5, if we have 6 ↔ 7 then the triple

{2, 6, 7} would be in S̃3, which is not true.
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Chapter 3

Towards standard imsets of MAGs

3.1 Introduction

Imsets are ‘integer valued vectors indexed by subsets of the variables’ that can be

used to encode arbitrary CI models. Imsets are very useful in the context of graphical

models, because DAG models fit into this representation very elegantly. The imset

used to represent a DAG model is usually referred as the ‘standard imset’, meaning

that they are the simplest imset that correctly and precisely represent the conditional

independences implied by the graphs. For DAGs, there are several advantages to

using standard imsets. Firstly, when two DAGs represents the same CI model, in

other words they are Markov equivalent, their standard imsets also agree. Moreover,

the BIC score of a DAG is an affine function of the standard imset. So we can see

that for DAGs, imsets not only provide a representation of the MEC but also lead

to a consistent scoring criteria.

We will propose a standard imset formula for MAGs, which though it does not

always define the same model as the graphs, it works for large sub-classes of MAGs.

Markov equivalent MAGs will, because of the definition we use, always have the

same imset.

We use the parametrizing set that arise in the discrete parametrization (Richard-

son, 2009; Hu and Evans, 2020), a factorization theorem (Richardson, 2009) of MAG

models and Chapter 2. One of the motivations is that for DAGs, the characteris-

tic imset cG introduced by Studený et al. (2010) that can be obtained by a one-

to-one linear transformation from uG (standard imsets of DAGs), agrees with the

parametrizing set, thus we work backwards and deduce the formulae for the stan-

dard imset. Another motivation is that Chapter 2 (published in Hu and Evans

(2020)) show that two MAGs are Markov equivalent if and only if they have the

same parametrizing set. Thus by construction two MAGs agree on their standard

imsets if and only if they are Markov equivalent.
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3.2 Definition of Imsets

We now introduce the framework of imsets and conditional independence by Studený

(2006).

Let P(V) be the power set of a finite set of variables V . For any three disjoint

sets, A,B,C ⊆ V , we write the triple as ⟨A,B |C⟩ and denote the set of all such

triples by T (V).
The set of conditional independence statements under P is denoted as:

IP = {⟨A,B |C⟩ ∈ T (V) : A ⊥⊥ B | C [P ]⟩},

and1 this is called the conditional independence model induced by P .

Definition 3.2.1. An imset is an integer-valued function u: P(V) → Z. The

identifier function δA of a set A ⊆ V is an imset, defined as δA(B) = 1 if B = A and

otherwise δA(B) = 0.

A semi-elementary imset u⟨A,B|C⟩ associated with any triple ⟨A,B |C⟩ ∈ T (V) is
defined as: u⟨A,B|C⟩ = δA∪B∪C−δA∪C−δB∪C +δC . An elementary imset corresponds

to the case when both A and B are singletons.

An imset u is combinatorial if it can be written as a non-negative integer com-

bination of elementary imsets (or equivalently, semi-elementary imsets). We call an

imset u structural if there exists n ∈ N such that n · u is combinatorial.

We also define the degree of a structural imset as the number of elementary

imsets in the sum for the minimum n that makes n · u combinatorial.

Note that in the case of |V| ≤ 4, every structural imset is also combinatorial, but

for |V| ≥ 5 this is not true (Hemmecke et al., 2008). We will also give an example

in Section 3.6.

A triple ⟨A,B |C⟩ is represented in a structural imset u over V , written as

A ⊥⊥ B | C [u] if there exists k ∈ N such that k ·u−u⟨A,B|C⟩ is a combinatorial imset

over V . The model induced by u then is defined as:

Iu = {⟨A,B | C⟩ ∈ T (V) : A ⊥⊥ B | C [u]}.

We say that an imset u is Markovian with respect to an independence model I if for

every ⟨A,B | C⟩ ∈ I, we have that ⟨A,B | C⟩ ∈ Iu. If the converse holds, we say it

is faithful, and if it is both Markovian and faithful we say it is perfectly Markovian

with respect to I.
1Here for simplicity we use A ⊥⊥ B | C [P ] to represent XA ⊥⊥ XB | XC under P .
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For a MAG G, we write A ⊥m B | C [G] if A and B are m-separated by C in G.
The model induced by G is then defined as:

IG = {⟨A,B | C⟩ ∈ T (V) : A ⊥m B | C [G]}.

Example 3.2.1. Consider the DAG in Figure 3.1; a combinatorial imset u such

that Iu = IG is: u = u⟨1,2⟩ + u⟨4,12|3⟩, which has entries:

C ∅ {1} {2} {1, 2} {3} {3, 4} {1, 2, 3} {1, 2, 3, 4}

u(C) +1 −1 −1 +1 +1 −1 −1 +1
.

Remark 3. Independence models (whether represented by imsets or not) always

obey the semi-graphoid axioms, which are listed in Appendix 3.8. In the previous

example, the conditional independences 4 ⊥⊥ 2 | 3 and 4 ⊥⊥ 1 | 2, 3 can both be

deduced from 4 ⊥⊥ 1, 2 | 3, and indeed Iu represents these constraints as well.

Section 3.8 also lists some other rules, but these only apply to probabilistic

independence models under some additional assumptions. Note that we restrict to

using the semi-graphoids, these additional rules are for discussion with related work

in Section 3.3.1.

3.3 Standard imsets

In this section we attempt to define the standard imset of MAGs. The next subsec-

tion reviews existing results on imsets for DAGs, which provides the motivation for

our definition for MAGs.

3.3.1 Related work

Similar work has been done by Andrews (2021); Andrews et al. (2022), who call

the parametrizing set of MAGs the m-connecting set. In particular, we have the

same initial motivation as them, which is the similarity between the 0-1 character-

istic imset (Studený et al., 2010) and parametrizing sets (Hu and Evans, 2020) of

DAGs. Our work contains results distinct from those works; we give a more detailed

comparison in Section 3.7.

3.3.2 Previous work on DAGs

For a DAG G over V , its standard imset is defined as:

uG = δV − δ∅ −
∑
i∈V

{
δ{i}∪paG(i) − δpaG(i)

}
. (3.1)
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Figure 3.1: (i) A DAG with 4 nodes; (ii) a MAG G in which there is no topological
ordering such that the tail of a head precedes any vertex in the head.

Studený (2006) shows that for a DAG G, IG = IuG . That is, uG is perfectly

Markov with respect to IG. We will often just say that uG is perfectly Markovian

with respect to G, rather than explicitly invoking the list of independences.

Example 3.3.1. Consider the DAG G in Figure 3.1 (i), by definition, its standard

imset is:

uG = δ1234 − δ∅ − (δ34 − δ3)− (δ123 − δ12)− (δ2 − δ∅)− (δ1 − δ∅)

= (δ1234 − δ123 − δ34 + δ3) + (δ12 − δ1 − δ2 + δ∅)

= u⟨4,12 | 3⟩ + u⟨1,2⟩.

In the last line, the conditional independences of the semi-elementary imsets are

the independences required for the local Markov property of G, that is, given the

numerical (and also topological) ordering

i ⊥⊥ [i− 1] \ paG(i) | paG(i),

where [i] = {1, 2, . . . , i}.

For a DAG G, Studený et al. (2010) introduce the characteristic imset cG, which

can be obtained from the standard imset uG by a one-to-one linear transformation

called the Möbius transform (Lauritzen, 1996):

cG(S) = 1−
∑

T :S⊆T⊆V

uG(T ) and uG(T ) =
∑

S:T⊆S⊆V

(−1)|V \S| {1− cG(S)} .

These transforms are just inclusion and exclusion formulae. This gives another

representation of the equivalence classes of DAGs, and (Studený et al., 2010), provide

the following theorem.

Theorem 3.3.1. For a DAG G, we have:

(i) cG(S) ∈ {0, 1} for each S ⊆ V, and

(ii) cG(S) = 1 if and only if either S = ∅ or there exists some i ∈ S with S \ {i} ⊆
paG(i).
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Inspired by the relation in DAGs between standard imsets and characteristic

imsets, and the consistency between characteristic imsets and parametrizing sets,

we extend the definition of the characteristic imset to MAGs using the parametrizing

set. The previous Möbius transform used on uG to obtain cG is linear and thus has

an inverse form (we will see later), we then apply this inverse formulae on 1 − cG,

to obtain the ‘standard’ imsets, uG. We will show that for many MAGs, these

‘standard’ imsets are combinatorial and perfectly Markovian with respect to the

original graph G.

Example 3.3.2. Consider the graph G in Figure 3.1 (ii). This is an example from

Richardson (2009). There are two absent edges, each of them corresponds to a

conditional independence, specifically 1 ⊥⊥ 3 and 2 ⊥⊥ 4 | 1, 3. Clearly we want

a standard imset uG such that it is sum of the elementary imsets for these two

independences. So we want

uG = u⟨1,3⟩ + u⟨2,4|13⟩

= δ1234 − δ134 − δ123 + 2δ13 − δ3 − δ1 + δ∅.

The fourth term δ13 with coefficient 2 is quite interesting. Graphically these

vertices are nonadjacent; however, {1} is the tail for the head {3, 4} that contains
3, and conversely {3} is the tail for the head {1, 2} that contains 1.

3.3.3 Standard imsets of MAGs

The fact that the parametrizing sets and the characteristic imsets of DAGs agree

motivates our definition for the characteristic imsets of MAGs, then we work back-

wards to deduce the form of the standard imsets of MAGs.

Definition 3.3.1. For a MAG G, define its characteristic imset cG as cG(S) = 1 if

S ∈ S(G) and cG(S) = 0 otherwise. Moreover, we define cG(∅) = 1 by convention

and in order to preserve the characteristic imset for DAG models.

Theorem 3.3.2. For a MAG G with characteristic imset cG, let

uG(B) =
∑

A:B⊆A⊆V

(−1)|A\B|(1− cG(A)).

Then

uG = δV − δ∅ −
∑

H∈H(G)

∑
W⊆H

(−1)|H\W |δW∪tail(H).

We will refer to uG as the ‘standard’ imset of the MAG G, the quotes being in

recognition of the fact that it does not always define the model (see Example 3.3.6).
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Proof. We can obtain cG via the following transformation from uG:

cG(S) = 1−
∑

T :S⊆T⊆V

uG(T ).

Then we can prove the theorem by showing that, after substituting

uG = δV − δ∅ −
∑

H∈H(G)

∑
W⊆H

(−1)|H\W |δW∪tail(H)

to the RHS of the previous equality, the result (say c∗G) is the same as cG.

Note that c∗G(∅) = 1, as the sum of coefficients in uG is 0. Suppose S ̸= ∅ and let

1P denote an indicator function, taking value 1 if P is true and 0 otherwise. Then

c∗G(S) = 1−
∑

T :S⊆T⊆V

δV(T )− δ∅(T )−
∑

H∈H(G)

∑
W⊆H

(−1)|H\W |δW∪tail(H)(T )


=

∑
T :S⊆T⊆V

∑
H∈H(G)

∑
W⊆H

(−1)|H\W |δW∪tail(H)(T )

=
∑

H∈H(G)

∑
T :S⊆T⊆V

∑
W⊆H

(−1)|H\W |δW∪tail(H)(T )

=
∑

H∈H(G)

∑
T :S⊆T⊆V

(−1)|H\T |
1tail(H)⊆T⊆H∪tail(H)

=
∑

H∈H(G)

1S⊆H∪tail(H)

∑
K⊆H\S

(−1)|K|+|H\S|

=
∑

H∈H(G)

1H⊆S⊆H∪tail(H).

The fifth equality can be seen in the following way: for each S andH we are counting

the number of supersets T ⊇ S such that tailG(H) ⊆ T ⊆ H ∪ tailG(H), multiplied

by some constant (−1)|H\T |. The indicator function comes from the fact that if S

is not a subset of H ∪ tailG(H) then there is no such T . Now S can be partitioned

into two sets S = S1∪̇S2 which are subsets of H and tailG(H), respectively. For

any set T ⊇ S such that tailG(H) ⊆ T ⊆ H ∪ tailG(H), It can be partitioned

into three sets: tailG(H) ⊇ S2, S1 and K. The last one K is (any) subset of

H \ S and the first two sets are deterministic. Moreover, (−1)|H\T | is then equal to

(−1)|(H\S)\K| = (−1)|K|+|H\S|.

Now the result follows from the proof of Lemma 4.3 in Evans and Richardson

(2013) which shows that for each set A there is at most one head H such that

H ⊆ A ⊆ H ∪ tailG(H).

If G is a DAG, then uG in Theorem 3.3.2 agrees with (3.1).
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Remark 4. Notice that the form of standard imsets in Theorem 3.3.2 considers a

tail with subsets of its head, in an opposite manner to the parametrizing sets where

we consider a head with subsets of its tail. One can check that this is how 2δ13 is

obtained in Example 3.3.2. One δ13 comes from the head {1, 2} with tail {3} and
the head {3, 4} with tail {1} contributes another δ13.

Corollary 3.3.2.1. For two MAGs G and H, they are Markov equivalent if and

only if uG = uH.

Proof. This follows from Theorem 2.2.1 and the fact that the transformation between

the standard imset and the characteristic imset is one-to-one.

Next, we prove a useful result on ’standard imset’ of subgraphs, which says that

if the ’standard imset’ of a subgraph induced by an ancestral set does not define the

correct model then neither does the whole graph.

3.3.4 Forbidden subgraphs

A useful fact about MAGs is that any induced subgraph of a MAG is itself a MAG.

Lemma 3.3.3. Let G be a graph that is maximal and ancestral. Then for any subset

of the vertices W ⊆ V , so is the induced subgraph GW .

Proof. The ancestrality follows from Proposition 3.5 of Richardson and Spirtes

(2002). For maximality, note that there are no more paths in an induced sub-

graph than in the original graph, so in particular there cannot be any more inducing

paths. Since all bidirected edges between vertices are preserved, this implies that

the graph remains maximal.

Another useful fact will concern conditional independences in induced subgraphs.

Proposition 3.3.4. Let G be a MAG and GW an induced subgraph. Then for a, b ∈
W , any m-separation a ⊥m b | C holding in G implies that a ⊥m b | E holds in GW ,

where E = C ∩W . Additionally, if W is an ancestral set, then a ⊥m b | E in GW if

and only if it also holds in G.

Proof. Removing vertices that are not on the path from the conditioning set can

only block a path, so the removal of vertices in C \E will not affect the status of any

of the paths through W . Hence the result holds. The result for ancestral subgraphs

follows, for example, from the results of Richardson (2003).

The above result is also useful for considering the parametrizing set. Let P(W )

denote the power set of W , i.e. the collection of subsets of W .
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Figure 3.2: A counter example for Prop 3.3.5 when W is not ancestral

Corollary 3.3.4.1. We have S(GW ) ⊆ S(G) ∩ P(W ).

Proof. This follows immediately from Propositions 2.2.2 and 3.3.4.

Note that, of course, the sets of size at most two are always identical in the

original MAG and any induced subgraph, since these are just the adjacencies.

Now we are ready to prove the main result of this section that the certain graphs

must not appear as induced subgraphs within a MAG, if we want the corresponding

‘standard’ imset to be perfectly Markovian with respect to it.

Proposition 3.3.5. Let G be a MAG, and suppose that for some ancestral subset

A ⊂ V we have that uGA
is not Markovian with respect to GA. Then the model uG is

not perfectly Markovian with respect to G.

Proof. Since the subgraph is ancestral, the independences it encodes are just those

from the larger graph, with potentially smaller conditioning sets. Now, suppose that

it is not possible to write the independences implied by the smaller graph in such

a way as to avoid repeating a set. Then the same problem will clearly arise in the

larger graph, since (by Proposition 3.3.4) we must specify isomorphic independences

with potentially more restrictions on the conditioning set.

Remark 5. We know from Proposition 3.3.4 that if we take an ancestral subset

W = A, the structure of the imset is preserved. Hence, if we marginalize the graph

then the imset will just be the induced subimset over the entries that are subsets of

A, and so by Proposition 9.3 of Studený (2006), the imset will match the model for

the ancestral subgraph. Hence, in this case the result is clear.

The following example shows that Proposition 3.3.5 does not work if a subset W

is not ancestral. This is pointed out by one of the reviewers.

Example 3.3.3. One can check that u⟨4,12|6⟩+u⟨6,35|12⟩+u⟨1,3|5⟩+u⟨2,5|3⟩+u⟨3,5⟩ is the

standard imset of the MAG in Figure 3.2 and is perfectly Markovian with respect

to it. The subgraph induced by {1, 2, 3, 4, 5} is the bidirected 5-cycle, however, and

hence the ‘standard’ imset does not work.
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For the graph, if we were to interpret it using the nested property (Richardson

et al., 2017) then, after fixing 6, we would have two additional constraints: 4 ⊥⊥ 1 | 3
and 4 ⊥⊥ 2 | 5. This model cannot be rewritten in a manner that avoids overlap,

and therefore if the imset represented the nested model, this graph would not have

a perfectly Markovian ‘standard’ imset. Of course, the imset does not represent the

nested model, and so this is merely an academic point.

Before we proceed, we would like to clarify some of the terms and notations used

in this thesis. Originally, the standard imset of a DAG refers to the fact that it

is the simplest imset that is perfectly Markovian w.r.t. the graph (Studený, 2006).

However for MAGs, the ‘standard’ imset we defined is not necessarily perfectly

Markovian, and we use the quotes to refer to the imset obtained by applying the

Möbius inversion formula to the 0-1 imset defined by the parametrizing set.

If we use c with some subscript to denote an imset then it is in the characteristic

form, i.e. obtained by applying the Möbius transform to some imset u. If u is

structural then it induces a model, and we associate the same model with both c

and u.

3.3.5 Choice of the characteristic imset

Obviously, there are many imset representations for an independence model. The

reason we choose to firstly work with a 0-1 characteristic imset is because if its

corresponding ‘standard’ imset is perfectly Markovian w.r.t. the graph, then it is

also the minimal representation. We proceed to prove this fact by studying the

characteristic imset form c of any structural imset u that represent the model.

Example 3.3.7 gives a graph for which the ‘standard’ imset is not structural.

Fortunately, such graphs seem to be comparatively unusual as shown in experiment

section..

We begin with a simple observation on the linear relationship between structural

imset and its characteristic imset.

Lemma 3.3.6. For a structural imset u and its characteristic imset c, we have that

c(S) = 1 if and only if u contains no independence with S as a constrained set, and

otherwise c(S) ≤ 0.

Corollary 3.3.6.1. Consider a MAG G. For any structural imset u such that

Iu = IG, its characteristic imset c must be an integer valued vector and satisfy the

following:

(i) if S ∈ S(G), then cG(S) = 1;
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(ii) if S /∈ S(G), then cG(S) ≤ 0.

We now argue for the choice of the 0-1 characteristic imset, which Corollary

3.3.6.1 shows is unique for any given graph. There is no way to totally order combi-

natorial imsets, though the degree does provide a partial ordering. It is clear that,

if our imset is combinatorial and perfectly Markovian, then it is also an imset of

the smallest degree (Studený, 2006), because there is exactly one independence for

each missing edge. We will see in Example 3.3.6 that some MAG models cannot be

represented in this way.

We can define a partial order on imsets defining the same model based on the

coefficients of their corresponding characteristic imsets. That is, given two structural

imsets u and u′ with corresponding characteristic imsets c and c′, we say that u is

smaller than u′ if c(S) ≥ c′(S) for every S ⊆ P(V ). Lemma 3.3.6 makes clear that

this is a useful definition.

By Corollary 3.3.6.1, if the 0-1 imset’s standard imset induces the same model

as the graph, it is both an imset of smallest degree and the unique minimal such

imset according to this partial order.

3.3.6 Simple MAGs

Unlike the standard imset of a DAG, it is often very hard to tell how to decompose

this standard imset as sum of semi-elementary imsets, because the size and number

of heads are arbitrary. However, if we restrict the size of heads to two, we can show

that its standard imset is always both combinatorial and perfectly Markovian with

respect to G.

Definition 3.3.2. A MAG G is said to be simple if G contains no head with size

more than two.

Before we prove that the ’standard imset’ of any simple MAG is always perfectly

Markovian w.r.t. the graph, we show how dense simple MAGs are as a subset of

all MAGs by: (i) listing how many Markov equivalence classes contain at least one

simple MAG; and (ii) simulating MAGs and counting proportions of them being

Markov equivalent to some simple MAGs. Note that simple MAGs can have large

districts and not be Markov equivalent to a graph with smaller districts; see Figure

3.3.

Example 3.3.4. We first start by providing an example of a simple MAG with an

arbitrarily large district. This illustrates that a search algorithm over simple MAGs

is potentially very useful, since it includes a considerable number of causal models
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Figure 3.3: Simple MAGs with arbitrarily large districts

than one would obtain by restricting the maximum district size to two or three. This

is in contrast with other methods for score-based learning, which generally make this

kind of restriction (e.g. Chen et al., 2021).

The graph in Figure 3.3 has a district of size k and that district also has k

parents. However, note that the only heads are just the bidirected edges, so this is

a simple MAG. In addition, the independences for each of the Vj are of the form

Vj ⊥⊥ P1, V1, . . . , Vj−3, Pj−2, Pk−1 | Pj, Vj−2,

and (unsurprisingly) there is no way to order the variables so that the independences

are nested within one another as would be required by a DAG.

We demonstrate how common simple MAGs are by using the following results.

The first column in Table 3.1 is the number vertices. Then the second column list the

number of equivalence classes of MAGs with the corresponding number of vertices.

The next two columns further count how many equivalence classes that contain at

least one simple MAG and one DAG, respectively. In particular, the proportion of

equivalence classes that contain simple MAGs decreases but not as sharply as that

for DAGs.

Then Figure 3.4, we simulate 1000 random MAGs for number of vertices ranging

from five to forty, and plot empirical probabilities that the simulated graphs are

Markov equivalent to some simple MAGs. The method we use to simulate MAGs

is the same as Claassen and Bucur (2022). We fix the average and maximal degree

of each vertex to three and ten respectively. For each edge, the probability of

being bidirected is 0.2. We simulate an ADMG first and project it into a Markov

equivalent MAG. Then by converting the MAG to a partially ancestral graph (PAG),
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we finally select a representative MAG from the PAG. The last two steps are from

Zhang (2007a). If the representative MAG is simple, we consider the original graph

as being Markov equivalent to some simple MAGs. Note that the probability of

simple MAGs drops quickly as number of variables increase. This is because as size

of graphs grows, it is more likely to have a subgraph that is not simple.

Figure 3.4: A plot for probability of
random graphs being Markov equivalent to

some simple MAGs

|V | equiv. classes simple MAGs DAGs

5 285 205 119
6 13,303 6,278 2,025
7∗ 1,161,461 331,310 57,661
∗having at most 13 or at least 18 edges.

Table 3.1: Number of equivalence classes

It is not hard to show that for a MAG, {i, j} is a head if and only if i ↔ j.

Moreover, consider any j ↔ i ↔ k. If the MAG is simple, then there must be

ancestral relations between j and k so that {i, j, k} does not form a head (this is

necessary and sufficient as shown by Lemma 7.3 of Evans and Richardson, 2013).

Hence for each vertex i, there is a total ordering on heads that contain i, and we

now show that their tails are nested within one another.

Lemma 3.3.7. Suppose G is a simple MAG with a given topological ordering. For

every vertex i and all heads of size two, {i, js}, with j1 < · · · < jk ≤ i, we have

paG(i) = tailG(i) ⊆ tailG(i, j1) ⊆ · · · ⊆ tailG(i, jk).

Example 3.3.5. Consider the simple MAG G in Figure 3.5. The sets {7, 8} and

{6, 8} are the heads of size two associated with the vertex 8. Their tails are

{1, 2, 3, 4, 5, 6} and {1, 3, 4, 5} respectively. Note that tailG({6, 8}) ⊂ tailG({7, 8}).
Also, we have paG(8) = {1, 5}, which is a subset of both the other tails.

One can check that its standard imset can be written as:

uG = u⟨8,2|13456⟩ + u⟨8,34|15⟩ + u⟨7,1345|26⟩

+ u⟨6,125|34⟩ + u⟨6,3⟩ + u⟨5,123|4⟩

+ u⟨4,12|3⟩ + u⟨3,12⟩ + u⟨1,2⟩.
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Figure 3.5: A simple MAG

Let us focus on the semi-elementary imsets that contain 8. The conditional inde-

pendence between vertex 8 and vertex 2 can be seen in this way. After marginalizing

{7} (the remaining seven vertices still form an ancestral set), {2} would be outside

of the Markov blanket of vertex 8 which is tailG({6, 8}) = {1, 3, 4, 5, 6}, and this

independence is implied by the local Markov property. Similarly, if one further

marginalizes {6}, then {3, 4} are not in the Markov blanket of vertex 8, which is

just paG(8) = {1, 5}, and this corresponds to 8 ⊥⊥ 3, 4 | 1, 5.

Thus for simple MAGs with a given topological ordering, we can obtain con-

ditional independences by sequentially marginalizing heads of size two associated

with the last vertex and using local Markov property. See details in the proof of the

following theorem.

Theorem 3.3.8. For a MAG G and its standard imset uG, if G is simple then

IuG = IG.

Proof. Given a topological ordering, we can write the standard imset uG of a simple

MAG G in the following way:

uG = δV − δ∅ −
∑
i∈V

{
δ{i}∪pa(i) − δpa(i)

}
−
∑
i↔j

{
δ{i,j}∪tail(i,j) − δ{i}∪tail(i,j) − δ{j}∪tail(i,j) + δtail(i,j)

}
;

=
∑
i∈V

{
δ[i] − δ[i−1] − δ{i}∪pa(i) + δpa(i)

}
−
∑
i↔j

{
δ{i,j}∪tail(i,j) − δ{i}∪tail(i,j) − δ{j}∪tail(i,j) + δtail(i,j)

}
;

=
∑
i∈V

{
δ[i] − δ[i−1] − δ{i}∪pa(i) + δpa(i)

+
∑

i↔j,i>j

−δ{i,j}∪tail(i,j) + δ{i}∪tail(i,j) + δ{j}∪tail(i,j) − δtail(i,j)

}

For each vertex i, consider the topological ordering on all the j such that j < i and

i↔ j, where j1 < ... < jk < i. Hence we have:

uG =
∑
i∈V

{
δ[i] − δ[i−1] − δ{i}∪pa(i) + δpa(i)
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+
k∑

l=1

−δ{i,jl}∪tail(i,jl) + δ{i}∪tail(i,jl) + δ{jl}∪tail(i,jl) − δtail(i,jl)

}
=

∑
i∈V

{
δ[i] − δ[i−1] − δ{i,jk}∪tail(i,jk) + δ{jk}∪tail(i,jk)

+
k−1∑
l=1

−δ{i,jl}∪tail(i,jl) + δ{i}∪tail(i,jl+1) + δ{jl}∪tail(i,jl) − δtail(i,jl+1);

+δ{i}∪tail(i,j1) − δtail(i,j1) − δ{i}∪pa(i) + δpa(i)

}
.

Now for each vertex i, consider the following list of conditional independence, de-

noted by Li:

i ⊥⊥ [i− 1] \ (tail(i, jk) ∪ {jk}) | tail(i, jk) ∪ {jk};

i ⊥⊥ tail(i, jk) \ (tail(i, jk−1) ∪ {jk−1}) | tail(i, jk−1) ∪ {jk−1};
...

i ⊥⊥ tail(i, j2) \ (tail(i, j1) ∪ {j1}) | tail(i, j1) ∪ {j1};

i ⊥⊥ tail(i, j1) \ pa(i) | pa(i).

It is straightforward to check that uG is a sum of the semi-elementary imsets corre-

sponding to the conditional independence list L =
⋃

i∈V Li. Notice that if there is

no such j for i (k=0) then it reduces to the local Markov property of DAGs:

i ⊥⊥ [i− 1] \ pa(i) | pa(i).

Thus uG is a combinatorial imset and every independence in L is in IuG .

By Theorem 3.4.5, any local Markov property can be deduced from L =
⋃

i Li

using semi-graphoid thus IG ⊆ IuG . Now the faithfulness result in Richardson and

Spirtes (2002) shows that for every MAG G there exists a distribution P such that

IP = IG and Theorem 5.2 in Studený (2006) implies the existence of a structural

imset u such that Iu = IP . Now every independence in L is in Iu by Theorem 3.4.5,

and uG is sum of the semi-elementary imsets corresponding to the independence in

L, so by Lemma 6.1 in Studený (2006), we have IuG ⊆ Iu = IG. Note the idea of

this proof is similar to the proof of Lemma 7.1 in Studený (2006).

Corollary 3.3.8.1. For a MAG G, if there exists a simple MAG H which is Markov

equivalent to G, then IuG = IG.
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Figure 3.6: (i) a bidirected 5-cycle; (ii) a bidirected 6-cycle; (iii) a bidirected 6-cycle
with an additional edge.

3.3.7 Examples where the imset is not perfectly Markovian

In general—as the following examples show—the ‘standard’ imset we have defined

is not structural, and even if it is structural, uG may not be perfectly Markovian

with respect to the model induced by the graph.

Example 3.3.6. Consider the 5-cycle G with bidirected edges in Figure 3.6. Its

‘standard’ imset is given by

uG = u⟨1,3|4⟩ + u⟨2,4|5⟩ + u⟨3,5|1⟩ + u⟨4,1|2⟩ + u⟨5,2|3⟩

= u⟨1,3|5⟩ + u⟨2,4|1⟩ + u⟨3,5|2⟩ + u⟨4,1|3⟩ + u⟨5,2|4⟩.

Any (strictly) conditional independence that holds in the graph is contained in IuG ;

however, marginal independences such as 1 ⊥⊥ 3 are not in the imset.

Note, however, that if we assume the underlying distribution is strictly positive

then we are able to deduce that any marginal independence in the graph is in IuG ,

by noting that (for example) 1 ⊥⊥ 3 | 4 and 1 ⊥⊥ 4 | 3 are both in IuG , and can be

combined if the density is positive to obtain 1 ⊥⊥ 3, 4. It turns out that for n = 5,

this 5-cycle is the only graph such that uG is not perfectly Markovian with respect

to G.
For this 5-cycle, there are 10 sets S such that cG(S) = 0. Among these sets,

five of them have size 2 and the other five have size 3. This suggests that for some

MAGs, if we want a structural imset uG that is perfectly Markovian with respect to

the graph, it is inevitable that there is some overlap between the sets associated with

the independence decomposition of uG. This also shows that the minimum degree

of a model defining the 5-cycle is 6, even though there are only 5 pairs of vertices

that are not adjacent. Hence there are MAG models which can only be defined by

having a set of independences that repeats an independence between some pair of

vertices.
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Example 3.3.7. Consider the bidirected 6-cycle G shown in Figure 3.6(ii), and uG,

which is too long to list here. Write uG =
∑

A∈P(V) αAδA, where αA are coefficients for

each identifier imset. The largest disconnected sets are of size 4, and
∑

|A|=4 αA = 9

and
∑

|A|=3 αA = −22; It is easy to show that when we add semi-elementary imset

to an imset, if the semi-elementary imset contributes to the term with largest set

size, we will subtract at most two to the coefficient of the terms with set size exactly

one smaller than the largest one. But 22 is larger than 18 = 2 · 9. Hence this imset

cannot be neither combinatorial or structural.

Example 3.3.8. Consider Figure 3.6 (iii). This graph has a structural ‘standard’

imset that is not perfectly Markovian with respect to G, and it is also not combina-

torial. However, it is structural, because:

2uG = u⟨1,3⟩ + u⟨1,3|5,6⟩ + u⟨1,5⟩ + u⟨1,5|2,3⟩ + u⟨2,4⟩ + u⟨2,4|5,6⟩+

+ u⟨2,5|1,3⟩ + u⟨2,5|4,6⟩ + u⟨2,6⟩ + u⟨2,6|3,5⟩ + u⟨3,5⟩ + u⟨3,5|2,6⟩+

+ u⟨3,6|2,4⟩ + u⟨3,6|1,5⟩ + u⟨4,6⟩ + u⟨4,6|2,3⟩.

This constitutes another example of an imset that is structural but not combina-

torial, and it arises in a much more natural way that the one given by Hemmecke

et al. (2008).

3.3.8 Relating to scoring criteria

The following inner product notation is defined for scoring purpose.

Definition 3.3.3. Given a function f which takes XA for any A ⊆ V as input, and

an imset u over V , we define

⟨u, f⟩ =
∑
A⊆V

u(A)f(xA).

Here we explain how to use imsets to provide a consistent scoring criteria. For

DAGs, the maximum likelihood part of the BIC (defined in Section 4.4.2) can be

shown to be the empirical entropy of XV , minus the inner product between the

standard imset and the empirical entropy vector (take f as the entropy in Definition

3.3.3 and also we demonstrate this in Section 4.4.2 for discrete variables). This inner

product is explained in the following.

For random variables XV with density function p, define the entropy H(XV) as

the expectation of − log p(XV), i.e. E[− log p(XV)]. For three random variables XA,

XB and XC , the inner product between the semi-elementary imset u⟨A,B|C⟩ and the

entropy vector, whose entries correspond to the entropy H of every subset of V , is
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the mutual information between XA, XB given XC ; that is, H(XABC) − H(XAC) −
H(XBC) + H(XC). This quantity is always non-negative, and is zero if and only if

the independence A ⊥⊥ B | C holds under p.

Hence for DAGs, BIC scores can be interpreted as the discrepancy for a list of

independences from the ordered local Markov property plus penalty terms for model

complexity. It follows that we can do something similar for simple MAGs, since if

uG is perfectly Markovian w.r.t. the graph, this inner product (suitably penalized)

provides a valid score. In fact, we prove in Section 4.4.3 that if IuG = IG then,

this score is consistent as it approximates the BIC. However, for simple MAGs this

score can be obtained much faster as the imsets can be constructed in quadratic

time in the number of vertices; in contrast, there is no guarantee on computation

time for BIC. Note that consistency of the BIC score only requires that the data are

generated from one of the models being scored (and do not coincidentally lie on any

other models with at most the same number of parameters). For this score, we also

require that the graph that generates the data has a perfectly Markovian standard

imset.

Moreover, as we have shown the decomposition (with positive integer coefficients)

of simple MAGs, if the CI relations in a distribution can be described by a simple

MAG, we always have that this inner product is zero. Empirically we observed that

this is true even for general MAGs, in spite of previous examples where our imsets are

not perfectly Markovian w.r.t. MAGs or not even structural. This suggests that the

standard imsets we defined can be expressed as the sum of semi-elementary imsets

corresponding to conditional independences advertised by the graph, but some of the

coefficients are negative, this will indeed turn out to be the case (Theorem 3.4.18).

3.3.9 Motivations to simplify Markov property

Next we discuss different choices of imsets. Obviously there are many imsets that

represent the same model induced by graphs, but they are different in terms of

computational complexity and statistical performance. Both the pairwise Markov

property (Sadeghi et al., 2014) and the (reduced) ordered local Markov property

(Richardson, 2003) can be used to construct imsets by summing semi-elementary

imsets corresponding to list of independences2.

However, the pairwise Markov property in general have more conditioning vari-

ables if graphs have complicated ancestral relations, and thus require to estimate

2For the pairwise Markov property to be equivalent to the global Markov property it requires
that the independence model is a ‘compositional graphoid’ (see Appendix 3.8). One can show
the inner product with entropy is zero if and only if the distribution obeys the pairwise Markov
property.

50



entropy of more variables, which is hard problem. Even if it has the same degree

as the standard imsets for simple MAGs, in practice we found it having worse per-

formance in model search algorithms. For imsets corresponding to the (reduced)

ordered local Markov property, since it in general contains redundant conditional

independences (even for simple MAGs, see the example on next section), it has

higher degree compared to the standard imsets, hence are less useful. Therefore

for simple MAGs, our standard imsets are faster to compute (polynomial time) and

more reliable.

Now for general MAGs, we have seen that the ‘standard’ imsets obtained from

the 0-1 characteristic imsets in general are invalid. To construct valid imsets one can

of course use the imsets from the pairwise/reduced ordered local Markov property.

However, we aim for imsets that have lower degree and fewer conditioning variables,

hence simplifying the Markov property is essential to find the standard (simplest)

imsets for general MAGs. In the next section we use a graphical tool called the

Power DAGs to achieve this, and we show that our refined Markov property is

strictly simpler than the ordered local Markov property. The result is optimal for

simple MAGs as it gives the list of independences that decomposes the standard

imsets, but not optimal in general.

Our refined Markov property results in an imset that is perfectly Markovian

to a given MAG and have fewer degree/conditioning variables compared to pair-

wise/ordered local Markov property. We also show that fixing the maximal head

size, the computational time for this imset is polynomial.

3.4 Power DAGs

We aim to give a simpler representation of the conditional independence model

induced by MAGs. To describe these relations, we use power DAGs of these graphs,

which are DAGs over the set of heads.

Our power DAG is completely analogous to the intrinsic power DAG in (Richard-

son et al., 2023), as there is a one-to-one correspondence between the collections of

head and intrinsic sets used in that paper; indeed, for most MAGs, the two graphs

are isomorphic. The approach we give later to simplifying the power DAG is not

suitable for intrinsic power DAGs for the nested Markov model studied in that paper,

because the order in which vertices are fixed (marginalized in our case) is important

for deriving nested constraints.

51



6

3

5

4

2

1

(i)

6

3

5

4

2

(ii)

5, 6 3, 6 65 3

(iii)

Figure 3.7: (i) A simple MAG G; (ii) the graph after removing 1 and marginalizing 5;
(iii) a DAG on heads in G that contain the vertex 6.

3.4.1 Motivations and examples

Example 3.4.1. Consider the simple MAG in Figure 3.7(i), given the numerical

ordering, the reduced ordered local Markov property for the vertex 6 would require:

6 ⊥⊥ 1 | 2, 3, 4, 5 6 ⊥⊥ 1, 4 | 2, 3 6 ⊥⊥ 1, 2, 4.

However, these independences are equivalent to:

6 ⊥⊥ 1 | 2, 3, 4, 5 6 ⊥⊥ 4 | 2, 3 6 ⊥⊥ 2.

This list is the simplest as it comes from decomposition of standard imset uG of the

simple MAG G.
We start with a topological ordering, in this case the numeric ordering of the

vertices. Then, for each vertex we consider the graph of its predecessors; for the

vertex 6 this is just the graph itself. We see from this that 1 is not in the Markov

blanket of 6, deduce that 6 ⊥⊥ 1 | 2, 3, 4 holds, so we remove 1 from the graph. Then

we must marginalize something other than 6 in the head {5, 6}; for simple MAGs

there is only ever one choice, so we obtain the graph in Figure 3.7(ii). The maximal

head in this graph is now {3, 6}, and we now see that {4} is no longer in the Markov

blanket of 6; hence we obtain 6 ⊥⊥ 4 | 2, 3 and remove it from further consideration.

Finally we marginalize 3 and see that 6 ⊥⊥ 2.

Alongside these operations, in Figure 3.7(iii) we construct the corresponding

component of the power DAG for heads that contain 6. We (potentially) associate

a single independence with the initial node (so 6 ⊥⊥ 1 | 2, 3, 4, 5 in our case) and

another with each of the transitions in the graph (6 ⊥⊥ 4 | 2, 3 and 6 ⊥⊥ 2).

Specifically, in this example, we reach the head {3, 6} from the head {5, 6} by

marginalizing {5}, as illustrated in Figure 3.7. Now {4} is no longer in the Markov

blanket of 6, so we obtain 6 ⊥⊥ 4 | 2, 3 for it and remove it from consideration. Next

by marginalizing {3}, we reach the head {6} and now {2} is not in the Markov
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(iii): Marginalize 3
G′′=Gan({3,5,6})\{3}

Figure 3.8: An example for Definition 3.4.1.

blanket of {6} anymore, so we add the independence 6 ⊥⊥ 2. For better illustration,

we can draw a DAG on heads if one head can reach another by marginalizing vertices

in the head, see Figure 3.7 (iii). Then the second and third independences in our

list are represented by this DAG.

Now we give formal definitions of power DAGs and a more complicated example

on non-simple MAGs will be given.

3.4.2 From one head to another

We assume throughout that the numerical ordering of vertices is also topological.

To properly formulate the definition of power DAGs, we need a few more notations

and definitions. For a vertex set A and a vertex i, we write A ≤ i if i is the maximal

vertex in A w.r.t. a given topological ordering.

Definition 3.4.1. For a MAG G and two heads H,H ′ ≤ i, we write H →K H ′

(∅ ⊂ K ⊆ H \ {i}) if barrenG′(disG′(i)) = H ′, where G ′ = Gan(H)\K . We will refer to

K as a marginalization set.

Graphically, H →K H ′ means that in the subgraph Gan(H), the maximal head

(i.e. the barren subset of the district) that contains i after marginalizing K (subset

of the barren subset) is H ′. Moreover, to save space we eschew set notation and

union signs and write (e.g.) k for {k} and HT for H ∪ T .

Take the graph in Figure 3.8(i) , under the numerical topological ordering. Con-

sider the final vertex 6; other barren vertices in its Markov blanket are 4 and

5, which together with 6 form a head. By marginalizing 4, we reach the head

{3, 5, 6}, hence by definition, {4, 5, 6} →4 {3, 5, 6}. Then if we marginalize 3, we

have {3, 5, 6} →3 {6}. The above two marginalization steps are shown in Figure 3.8

(ii) and (iii).
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With each H →K H ′ we associate a conditional independence. By Definition

3.4.1, if H →K H ′ then anG(H)\K = B, where B is an ancestral set, T ′ = tailG(H
′)

and {i} ∪ mbG(i, B) = H ′ ∪ T ′. Hence by the ordered local Markov property and

marginalizing vertices that lie outside of the Markov blanket of i in GB, we have

i ⊥⊥ (H ∪ T ) \ (H ′ ∪ T ′ ∪K) | (H ′ ∪ T ′) \ {i}.

For instance, in Figure 3.8, the conditional independence associated with the

edge {3, 5, 6} →3 {6} is obtained as the following: we have H = {3, 5, 6}, T =

tail(H) = {1, 2}, H ′ = {6}, T ′ = tail(H ′) = {2} and K = {3}, hence

6 ⊥⊥ ({3, 5, 6} ∪ {1, 2}) \ ({6} ∪ {2} ∪ {3}) | {6} ∪ {2} \ {6} = 6 ⊥⊥ 1, 5 | 2.

3.4.3 Complete power DAGs

Definition 3.4.2. Consider a MAG G with a topological ordering. Given a set

S ⊆ V we say that s ∈ S is a marginalization vertex if it is in barrenG(S) and is not

maximal in S.

Define the complete power DAG I(G) as a graph with vertices H(G). An edge is

added from H → H ′ if there is a marginalization vertex k ∈ H such that H →k H ′.

In this case we call H a parent head of H ′. There is a unique component for each

vertex i, which we denote Ii(G).

Next we present a few results that justify the nomenclature of power DAGs.

Lemma 3.4.1. For a MAG G and two heads H,H ′ whose maximal vertex is i, if

H →K H ′ and H →L H ′ then H →K∩L H ′.

Proof. Let T = K∩L and K̇ = K \T . Suppose H →T H ′′. Now after marginalizing

T , the vertices in K̇ are either not in the same district as i or lie in H ′′. If all of

them are not in the same district with i, then H ′ = H ′′ because then marginalizing

K̇ would not change the barren subset of the district containing i, which are H ′′

and H ′ before and after the marginalization, respectively.

Let K̃ be those that lie in H ′′ and similarly we define L̇, L̃ for L, note that they

are disjoint by definition, because T is the intersection of K and L, and K̇, L̇ are

the complement of T in K and L respectively. Also H →T∪K̃ H ′ and H →T∪L̃ H ′.

We firstly consider H →T∪K̃ H ′. This implies that for any bidirected path from

any vertex i ∈ L̃ to any w ∈ H ′∪T , there is a vertex from K̃ on the path, otherwise

some vertices of L̃ would be preserved, which is a contradiction. The equivalent

statement by swapping K̃ and L̃ also holds. If one considers the first vertex in

either K̃ or L̃ on any such path, one of the two statements would be false. Hence

the lemma is true.
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Lemma 3.4.2. For a MAG G and any i, there is at most one edge between any two

heads in Ii(G).

Proof. This is a direct consequence of Lemma 3.4.1.

Lemma 3.4.3. For two heads H,H ′ ≤ i, we have H > H ′ if and only if H is an

ancestor of H ′ in Ii(G)

Proof. This can be proved by marginalizing vertices in an(H) \ an(H) step by step.

A useful fact is that for any i and IG
i , there exists a (maximal) head H such that

H ≥ H ′ for any H ′ ≤ i and this head is the barren subset of the district of i in G[i].

Lemma 3.4.4. For a MAG G and any vertex i in G, Ii(G) is a DAG

Proof. This is a direct consequence of Lemma 3.4.2 and 3.4.3.

Here we prove that the list of independences associated with edges in IG
i for

every i, combined with the independences i ⊥⊥ [i − 1] \ mbG(i, [i]) | mbG(i, [i]), are

sufficient to deduce the ordered local Markov property.

Definition 3.4.3. For a MAG G and any vertex i in G, we associate IG
i with a

collection of independences LG
i that contains:

(a) i ⊥⊥ [i− 1] \mbG(i, [i]) | mbG(i, [i]), and

(b) for every head H (except {i}) whose maximal element is i:

i ⊥⊥ (H ∪ T ) \ (H ′ ∪ T ′ ∪ k) | H ′ ∪ T ′ \ {i} for k ∈ H \ {i},

where H →k H ′, and T = tailG(H) and T ′ = tailG(H
′).

Theorem 3.4.5. For a MAG G, the collection LG =
⋃

i L
G
i is equivalent to the list

of independences implied by the ordered local Markov property for G.

Proof. (⇐=): notice that H ′ ∪ T ′ \ {i} is the Markov blanket of i in the ances-

tral set an(H ∪ T \K), thus it follows from the ordered local Markov property by

marginalizing irrelevant vertices.

(=⇒): let Ax denote the set of all ancestral sets whose maximal elements are

x. Further let Ax
r = {A ∈ Ax : |A| = r} (note 1 ≤ r ≤ x). We will proceed by

induction on x from x = 1 to x = n. To show for every A ∈ Ax, the corresponding

independence implied by the ordered local Markov property is implied by Li, we

will apply a further induction on Ax
r from r = x to r = 1.
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For A ∈ Ax, A ⊆ [x]. The base case x = 1 is trivial. Suppose the induction

hypothesis is true, i.e. for any ancestral set A ∈ Ax, x ≤ i − 1 the corresponding

conditional independence implied by the ordered local Markov property is in IuG .

Now consider Ai, we will then apply induction on Ai
r. For the base case r = i,

i.e. A = [i], the independence is in Li, that is, (a). Now suppose the induction

hypothesis is true, that is: for any A ∈ Ai
r, s + 1 ≤ r ≤ i, the corresponding

conditional independence from the ordered local Markov property is implied by Li

and we can use the ordered local Markov property on G[i−1].

Now consider any A ∈ Ai
s. There is at least one vertex v in [i] \A such that v is

parentless in [i] \A, in other words, A∪{v} = A′ is ancestral and A′ ∈ Ai
s+1. Hence

by the second induction hypothesis we have

i ⊥⊥ A′ \ (mb(i, A′) ∪ {i}) | mb(i, A′). (3.2)

If mb(i, A) = mb(i, A′), then we can get required conditional independence by

marginalizing v ∈ A′ \ (mb(i, A′) ∪ {i}).
So now assume {v} ∪ mb(i, A) ⊆ mb(i, A′) (v, i are in the same district). Let

A′′ = A∪{v}\{i} = A′\{i}. We know A′′ is ancestral and is in Ai−1, thus by the firt

induction hypothesis, we can apply the ordered local Markov property to any vertex

in barren(A′′) (changing the topological order on [i− 1]). Moreover, v ∈ barren(A′′)

because if v has any child in A then A is not ancestral. So we have:

v ⊥⊥ A′′ \ (mb(v,A′′) ∪ {v}) | mb(v, A′′).

Next notice that by assumption, mb(v, A′)∪{v} = mb(i, A′)∪{i} (i, v are in the same

district in A′). As A′′ ⊂ A′, we have mb(v,A′′) ⊂ mb(v, A′) = mb(i, A′) ∪ {i} \ {v}.
Then because mb(v, A′′) ⊂ mb(i, A′)∪{i}\{v} and v ∈ mb(i, A′), by semi-graphoids,

moving mb(i, A′) \ (mb(v,A′′) ∪ {v}) (which is a subset of A′′) to the conditioning

set, we have:

v ⊥⊥ A′′ \mb(i, A′) | mb(i, A′) \ {v}. (3.3)

Now (3.2) is equivalent to:

i ⊥⊥ A′′ \mb(i, A′) | mb(i, A′). (3.4)

Thus by semi-graphoids, we can deduce the following from (3.3) and (3.4):

{i, v} ⊥⊥ A′′ \mb(i, A′) | mb(i, A′) \ {v}.

The next step is to marginalize v so that:

{i} ⊥⊥ A′′ \mb(i, A′) | mb(i, A′) \ {v}.
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which is equivalent to:

{i} ⊥⊥ A \ ((mb(i, A′) \ {v}) ∪ {i}) | mb(i, A′) \ {v}. (3.5)

Note that (mb(i, A′) \ {v}) ⊆ A. To extract vertices in (mb(i, A′) \ {v}) \mb(i, A),

the key point is to notice that {v, i} ⊆ barren(disA′(i)) = H, where H is a head

that contains the maximal vertex i. Thus {v} can be a marginalizing set K for

H with the tail T , and H ∪ T = mb(i, A′). Now by marginalizing {v} we reach

B = A′ \ {v} = A, thus the following conditional independence is in Li:

{i} ⊥⊥ mb(i, A′) \ ((mb(i, A) ∪ {v}) ∪ {i}) | mb(i, A). (3.6)

From (3.5) and (3.6), we can deduce that:

i ⊥⊥ A \ (mb(i, A) ∪ {i}) | mb(i, A).

3.4.4 Refined power DAG

We have shown that the list of independences associated with the complete power

DAGs is sufficient to deduce the ordered local Markov property (Theorem 3.4.5).

However, this leads to many redundant independences, and we will show that it is

sufficient to only include a single independence for each head. Consequently we will

call these simpler power DAGs refined. An example of the power DAGs of the graph

in Figure 3.8 is given in Figure 3.9.

The following definitions will help us to characterize the marginalization sets.

Definition 3.4.4. For a MAG G and a set of vertices W , define the ceiling of W as

ceilG(W ) = {w ∈ W : W ∩ anG(w) = w}.

Given a head H we define its Hamlet3 as

hamG(H) = sibG(disan(H)(H)) \ disan(H)(H).

Lemma 3.4.6. For a MAG G with heads H,H ′ ≤ i, if H →k H ′, then k ∈
ceilG(hamG(H

′)).

Proof. This is a direct consequence of Lemma 3.4.10.

3This nomenclature makes sense on understanding that the Claudius of H, within a set such
that H is barren, is the subset of vertices after strict siblings of H and their descendants are
removed. Note that this set that has been removed is precisely the Hamlet of H.
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Intuitively, hamG(H) serves as the bidirected boundary of H and so must be

contained in the marginalization set to reach a graph in which H is the maximal

head. Also clearly the last marginalization vertex must be at ceiling of the hamlet,

otherwise the barren subset of the district will contain some vertices not in H.

Our definition for a refined power DAG will require a partial ordering on the

heads.

Definition 3.4.5. Define a partial ordering on heads by setting H < H ′ if and only

if H and H ′ share the same maximal vertex, and anG(H) ⊆ anG(H
′).

Lemma 3.4.7. For any MAG G and topological ordering, the relation < is a partial

ordering on H(G).

Proof. This is a direct consequence of Lemma 4.8 in Evans and Richardson (2014)

as the ordering is a sub-order (in that heads are only comparable if they have the

same maximal vertex) of the partial orders defined in that paper.

Definition 3.4.6. For a MAG G and a topological order <, the refined power DAG

ĨG
< for G, < consists of a component for each vertex i. Denote this by ĨG

i ; it has

vertices {H : H ≤ i}, and an edge H ′ →k H ′′ where

k = min ceilG(hamG(H
′)), and

H ′′ = max{H ′ : H ′ ∈ paIi(G)(H
′′) and H ′ →k H ′′}.

That is, for each head, we only take at most one edge and therefore at most one

independence into it.

Taking the maximal set among parent heads of H requires some justification.

The following section proves the existence of maximal parents for each head.

3.4.5 Existence of maximal parents in the complete power
DAG

Lemma 3.4.8. Suppose that for two heads i ≥ H,H ′, we have H →K H ′. Then

H →L H ′ for L = H \H ′.

Proof. Clearly, any marginalization set from H to H ′ must not contain any element

from H ′. By existence of the minimal marginalization set, we can just add all

irrelevant vertices to the set.

Proposition 3.4.9. For a MAG G, suppose that for three heads i ≥ H1, H2, H,

we have H1 →K H and H2 →L H. Then H3 = barren(H1 ∪ H2) is a head and

H3 →K′
H for K ′ = H3 \H. This means that in the power DAG for i, if a head has

a parent head, then there exists a maximal parent head.
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Figure 3.9: (i) The component of the power DAG for the graph in Figure 3.8(i); and
(ii) the refined version of the same component. Both are on the heads of G with maximal

vertex 6.

Proof. First of all, we show that H3 is a head. Since i is the maximal vertex, i ∈ H3,

then for any j ∈ H3, it is either in H1 or H2, which means that j lies in the same

district as i in either Gan(H1) or Gan(H2). This graph is a subgraph of Gan(H3), hence

j lies in the same district as i in Gan(H3).

Now letK3 = H3\H. It does not contain i and also it is not empty sinceH3 ̸= H,

thus it is a valid marginalization set for H3. Suppose also that H3 →K3 H ′. We

know that an(H3) ⊇ an(H1) ⊇ an(H), so an(H3)\K3 = B = an(H ′) ⊇ an(H). Now

suppose H ′ ̸= H, this means that disan(H′)(i) contains some vertices that are not in

disan(H)(i). Among those vertices, there are the strict siblings of disan(H)(i); there

must exist such vertices because H ′ is bidirected-connected. Now select one of these

siblings, say, j. WLOG, j belongs to an(H1). Then to go from H1 to H, j must be

marginalized, thus j ∈ H1. If j is not in H3, then this means that there are some

descendants of j that are in H2, but then we cannot go from H2 to H since j stays

in the districts, there is some extra vertex in the barren subset of the district of i,

other than H. Hence j ∈ H3. But then as j is in an(H ′), j does not lie in K3, so

j ∈ H, which is a contradiction to the definition of j.

Lemma 3.4.10. For a MAG G, if head H is a parent head of H ′ in the power DAG,

then the minimal marginalization set K is H ∩ ceilG(hamG(H
′)).

Proposition 3.4.11. Consider the four heads H,Hk, k = 1, 2, 3 with the same

setting in Proposition 3.4.9, then the minimal marginalization set for H3 (to H) is

the union of the minimal marginalization sets of H1, H2 (to H).
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Proof. Lemma 3.4.10 shows that the minimal marginalization set is the intersection

between the parent head and ceil(ham(H)), thus since anG(H3) is just an union of

anG(H1) and anG(H2), it will not introduce extra vertices in ceil(ham(H)).

In Lemma 3.4.10, by construction, H3 ≥ H1, H2. One can show that if H ≥ H ′

then H ∪ T ⊇ H ′ ∪ T ′, therefore by Lemma 3.4.10, the maximal independence from

the H3 always implies the maximal independences from H1 and H2.

Proposition 3.4.12. Suppose in a power DAG for i, H is a parent head of H ′, then

the independence associated with the minimal marginalization set Km,

i ⊥⊥ H ∪ T \H ′ ∪ T ′ ∪Km | H ′ ∪ T ′ \ {i},

implies all the independences associated with any H →K H ′ and any other marginal-

ization set K.

Proof. The conditioning set is fixed, and the more elements K has, the fewer i is

independent from.

We call this the maximal independence associated with H →K H ′

Therefore, a direct consequence of Proposition 3.4.11 is that if H1 →k H ′ and

H2 →k H ′, then H3 := barrenG(H1 ∪ H2) satisfies H3 →k H ′. Thus there always

exists a maximal parent head in any non-empty {H : H ∈ paIi(G)(H
′) and H →k

H ′}.
For simple MAGs, the complete and refined power DAGs are identical and are

chains, in the sense that any node has at most one parent head and at most one child.

An important motivation inspired by simple MAGs is that the list of conditional

independences associated with every edge in the power DAG of a simple MAG

decomposes is uG, and uG is the simplest imset that defines the same model as the

graph.

Now we deduce that the list of independences associated with edges in the refined

power DAGs are equivalent to the ordered local Markov property.

3.4.6 The refined Markov property from the refined power
DAGs

Recall that [n] denotes the set {1, . . . , n}.

Definition 3.4.7. For a MAG G and each i, let L̃G
i be a list of independences, such

that:

(a) it contains i ⊥⊥ [i− 1] \mbG(i, [i]) | mbG(i, [i]), and
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(b) for every head H ′ other than the maximal one, it contains the independence

associated with the unique edge into it in ĨG
i

We will refer to the collection L̃G =
⋃

i L̃
G
i as the refined (ordered) Markov property.

Proposition 3.4.13. For a MAG G, the refined Markov property is equivalent to the

ordered local Markov property. Further, it contains fewer and smaller independences

compared to the reduced ordered local Markov property.

By ‘smaller’, we mean any independence in the refined Markov property can be

deduced from the reduced ordered local Markov property by simply marginalizing

some vertices.

Proof. In Theorem 3.4.5, we prove that the list of independences associated with

the complete power DAGs, denoted as LG, is equivalent to the ordered local Markov

property. Because L̃G ⊆ LG, by Theorem 3.4.5, it is sufficient to prove that L̃G

implies LG.

We proceed by three inductions. The first induction is on the topological ordering

of vertices and it is sufficient to show that given LG
k is true for 1 ≤ k ≤ i− 1, LG

i is

implied by L̃G
i . The base case is trivial.

The second induction is on the topological ordering on heads. We start from the

maximal head in Ii(G) and proceed downwards to show that the independences in

LG
i associated with each head and its parent heads are true. Again, the base case

is trivial. Now suppose that for a head H ′, every independence associated with any

heads preceding H ′ is true, in particular, independences in LG associated with any

parent head of H ′ hold. We need to show that independences associated with edges

H →k H ′ for any parent head H of H ′ hold.

Now consider the topological ordering on the vertices in ceilG(hamG(H
′)), which

is made of all the marginalization vertices and we proceed to the third induction on

this ordering. The base case is for those parent heads of H ′ with marginalization

vertex k = min ceilG(hamG(H
′)). Clearly the independence from the maximal parent

head is in L̃G
i , and this implies all independences from other parent heads H such

that H →k H ′.

For the inductive step: consider some parent head Hj of H
′ with marginalization

vertex l ∈ ceilG(hamG(H
′)) and l > k. Take some parent head H1 of H ′ with

marginalization vertex k, then clearly k /∈ Hj and l /∈ H1. Let

Hm = barrenG(Hj ∪H1),

then by Proposition 3.4.11, Hm →kl H ′. Therefore, we have Hm →l Hm′
for some

parent head Hm′
of H ′ and also we have Hm′ →k H ′.
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By the hypothesis of the second induction, we have

i ⊥⊥ HmTm \Hm′
Tm
t l | Hm′

Tm′ \ {i}.

By the hypothesis of the third induction, we have

i ⊥⊥ Hm′
Tm′ \H ′T ′k | H ′T ′ \ {i}.

Hence, by the contraction semi-graphoid, we have

i ⊥⊥ HmTm \H ′T ′kl | H ′T ′ \ {i}.

Now we have k /∈ Hj and also, by construction, HmTm ⊇ HjTj. Therefore, we can

marginalize irrelevant vertices to get

i ⊥⊥ HjTj \H ′T ′l | H ′T ′ \ {i}.

Next we show it contains fewer and smaller independences than the reduced or-

dered local Markov property. For each maximal ancestral set A and its maximal

vertex i, there is a corresponding head by taking barren of the district of i and this

relation is one-to-one. Hence the number of independences in the refined Markov

property is not more than the number of independences in the refined Markov prop-

erty. Further every independence in the refined Markov property can be deduced

by an independence from the reduced ordered local Markov property by simply

marginalizing some vertices, hence the statement is true.

Now, since the number of independences is bounded by the number of heads, this

will greatly reduce the number of independences arising from the reduced ordered

local Markov property.

Remark 6. For simple MAGs, the refined Markov property is the simplest pos-

sible description of the model and cannot be further reduced; however, for some

graphs even less complicated descriptions exist. For example, for the bidirected

5-cycle, adding the semi-elementary imsets corresponding to these independences

would give an imset of degree 7. However, in fact one can build an imset that repre-

sents the model of 5-cycle of only degree 6, simply by adding the elementary imset

corresponding to any valid marginal independence to our ‘standard’ imset.

Another example is the 5-chain with bidirected edges (see Figure 3.6(i)); its stan-

dard imset is perfectly Markovian for the graph, but the list of independences that

defines the imset model is smaller than our refined Markov property (see Example

3.5.1). In Appendix 3.4.8, we give one more interesting example where there are

still redundant independences arising in refined power DAGs.
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Remark 7. We use the concept of the ‘Hamlet’ to characterize minimal marginaliza-

tion sets and maximal parent heads. This concept originates in Richardson (2003),

though he did not use this term. He uses the Hamlet to reduce the ordered lo-

cal Markov property by only visiting maximal ancestral sets. This is similar to our

approach in that one visits each head only once (one can easily show there is a one-to-

one correspondence between heads and maximal ancestral sets), however, Richard-

son only reduces the number of ancestral sets visited, while we also marginalize some

unnecessary vertices in the independence statements. In Example 3.5, for instance,

A = {1, 2, 3, 4, 5, 8} is a maximal ancestral set with mbG(8;A) = paG(8) = {1, 5} for
the head {8}. The reduced ordered local Markov property gives 8 ⊥⊥ 2, 3, 4 | 1, 5, but
we only need 8 ⊥⊥ 3, 4 | 1, 5; this is because 8 ⊥⊥ 2 | 1, 3, 4, 5, 6 has already been ob-

tained for the head {6, 8}, and we already know that 6 ⊥⊥ 2 | 1, 3, 4, 5 from variables

earlier in the graph. Reducing the number of variables in a independence statement

is crucial in practice when trying to obtain a combinatorial imset by adding the

semi-elementary imsets corresponding to the list of independences.

3.4.7 Computing refined power DAGs

In this section, we show that ĨG
i can be obtained without computing the complete

power DAG and the complexity of the algorithm is polynomial for graphs with re-

stricted head size. We use Algorithm 3 to achieve this and it contains two important

ideas:

(i) only marginalizing vertices that are smaller (w.r.t. a topological ordering) than

those already marginalized, and

(ii) for each head, only keep one parent of it, which is on the shortest path from

the maximal head.

Proposition 3.4.14. Given a MAG G, Algorithm 3 computes ĨG
i for each i.

Proof. At line 12, the algorithm proceeds by the partial ordering on heads. Thus for

any head H, once we arrive at line 12, there will be no edge added that is into it. So

it is sufficient to show that for any head H, once we arrive it at line 12, there is only

one edge into it, which corresponds to the edge in ĨG
i . We prove this by induction

on the partial ordering on heads. Clearly the algorithm does not add any edge into

the maximal head. The base case is for the children of the maximal head and this

clearly holds.

For the inductive step, consider all the parent heads of a head H ′, which exceed

H ′ in the partial ordering and considerH∗ and k defined in Definition 3.4.6. Suppose
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H∗ →k H ′ does not appear and instead we have H →k′ H ′ for some other parent

head of H ′.

Firstly if k′ ̸= k then by Lemma 3.4.6 and definition of k, we must have k′ > k.

Now it is clear that k ∈ ceilG(hamG(H)), so k must be marginalized at some point

to reach H, therefore k ≤M(H) and then line 14 prevents marginalizing of k′.

Then we have k′ = k, so H →k H ′. Then by definition of H∗ we have H∗ > H,

thus from the maximal head, H∗ can be reached within fewer steps than H, and

line 16 prevents adding H →k H ′.

Proposition 3.4.15. Given a MAG G with n vertices, e edges, and maximal head

size k, then the complexity of Algorithm 3 and 4 are O(knk(n+e)) and O(nk(n+e)),

respectively.

Proof. For Algorithm 1: there are at most
(
n
k

)
heads at line 3 and 12. Then line

14 is of order k. At line 15, it takes O(n + e) to check which new head is reached.

Remaining lines all takes constant time or does not contain any loop.

In Algorithm 4, there are at most
(
n
k

)
heads. Then we need to compute the tail

for each head and add the corresponding semi-elementary imset. The latter is of

constant time and the tail of each head can be computed simultaneously when we

visit the head from its parent head, therefore is also of O(n+ e) time.

Remark 8. If the input MAG is given to be simple, then the refined power DAG,

which is the same as the complete power DAG, can be obtained very fast as shown

in Algorithm 5. In fact, the complexity of Algorithm 5 is linear in the number of

edges and vertices, as the structure of the power DAG is inherited completely given

the topological ordering.

3.4.8 An example for redundant independences in the re-
fined power DAGs

Example 3.4.2. Consider Figure 3.10(i). The independences associated with the

component of its refined power DAG for 6 under a numerical topological ordering

are:

6 ⊥⊥ 3 | 1, 2, 4 6 ⊥⊥ 2 | 1, 3, 5 6 ⊥⊥ 2 | 1.

Whatever the topological order over the other vertices, there is always a third in-

dependence that is redundant. For example, with this numerical ordering, one can

deduce 6 ⊥⊥ 2 | 1 from 6 ⊥⊥ 2 | 1, 3, 5 and 2 ⊥⊥ 3, 5 | 1. If one adds an edge between

2 and 3 as in Figure 3.10(ii), then only semi-graphoids are insufficient to deduce

64



Input: A MAG G([n], E)
Result: The refined power DAGs ĨG

i for each i
1 define M(H) the minimum vertex marginalized to reach H ∈ Hi(G);
2 define SD(H) the shortest path to H ∈ Hi(G);
3 for i ∈ [n] do
4 define V Si the set of visited heads for H ∈ Hi(G);
5 define UV Si the set of not visited heads for H ∈ Hi(G);
6 Compute the maximal head H∗ = barren(mb(i, [i])) and set

V Si = {{i}}, UV Si = {H∗};
7 if H∗ = {i} then
8 Next
9 end

10 Set M(H∗) = i, SD(H∗) = 0,M({i}) = SD({i}) =∞;

11 Start with a graph ĨG
i with vertex H∗;

12 while UV Si is not empty do
13 Take any H ∈ UV Si and move H to V Si;
14 for k ∈ H \ {i} and k < M(H) do
15 Let H ′ : H →k H ′ ;
16 if H ′ /∈ V Si ∪ UV Si then

17 add H ′ to ĨG
i and H →k H ′; UV Si = UV Si ∪ {H ′};

SD(H ′) = SD(H) + 1; M(H ′) = k;
18 else
19 if SD(H ′) > SD(H) + 1 then
20 delete any edges into H ′;
21 add H →k H ′;
22 SD(H ′) = SD(H) + 1;
23 M(H ′) = k;

24 end

25 end

26 end

27 end

28 end

29 return (ĨG
1 , Ĩ

G
2 , . . . , Ĩ

G
n)

Algorithm 3: Obtain the refined power DAGs for a general MAG
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Input: The refined power DAG ĨG
i of a MAG G for each i

Result: The imset ur
G that is perfectly Markovian w.r.t. G

1 Let ur
G be an empty imset;

2 for i ∈ [n] do

3 for H in ĨG
i along the partial ordering do

4 Compute T = tail(H);
5 if pa(H) = ∅ then
6 ur

G := ur
G + u⟨i,|[i]\HT |HT ⟩

7 else
8 Let H ′ be the only parent of H and T ′ = tail(H ′);
9 ur

G := ur
G + u⟨i,H′T ′\HT |HT ⟩

10 end

11 end

12 end
13 return ur

G
Algorithm 4: Obtain the imset ur

G from refined Markov property

Input: A simple MAG G([n], E) (E stored as adjacencies)

Result: The refined power DAGs ĨG
i for each i

1 for i ∈ [n] do
2 Let smaller siblings of i be j1, . . . , jk

3 Set Ĩi = {{jk, i} → . . .→ {j1, i} → {i}}
4 end

5 return (ĨG
1 , Ĩ

G
2 , · · · , ĨG

n)
Algorithm 5: Obtain the refined power DAGs for a simple MAG
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Figure 3.10: Example where refined Markov property is still redundant

6 ⊥⊥ 2 | 1 from only first two independences and independences associated with

earlier vertices; hence, in this case, we need the third independence.

This example suggests that a minimal list of independences required to define

the model (under semi-graphoids) sometimes depends on structures not local to

the vertex being considered. We are investigating how to obtain such a list, but

conjecture that it may be computationally difficult to do so in general.

In Section 3.4.10, we will present a Theorem on decomposing uG. We need the

following results to achieve this.

3.4.9 Some useful results on heads

An implication of Lemma 3.4.1 is that for any H,H ′ ≤ i , if H is a parent head of

H ′ on the power DAG for i, there exists a unique minimal marginalization set of

vertices that leads from H to H ′.

Definition 3.4.8. For a MAG G and two heads H,H ′ ≤ i, let Km be the minimal

marginalization set of vertices such that H →Km
H ′.

Lemma 3.4.16. For a MAG G and two heads H,H ′ ≤ i, and H →Km
H ′ , then

H →K H ′ if and only if K = Km∪̇B where B ⊆ (H \ (H ′ ∪Km)).

Proof. (⇒): By definition of Km, Km ⊆ K, and H \ (H ′ ∪Km) are simply all the

vertices we can marginalize if we want to reach the head H ′.

(⇐): This is because after marginalization of some vertices in the barren subset,

the remaining vertices are either outside of the Markov blanket of i or it stays in the

barren subset of the district, i.e. the head. Then by the definition of Km, we may

marginalize any other irrelevant vertices in the barren subset after marginalization

of Km as they would be outside of the Markov blanket.

We only require one more lemma to validate our decomposition of uG. One key

step is to find situations when there is only one marginalization set, which is also

the minimal marginalization set. We propose the following definitions.
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Lemma 3.4.17. Consider H ′ →K H where K = H ′ \H is the minimal marginal-

ization set of vertices, i.e. K is the only marginalization set to reach H from H ′.

Then this happens if and only if H ′ = barren(K ∪H) where K ⊆ ceil(ham(H)).

Proof. (⇒): After marginalizing vertices in the barren subset, the remaining vertices

of H ′ either stay in the barren subset or outside of the Markov blanket. Since K

is the only marginalization set of vertices, we know the remaining vertices stay

in the barren subset (also in H). Hence H ′ = barren(K ∪ H). We first show

that H ′ \ H ⊆ ham(H). Suppose, for a contradiction, that it is not true; let

K∗ = K \ (sib(disan(H)(i)) \ disan(H)(i)). Consider any bidirected path between any

i ∈ K∗ and any k ∈ disan(H)(i), the first vertex x from k that is not in disan(H)(i)

lies in an(K) \ an(H).

If x is in an(K)\(an(H)∪K) we have after marginalizingK then barren(disH\K(i)) ̸=
H, because it would include a descendant of x (possibly x itself) that is not an an-

cestor of H. This is a contradiction to our assumption.

Hence x must lie in K, so by assumption x ∈ K \ K∗. Since the choice of the

path and vertices are free, it means that if we marginalize K \K∗ then K∗ would be

outside the district of i, so K is not minimal. Hence we reach another contradiction.

Then K ⊆ ceil(ham(H)) follows, as if it has some ancestors that are also siblings

of disan(H)(i) then after marginalizing K, the barren subset of the district would not

be H.

(⇐): Let K be any subset of ceil(ham(H)) (but not ∅) and consider H ′ =

barren(K∪H). Clearly H ′ is a head. Moreover K ⊆ H ′ as K either has no ancestral

relation with H or K are descendent of H; in particular this means that K is a valid

marginalization set for H ′. We still need to show that (1) after marginalizing K, we

reach the head H and (2) K is minimal.

For (1), suppose there is a vertex t /∈ K stays in the barren subset of the district

but t is not in H. Consider any bidirected path from t to disan(H)(i) in Gan(H′). By

definition, on this path there is a vertex in K (not just an(K)) next to some vertex

in disan(H)(i), then this path is removed after marginalizing K. Also note that all

vertices in disan(H)(i) stay in the graph.

For (2), If we marginalize some subset of K, then the remaining vertices of K

stay in the Markov blanket and hence in the barren subset of the district, which

then would not be H.

68



3.4.10 Decomposition of the ‘standard’ imset for general
MAGs

In this section, we give a decomposition of uG, using all independences arising from

H →K H ′ for every possible pair of heads H,H ′ and every possible marginalization

set K. Note that this theorem does not have practical use but it proves why em-

pirically the inner product between the standard imset and entropy is zero for any

MAGs. Moreover, it shows that if the standard imset is structural then IuG ⊆ IG.
See discussion after the sketch proof.

Theorem 3.4.18. For a MAG G, with vertices [n] (topologically ordered), we have

uG =
n∑

i=1

{
u⟨i,[i−1]\mb(i,[i])|mb(i,[i])⟩

+
∑

H∈H(G)\{i}:
H≤i

∑
∅⊂K⊆H\{i}:

H→KH′

(−1)|K|+1u⟨i,HT\H′T ′K|H′T ′\i⟩

}
.

Proof. Let T = tailG(H). Note that uG from Theorem 3.3.2 can be rewritten as:

n∑
i=1

{
δ[i] − δ[i−1] −

∑
H∈H(G)
i≥H

∑
W⊆H

(−1)|H\W |δW∪T

}
.

By induction, if we restrict to the final vertex of a topological ordering, say n,

then all we need to prove is that:

δ[n] − δ[n−1] −
∑

H∈H(G)
n≥H

∑
W⊆H

(−1)|H\W |δW∪T

= u⟨n,[n−1]\mb(n,[n])|mb(n,[n])⟩ +
∑

H∈H(G)\{n}
n≥H

∑
∅⊂K⊆H\{i}:

H→KH′

(−1)|K|+1u⟨i,HT\H′T ′K|H′T ′\i⟩.

Note that u⟨n,[n−1]\mb(n,[n])|mb(n,[n])⟩ = δ[n] − δ[n−1] − δ{n}∪mb(n) + δmb(n), so we can

reduce the equivalence to

−
∑

H∈H(G)
n≥H

∑
W⊆H

(−1)|H\W |δW∪T (3.7)

= δmb(n,[n]) − δ{n}∪mb(n,[n])

+
∑

H∈H(G)\{n}
n≥H

∑
∅⊂K⊆H\{i}:

H→KH′

(−1)|K|+1(δHT\K − δ(HT\Kn) − δH′T ′ + δH′T ′\n). (3.8)
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We can rewrite (3.7) as:

−
∑

H∈H(G)
n≥H

∑
W⊆H

(−1)|H\W |δW∪T

= −
∑

H∈H(G)
n≥H

∑
K⊆H

(−1)|K|δHT\K

=
∑

H∈H(G)
n≥H

∑
K⊆H\{n}

(−1)|K|+1(δHT\K − δHT\Kn). (3.9)

The repeating part is only −δHT + δHT\n for each H (when K = ∅). For each H,

the two terms do not appear in the summation for H (as we rule out the case when

K = ∅ in Theorem 3.4.18) but they appear when other heads marginalized to H

and the two terms are multiplied by some constants.

Our objective is to show that (3.9) and (3.8) are equivalent, for which it is

sufficient to prove that for every head H, the coefficient of −δHT + δHT\i is 1 in

(3.8). For the largest head, which is barren(dis[n](n)), it is clearly true because

there is no head that is ‘larger’ than it and for this head −δHT + δHT\i is simply

δmb(n,[n]) − δ{n}∪mb(n,[n]), which never appears in the summation.

For any other head H with maximal vertex n, we need to prove:∑
K,H′:H′→KH

(−1)|K|+1 = 1.

Note that the summation is over both H ′ and K because for a pair of heads there

might exist different marginalization sets that lead one to another.

Now by Lemma 3.4.16, any headH ′ that can reachH with multiple marginalizing

sets and minimal marginalizing set K ′ contributes
∑

B:B⊆(H′\(H∪K′))(−1)|K
′|+|B|+1 =

0 to the coefficient of −δH∪T + δ(H\{n}∪T ).

Thus it is sufficient to consider any head H ′ that can reach H with the only

(minimal) marginalizing set K = H ′ \H. By Lemma 3.4.17, we find all these heads

and in total they contribute ∑
K:∅⊂K⊆ceil(sib(disan(H)(i))\disan(H)(i))

(−1)|K|+1 = 1

to the coefficient of −δH∪T + δ(H\{n}∪T ).

Corollary 3.4.18.1. For a MAG G, if uG is structural, then IuG ⊆ IG.

Proof. By Theorem 3.4.18, the ‘standard’ imset uG can be expressed as one combina-

torial imset up subtracted by another combinatorial imset un where up are obtained
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by adding all semi-elementary imsets with positive coefficients (where |K| is odd),
and similarly for un but with negative coefficients (where |K| is even).

Let u1
p be sum of semi-elementary imsets corresponding to marginalize only one

vertex, which are all in up. By Theorem 3.4.5, IG ⊆ Iu1
p
. The faithfulness result in

Richardson and Spirtes (2002) shows that for every MAG G there exists a distribu-

tion P such that IP = IG and Theorem 5.2 in Studený (2006) implies the existence

of a structural imset u such that Iu = IP . Now every independence in the list of

independences that we used to construct u1
p is in Iu by Theorem 3.4.5, so by Lemma

6.1 in Studený (2006), we have Iu1
p
⊆ Iu = IG. Hence Iu1

p
= IG. Now the remain-

ing semi-elementary imsets that we use to construct up are those corresponding to

marginalize odd number of vertices (more than one), and the independences they

correspond to are all in IG = Iu1
p
. Therefore Iu1

p
= Iup .

Suppose uG is structural and take any distribution P that is not Markov to it.

Studený (2006) shows that a distribution is Markov to a structural imset if and

only if the inner product between the imset and entropy vector of the distribution

is zero. Moreover this inner product is non-negative. Therefore, for P and uG, this

inner product is positive. Further, as uG is also up − un where up and un are both

combinatorial, this means that the inner product between P ’s entropy vector and

up are also positive, and hence P is not Markov to up. Thus P is not Markov to IG.

As a result, IuG ⊆ IG.

Example 3.4.3. Consider Figure 3.11. The multiple labels on the edges in (ii)

means that there are different sets of vertices that can be marginalized to lead from

one head to another.

The edge {4, 5, 6} →45 {1, 3, 6} indicates that when we compute the semi-

elementary imset for {4, 5, 6} by marginalizing vertices in {4, 5}, we only reach

the head {1, 3, 6} once. Hence the head {4, 5, 6} contributes (−1)2+1 = −1 to the

coefficient of −δ1236 + δ123 for the head {1, 3, 6}. Similarly the edge from {3, 5, 6} to
{6} means that we may reach to the head {6} from the head {3, 5, 6} by marginal-

izing either {3} or {3, 5}. So the head {3, 5, 6} contributes (−1)1+1 + (−1)2+1 = 0

to the coefficient of −δ26 + δ2 for the head {6}.

Remark 9. Note also that we can separate the independences out by districts, by

replacing the first sum in Theorem 3.4.18 by a sum over districts, and then pushing

in the summations over vertices in that district.

Definition 3.4.9. Let G be a MAG containing a district D. Then by G |D denote

the induced subgraph over D ∪ paG(D), but where all vertices within paG(D) \ D
have been joined by bidirected edges.
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Figure 3.11: (i) A MAG G (ii) A complete power DAG on the heads of G with maximal
vertex 6, under the numerical topological ordering.

Corollary 3.4.18.2. Let G be a MAG. The ‘standard’ imset uG is perfectly Marko-

vian with respect to G if the ‘standard’ imsets uG|D are perfectly Markovian with

respect to G |D.

Proof. Take the expression for the standard imset given in Then note that, for a

districtD, each summand other than the very first term only contains independences

between an element of the district, and other elements of the district and its parents,

and the collection of all first terms gives a DAG model. Furthermore, the subimset

defined by the second inner summation represents the model in which all the vertices

in paG(D) \D have been joined by an edge. Since we know that any MAG can be

defined by independences only within the district (plus the initial independence in

the expression above), this shows that a ‘standard’ imset for a MAG G will be

perfectly Markovian with respect to the graph if and only if the associated standard

imsets for each district and its parents are perfectly Markovian with respect to the

induced subgraph obtained after filling in any missing edges between parents.

We also study our imsets of bidirected graphs and show that for a large class of

bidirected graphs, the imset defines the right model. The condition we give is proved

to be sufficient and empirically we checked that it is also necessary for graphs with

at most seven vertices. The condition, however, is complicated, thus we conjecture

that it is combinatorically difficult to obtain a minimal list of independences that

define the model. We also give a list of forbidden induced subgraphs; that is, a motif

that graphs cannot contain if IuG is to be valid and be perfectly Markovian with

respect to G.
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3.5 Bidirected graphs

For general MAGs, the problem of characterizing the conditions for when IuG is well

defined and IuG = IG, seems hard in general. To reduce the difficulty, we focus on

bidirected graphs in this section. We will give a condition such that our proposed

‘standard’ imsets uG for bidirected graphs are always combinatorial and perfectly

Markovian with respect to G. We have computationally verified that this condition

is also necessary for |V| ≤ 7, and not found any graphs for which it is not.

Definition 3.5.1. Let G be a bidirected graph, and define its undirected dual graph,

G, by i− j ∈ G if and only if i ̸↔ j in G.

The dual graph is a powerful tool when we analyse the bidirected graphs; see

Example 3.5.1.

3.5.1 How does the characteristic imset help?

There are many MAGs that are not simple, but still have combinatorial standard

imsets that are perfectly Markovian with respect to the graph; one example is the

bidirected 4-cycle, which has a standard imset consisting of the elementary imsets

for its two marginal independences. For bidirected graphs, we found that since

the vertices can be given any topological order and there are many heads (any

connected subgraph), it is difficult to directly decompose the standard imset or

prove the validity of decomposition; however, it turns out to be easier if we work

with the characteristic imset. In this section, we consider the relationship between

the semi-elementary imset decomposition of combinatorial standard imsets and the

characteristic imset.

Recall that two conditional independences I1, I2 overlap if S̄(I1) ∩ S̄(I2) ̸= ∅.

Proposition 3.5.1. A ‘standard’ imset uG is combinatorial if and only if there is

a list of non-overlapping conditional independences L such that ∪I∈LS̄(I) = P(V) \
S(G).

Proof. This follows from Lemma 3.3.6, Corollary 3.3.6.1 and the arguments used in

their proofs.

For example, if G is the bidirected 4-cycle 1↔ 2↔ 3↔ 4↔ 1 the independences

are 1 ⊥⊥ 3 and 2 ⊥⊥ 4. The corresponding sets to be constrained are {1, 3} and {2, 4},
and these are clearly disjoint. Therefore the standard imset is perfectly Markovian

and is simply uG = u⟨1,3⟩ + u⟨2,4⟩.
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Figure 3.12: Forbidden dual subgraphs: (a) triangles; (b) a k-cycle, for k ≥ 5; (c) dual
to the 6-cycle; (f) dual to the 6-chain; (d), (e), (g) other graphs with at least one

chordless 4-cycle.

Proposition 3.3.5 allows us to quickly determine if a standard imset is not per-

fectly Markovian w.r.t. the graph by checking if the graph contains certain ancestral

structures.

Remark 10. In Figure 3.12, we display all dual graphs with at most 6 vertices

that must not appear as induced subgraphs to the dual of a bidirected graph for

the standard imset to be perfectly Markovian with respect to the graph. This is

primarily a consequence of Proposition 3.3.5.

3.5.2 For which bidirected graphs do we get standard imsets
that are perfectly Markovian?

We will present a theorem which gives sufficient criteria for bidirected graphs to

have combinatorial standard imsets and induce the same model as the graph. For
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Figure 3.13: (i) The bidirected 5-chain and (ii) its dual graph.

|V| ≤ 7 we have empirically verified that this is also necessary. Before we present

the theorem, we give a motivating example.

Example 3.5.1. Consider the bidirected 5-chain and its dual graph in Figure 3.13.

Consider the following list of conditional independences:{
4 ⊥⊥ 2 | 1, 5
4 ⊥⊥ 1 | 3, 5

}
2 ⊥⊥ 5 | 1, 3 5 ⊥⊥ 1, 3 1 ⊥⊥ 3.

One can check that the sum of semi-elementary imsets corresponding to the

above list of independences is the same as the standard imset for the bidirected

5-chain. In addition the standard imset is perfectly Markovian with respect to the

graph.

This decomposition starts with 4, and by symmetry it could also start with 2;

however, none of the other vertices will work, and we cannot obtain a decomposition

in this manner if we try to do so. In particular, if we take the imset for the graph

where all edges for 1, 3, 5 are added and subtract from it the standard imset for

the 5-chain, what remains is not a structural imset. This shows that for bidirected

graphs, even though the topological order can be arbitrary, in order to properly

decompose the standard imset further restrictions are required.

Here are some observations. In the dual graph, 4 has neighbours 1 and 2, these

vertices share one common neighbour 5, and 1 has one more neighbour 3. However

for 3, two of its neighbours have distinct neighbours. This suggests that perhaps we

need the neighbours of neighbours to be nested within one another.

For a vertex v, we may also want to treat its neighbours which have the same

neighbours as a block, since any path to any one of them also lead to any other

vertex in the block. Then any edge within one block does not have any effect on

any path to v.

Suppose we have a vertex v and that it has neighbours A in the dual graph. Now

partition its neighbours Aj, 1 ≤ j ≤ m such that the neighbours of each w ∈ Aj

(outside {v} ∪ A) are precisely the set N j, and such that N1 ⊆ N2 ⊆ · · · ⊆ Nm.
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Now the question is how the edges connects the blocks of neighbours of v so that

v is a valid ending vertex. One observation from the 5-chain is that for two blocks Ai

and Aj, if there is one edge between Ai and Aj, then we want Ai and Aj to be fully

connected. For example, consider vertex 1 which has neighbours {3, 4, 5}. Vertices

4 and 5 share the same neighbours outside A, so they are in the same block, while

3 is connected only to 5.

Another question is how Ai and Aj are connected, i.e. the cross-block edges.

Suppose v has three blocks of neighbours, A1, A2 and A3. There are 8 possible

ways to connect the three blocks. We cannot write out a proper decomposition for

three of them. They are: A1 − A3, A2 − A3 and A1 − A2 − A3. Inspired by the

5-chain example, we have the following definition. For convenience, we introduce the

notation A[i,j] to denote
⋃j

k=i{Ak} and each Ak is referred as a block (of vertices).

Definition 3.5.2. For a vertex v and an ascending partition of its neighbours A[jl,jh],

we say the partition is rooted if:

(i) it is empty; or

(ii) there exists a block Aj (the root) for some jl ≤ j ≤ jh and Hj := A[j+1,jh] and

Lj := A[jl,j−1] (respectively empty if j = jh or jl) such that Aj and each set in

Hj are fully connected to each set in Lj, and for every set in Hj it is entirely

disconnected from Aj. In addition, Hj and Lj must themselves be rooted.

One can check that for three blocks and 8 possible ways to connect them, the

three ways that do not lead to a proper decomposition also do not satisfy the above

definition, but that the other five ways do.

Definition 3.5.3. For a sequence of blocks A[jl,jh] rooted at Aj, we define T j to be

the subset of A[1,jl−1] such that Ai is in T j if and only if it is connected to Aj.

Lemma 3.5.2. Let A[jl,jh] be a collection of neighbours of v that is rooted. Then

any subset of it is also rooted.

Lemma 3.5.3. For a vertex v and a collection of its consecutive neighbours, if it is

rooted then the root is unique.

Note that Hj or Lj and A[i,j] are written as sets of sets, but when we use them

in certain set expressions or in any independence, we just think of it as the union of

the blocks contained in that set, i.e. sets of variables. The context should prevent

any confusion.
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Lemma 3.5.4. Suppose a block A[jl,jh] = Hj ∪ Lj ∪ {Aj} is rooted at Aj, where Hj

and Lj are rooted at Ak and At respectively (non-empty), then T k = T j ∪ Lj and

T t = T j. Moreover kl = j + 1 and tl = jl.

Theorem 3.5.5. For a bidirected graph, if there exists an ordering of the vertices

such that for each i in G [i], its neighbours A can be partitioned into blocks {Aj, 1 ≤
j ≤ m} such that

(i) the neighbours of each w ∈ Aj (outside {v} ∪ A) in G are the same set N j;

(ii) N1 ⊆ N2 ⊆ · · · ⊆ Nm;

(iii) for any two blocks, either there is no edge between them or they are fully

connected;

(iv) {Aj, 1 ≤ j ≤ m} are rooted.

Then uG is combinatorial and IuG = IG.

The key to the proof of Theorem 3.5.5 is to construct a proper independence

decomposition of uG with the aid of Proposition 3.5.1, and show that it is equivalent

to the global Markov property. The following example will give some intuition on

how the independences are constructed.

Example 3.5.2. Consider a representation of the dual graph G in Figure 3.14. The

vertex i has neighbours partitioned into A1, A2, A3 which have neighbours N1 ⊆
N2 ⊆ N3 respectively.

To construct a proper decomposition of uG, we first look at the following condi-

tional independences:

i ⊥⊥ Ã | (∩w∈Ã nb(w)) \ {i}, (3.10)

for every Ã ⊆ A = nb(i). These independences are definitely implied by the graph as

none of the conditioning variables are siblings of Ã, so no paths are open. Moreover,

one can see that each disconnected set containing i is associated with one of the

independences. However, the independences also overlap. Proposition 3.5.1 suggests

that we do not need all of them, but just a subset of independences (that may require

further modification), such that:

(i) the associated constrained sets do not overlap; and

(ii) the independences associated with any disconnected set can be deduced from

them using the semi-graphoid axioms.
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i

A1 A2 A3

N1 N2 \N1 N3 \N2

Figure 3.14: Example for Theorem 3.5.5

Let’s consider the following independences from (3.10):

i ⊥⊥ A3, A2, A1 |N1 (3.11)

i ⊥⊥ A3, A2 |N2, A1 (3.12)

i ⊥⊥ A3, A1 |N1 (3.13)

i ⊥⊥ A3 |N3, A1 (3.14)

i ⊥⊥ A2 |N2, A1 (3.15)

i ⊥⊥ A1 |N1, A2, A3. (3.16)

(3.13), (3.15) and (3.16) are each implied by (3.11), (3.12) and (3.11) respectively,

so we can ignore them. Then looking at (3.11), (3.12) and (3.14) we see that there

are some overlaps. The set {i} ∪A3 ∪A1 is associated with both (3.11) and (3.14),

but the latter cannot be further simplified so we marginalize A3 in (3.11).

The set {i} ∪ A3 ∪ A2 ∪ A1 only appears in (3.12) so we want to keep that, but

{i}∪A3∪A1 is associated with both (3.12) and (3.14). Move A3 into the conditioning

set for (3.12) to resolve this. Also {i} ∪ A2 ∪ A1 is associated with both (3.11) and

(3.12), so we marginalize A2 in (3.11). This gives the following:

(3.11) → i ⊥⊥ A1 |N1

(3.12) → i ⊥⊥ A2 |A3, A1, N2

(3.14) → keep (3.14).

One can check that any independence involving i can be deduced from the above

three independences, together with other independences that do not involve i from

the induction hypothesis. In addition, these cover all the disconnected sets contain-

ing i.

Proof of Theorem 3.5.5. The main idea of this proof is to construct a list of inde-

pendences L, where the sum of semi-elementary imsets corresponding to the inde-

pendences in L is uG, then using the similar ideas in the proof of Theorem 3.3.8, we

just need to show that L holds in G so IuG ⊆ IG, and L implies the global Markov
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property of G so IG ⊆ IuG or the disconnected Markov property from Drton and

Richardson (2008).

We will proceed by induction on the ordering of vertices. For a vertex v, suppose

its neighbours in G are partitioned into Aj, 1 ≤ j ≤ m, each of which have neighbours

N j (outside of {v} ∪ nbG(v)) such that N1 ⊂ N2 ⊂ · · · ⊂ Nm.

For each Aj, it will be a root for exactly one collection of consecutive sets Âj =

A[jl,jh], and we consider the following list of independences L:

v ⊥⊥ Aj | Hj, Lj, N j, T j, j ∈ 1, . . . ,m.

We will prove that for each j, the following independence holds for each j from the

above list of independences:

v ⊥⊥ Âj | N jl , T j.

We will proceed by two inductions, an outer induction on the number of vertices

in G, and an inner induction on the lengths of Âj. The base case for the outer

induction is trivial, since a graph with one vertex has no independences. For the

inner induction, the base case is |Âj| = 1, so Âj = {Aj}, jl = j and Hj = Lj = ∅,
hence it is in the given list of independences.

For the inner induction step, suppose Âj = Hj ∪ Lj ∪ Aj, where Hj and Lj are

rooted at k and t (non-empty), respectively. Then by the induction hypothesis, we

have:

v ⊥⊥ Hj | Nkl , T k v ⊥⊥ Lj | N tl , T t,

but by Lemma 3.5.4, this is equivalent to:

v ⊥⊥ Hj | N j+1, Lj, T j (3.17)

v ⊥⊥ Lj | N jl , T j. (3.18)

Since v is the last vertex, any independence not involving v will hold by the induction

hypothesis, hence we have:

Hj ⊥⊥ Lj, N j+1 | T j (3.19)

Hj, Aj ⊥⊥ Lj, N j | T j. (3.20)

Combining (3.19) and (3.17), we have:

Hj ⊥⊥ {v}, Lj, N j+1 | T j. (3.21)

Then marginalizing N j+1 to N j and moving Lj ∪ N j to conditioning variables, we

have:

v ⊥⊥ Hj | Lj, N j, T j. (3.22)
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Now from the given list of independences we have:

v ⊥⊥ Aj | Hj, Lj, N j, T j.

Putting this with (3.22) we obtain:

v ⊥⊥ Hj, Aj | Lj, N j, T j. (3.23)

Using (3.20), (3.23) then changes to:

{v}, Lj, N j ⊥⊥ Hj, Aj | T j. (3.24)

marginalizing N jl+1 to N j and moving Lj ∪ N jl to the conditioning variables, we

have:

v ⊥⊥ Hj, Aj | Lj, N jl , T j. (3.25)

Finally, combining (3.25) and (3.18), we obtained the required independence:

v ⊥⊥ Hj, Aj, Lj | N jl , T j. (3.26)

Next we show that for any disconnected sets involving v, we can deduce the asso-

ciated independence, that is, the global Markov property. We use the independence

(3.24) that appears in the previous deduction and combine it with an independence

from the induction hypothesis, T j ⊥⊥ Hj, Aj, to get:

{v}, Lj, T j, N j ⊥⊥ Hj, Aj. (3.27)

Based on this, we prove by induction that for every j, we have:

{v}, Lj, T j, N j ⊥⊥ A[j,m]. (3.28)

Before the induction, one should notice that for any i > j, Li ∪ T i ⊇ Lj ∪ T j.

An order can be given to blocks based on the collection of blocks in which they

are rooted. If Hj, Lj are rooted at Ak, At respectively, then we say that j is precedes

both k and t, and apply the induction on this order. The base case is for the root

of A[1,m], say Aj. In this case, Hj ∪ Aj = A[j,m], and it is true.

Suppose for a block Aj, any other block Ai such that i precedes j in the above

order so we have {v} ∪ Li ∪ T i ∪N i ⊥⊥ A[i,m]. If Hj ∪ Aj ̸= A[j,m], then Ajh+1 must

be a block that also precedes Aj in the order, and so we also have {v} ∪ Ljh+1 ∪
T jh+1 ∪N jh+1 ⊥⊥ A[jh+1,m] and (more importantly) Ljh+1 ∪ T jh+1 ⊇ A[j,jh] ∪ Lj ∪ T j

(it is possible these sets are equal). now put A[j,jh] = Hj ∪Aj into the conditioning

variables and marginalize N jh+1 to N j−1 and other irrelevant variables, to obtain:

{v} ∪ Lj ∪ T j ∪N j ⊥⊥ A[jh,m] | Hj ∪ Aj. (3.29)
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Then combining this with (3.24), the result holds for all j.

Now we prove that for every disconnected set C involving v, the associated

independence {v} ∪ D ⊥⊥ A is true, where {v} ∪ D is the district for {v} in the

subgraph induced by C. We only need to consider vertices in {v} ∪ A[1,m] ∪ Nm ∪
· · · ∪ N1, as other vertices will definitely link v and any of its neighbours. This

A must be a subset of A[1,m]. Suppose Aj is the least block that have non-empty

intersection with A, so A ⊆ A[j,m].

Consider the vertices in D. Firstly notice that it cannot contain any vertices in

N i or Ai where i > j. The first one is clear, suppose the second is not true, consider

the bidirected path from Ai to v, the last vertex before v is a sibling of v and it

must belong to some of the Nk. Now if k > j, then as Aj is connected to Nk, this

contradicts to the assumption of j. so k < j but then as Ai is a neighbour of Nk in

the dual graph, they are disconnected, so there must be other blocks lower than Aj

involved. however as we have Li ∪ T i ⊇ Lj ∪ T j, this means that any block connect

to Ai must also connect to Aj in the bidirected graphs and then Aj lies in the same

districts as v, contradiction. Thus D can only contain vertices in Lj ∪ T j ∪N j, and

we have the required independence.

We are left to prove that the list of independence v ⊥⊥ Aj | Hj ∪Lj ∪T j ∪N j are

non-overlapping and associated with every disconnected set. For the disconnected

set M , suppose D∪{v} = disM(i) and we have this independence {v}∪D ⊥⊥ A with

Aj the least block. Then consider the root of Am, . . . , Aj (by Lemma 3.5.2), say Ai,

and also consider Âj then it is clear that the sets associates with the independence

v ⊥⊥ Ai | H i ∪ Li ∪ T i ∪N i contains this disconnected set.

To show there is no overlap, assume that i < j (in the numerical sense). Then

Ai will appear in the conditioning set for j only if it is in Lj ∪ T j, which by defi-

nition implies that Aj and Ai are fully connected. However Aj will appear in the

conditioning set for Ai only if Aj ⊆ H i, which implies that they are completely

disconnected. Since at most one of these conditions can be true, there is no overlap

in the sets generated by these independences.

3.6 Experimental results

We went through graphs with |V| ≤ 7 nodes, checking their standard imset from

Theorem 3.3.2. For |V| ≤ 4, all MAGs have combinatorial standard imsets that

are perfectly Markovian with respect to the graph. We summarize the information

in Table 3.2 for sizes of graph between 4 and 7. For |V| = 5, the only failure

is the bidirected 5-cycle mentioned in Figure 3.6 (i). For |V| = 6, all the imsets
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which are perfectly Markovian with respect to the graph are also combinatorial.

For those models where the imset is not perfectly Markovian, only two of them are

not combinatorial—one of these imsets is structural, and both graphs are shown in

Figures 3.6(ii–iii) in Section 3.3.

When number of variables are small, the proportion of ’SNPM’ is very low, so

one might argue we can use it in practice if the size of districts is small, or less than

five (Andrews, 2021). Though we can see it rises quickly from n = 6 to n = 7,

therefore the ’standard’ imset is not useful for graphs with large district size.

|V | equiv. classes PM SNPM NS

4 19 19 0 0
5 285 284 1 0
6 13,303 13,248 54 1
7∗ 1,161,461 1,146,501 14,562 8

Table 3.2: Number of equivalence classes of connected maximal ancestral graphs for
various numbers of nodes (for 7 nodes we only include graphs having at most 13 or at

least 18 edges.) PM represents models that are Perfectly Markovian, SNPM those where
the imset is Structural but represents a strict subset of the independences (so is Not

Perfectly Markovian), and NS where the imset is Not Structural.

3.7 Discussion

3.7.1 Relation to the work in Andrews

The main result of Andrews et al. (2022) is an algorithm that computes an imset

that is guaranteed to define the model induced by an ADMG G, but its complexity

is exponential in the number of vertices even restricting the maximum head size.

In comparison, our imset ur
G in Algorithm 4 can be constructed in polynomial time

if the maximum head size is bounded. In addition, the imset that Andrews et al.

gives has much higher degree than ur
G for most graphs.

A focus of both works is on consistent scoring and searching for an optimal model,

and they are the first to introduce BICMF, the inner product between empirical

entropy and the standard imset from the 0-1 characteristic imset, to approximate

the actual BIC. They conduct a brute force search for Gaussian MAG models with

five variables by scoring all MECs and selecting the best one. The result is better

than FCI (Spirtes et al., 2000) and GFCI (Ogarrio et al., 2016), and comparable to

scoring by the true BIC (Drton et al., 2009).

Since, as we have seen, for any MAG with at most five vertices, uG is perfectly

Markovian w.r.t. the graph, this application of BICMF is valid. Note that Andrews
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et al. (2022) finesses this by assuming the model is a graphoid, and that therefore the

imset for the bidirected 5-cycle is also perfectly Markovian as discussed in Example

3.3.6. They also express this slightly differently by saying the imset is valid if every

set in the parametrizing set has cardinality at most five (see their Theorem 3.1).

For general MAGs, our algorithmic advantage in constructing ur
G comes from the

refined power DAGs, which consider only one parent of each head and marginalize

one vertex at each time. The approach of Andrews et al. is to take intersections

between all subsets of every Markov blanket which gives the exponential complexity.

As well as looking all graphs up to a certain size, we present theoretical proofs that

for simple MAGs and a class of bidirected graphs, the standard imset uG is valid.

Some extra assumptions are made by Andrews in his Theorem 3.1. In particular

he makes an assumption that one can use the intersection axiom (see Section 3.8),

which does not generally hold for conditional independence. This means that our

‘standard’ imsets work for every MAG with size less than or equal to five. We

emphasize that we make no such assumption, and use only properties that hold for all

distributions, i.e. the semi-graphoid axioms. Stronger rules can change the simplest

representation (standard imset) of an independence models. For example, if one

assumes positivity of the distribution, then we have already seen that the simplest

imset representation for the 5-cycles has degree five, whereas the minimum degree

needed without this condition is six. We have verified that using compositional

graphoids is sufficient for 51 of the 54 graphs with five or six vertices such that

IuG ̸= IG, to define the model. However, there are three other graphs that require

additional axioms. Specifically, the ‘standard’ imsets for these graphs will define the

model if we can assume ordered downward stability (see Section 3.8). For further

details, see Example 3.8.1 in Section 3.8.

3.8 Graphoids

Graphoids are rules for logical implications between conditional independences.

There is no finite axiomatization of conditional independences (Studeny, 1992), but

there are some rules that hold for any distribution, for example, the semi-graphoids :

(1) symmetry : X ⊥⊥ Y | Z ⇐⇒ Y ⊥⊥ X | Z;

(2) decomposition: X ⊥⊥ Y,W | Z =⇒ X ⊥⊥ Y | Z;

(3) weak union: X ⊥⊥ Y,W | Z =⇒ X ⊥⊥ W | Y, Z;

(4) contraction: (X ⊥⊥ Y | Z) and (X ⊥⊥ W | Y, Z) =⇒ X ⊥⊥ Y,W | Z.
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Figure 3.15: Three graphs that do not define the model without assuming rules beyond
composition and intersection.

Under the assumption that the distribution is positive, there is an additional

property that is guaranteed to hold:

(5) intersection: (X ⊥⊥ Y | W,Z) and (X ⊥⊥ W | Y, Z) =⇒ X ⊥⊥ Y,W | Z.

The semi-graphoids with (5) are called graphoids. Also if one assumes that the

distribution is Markov w.r.t. a graph, then the following axiom also holds:

(6) composition: (X ⊥⊥ Y | Z) and (X ⊥⊥ W | Z) =⇒ X ⊥⊥ Y,W | Z.

Graphoids with (6) are called compositional graphoids,

Sadeghi (2017) defines three mode graphoid-like rules; two of these require a ‘pre-

order’ ≺, which for directed mixed graphs is essentially the partial order implied by

the directed edges.

(7) singleton transitivity : (Xi ⊥⊥ Xj | Y ) and (Xi ⊥⊥ Xj | Y,Xk) =⇒ (Xi ⊥⊥ Xk |
Y ) or (Xj ⊥⊥ Xk | Y ).

(8) ordered upward stability : (Xi ⊥⊥ Xj | Y ) =⇒ (Xi ⊥⊥ Xj | Y,Xk) for any k ≺ i

or k ≺ j.

(9) ordered downward stability : (Xi ⊥⊥ Xj | Y,Xk) =⇒ (Xi ⊥⊥ Xj | Y ) for any k

that is either larger than or incomparable to i, j and every element of Y .

Here is an example where ordered downward stability is needed to deduce all the

independences in the graph.

Example 3.8.1. Consider the bidirected 6-cycle with one additional directed edge

in Figure 3.15(i). The imset uG of this graph G is structural and IuG contains the

following independences:

6 ⊥⊥ 2 6 ⊥⊥ 4 | 1, 3 2 ⊥⊥ 4 | 1, 6 2 ⊥⊥ 5 | 4, 6

1 ⊥⊥ 4 1 ⊥⊥ 5 | 2, 4 6 ⊥⊥ 3 | 1, 5 3 ⊥⊥ 5 | 1, 2.
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In particular, even with the intersection and compositional graphoids, we do not

get any joint independences, when the graph says we should have (e.g.) 2 ⊥⊥ 4, 5, 6.

In the list of the local Markov property, it does not satisfy 4 ⊥⊥ 1, 2 or 5 ⊥⊥ 1, 2

or 4 ⊥⊥ 2, 6. However, ordered downward stability does help. The only pair that

is ordered is 1 → 3, with all other pairs being incomparable. Then we can deduce

2 ⊥⊥ 5 by removing 4 and 6 from 2 ⊥⊥ 5 | 4, 6, and use composition to obtain 2 ⊥⊥ 5, 6;

we can then obtain 2 ⊥⊥ 4, 5, 6. Similarly we can remove first 3 and then 1 from

6 ⊥⊥ 4 | 1, 3 to obtain the marginal independence, and get 4 ⊥⊥ 2, 6 using composition

(or just contraction). Also, we can remove 2, 4 from 5 ⊥⊥ 1 | 2, 4 to get 5 ⊥⊥ 1, then

combined with 5 ⊥⊥ 2, we have 5 ⊥⊥ 1, 2. On the other hand, we can obtain 4 ⊥⊥ 2 by

removing 6 and 1 from 4 ⊥⊥ 2 | 1, 6, then use composition to get 4 ⊥⊥ 1, 2, as 4 ⊥⊥ 1

is already in IuG .

3.9 Future work

Chapter 3 leaves open several interesting questions. First, if we are to use an al-

gorithm to search for the optimal MAG using the BICMF-score, what moves should

it propose and make? The 0-1 imset formulation makes it easy to search, as—

provided that Meek’s conjecture (Meek, 1997) for MAGs is true—we may search by

first adding, and later deleting sets from the parametrizing set.

Another still open problem is to provide a complete solution to obtaining stan-

dard imsets of MAGs. This is analogous to undirected graphs, where Kashimura

and Takemura (2015) provide a solution for the standard imset of non-decomposable

undirected graphs; previously graphs with chordless cycles were not covered by the

theory. It seems clear from the example of the bidirected 5-cycle that we will have

to choose between having the lowest possible degree and symmetry of the standard

imset. We hope that this can expand the class of graphs that can be scored further,

and that it may lead to algorithms that are more accurate or more efficient than the

current state-of-the-art.
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Chapter 4

Search algorithm

In this chapter, we develop a search algorithm for MAGs. The setting is only

given observational data, assuming generated from a distribution that is faithful

to some MAG and we aim to find the optimal MAG. This chapter is organized as

follows: we start with an introduction in Section 4.1; then in Section 4.2, we define

extra terminologies; in Section 4.3, we demonstrate how to move between Markov

equivalence classes of MAGs and present some results to speed the procedure up;

in Section 4.4, we show how to use the frame work of imsets (Studený, 2006) and

the reduced Markov property for MAGs (Hu and Evans, 2022) to construct a new

scoring criteria for MAGs and prove its consistency; in Section 4.5, we propose our

new algorithm by combining results in previous two sections; then finally in Section

4.6, we conduct a simulated experiment and show superior performance to existing

MAG learning algorithms.

4.1 Introduction

Causal discovery is an essential part of causal inference(Spirtes et al., 2000; Peters

et al., 2017). Estimating causal effect is challenging if the underlying causal graph is

unknown. Algorithms for learning causal graphs vary based on different parametric

assumptions and class of graphical models used (Spirtes et al., 2000; Kaltenpoth

and Vreeken, 2023; Claassen and Bucur, 2022; Nowzohour et al., 2017; Zhang and

Hyvarinen, 2009; Peters et al., 2017). In this chapter, we consider the assumption

that the conditional independences of distributions can be represented by graphs.

One prominent graphical model in causal inference is the directed acyclic graphs,

also known as DAGs. They offer a clear interpretation and are straightforward to

conduct inference. DAGs are associated with distributions by encoding conditional

independence. However, for many distributions, DAGs have limitations in fully

expressing all conditional independences. For instance, in the presence of hidden
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variables, DAGs can not capture all independences over the observed variables.

To address this issue, the maximal ancestral graphs (MAGs) were developed by

Richardson and Spirtes (2002). MAGs provide a more comprehensive representation,

overcoming the limitations of DAGs.

Classic graph learning methods for DAGs and MAGs are mainly of three types:

constrained-based, scored-based and hybrid which combines features of the first two.

Constrained-based methods are known for fast speed. But they can have low accu-

racy when number of variables grows (Evans, 2020; Ramsey et al., 2006) as empirical

mistakes propagate through the algorithm. Classic DAG/MAG learning algorithms

are PC/FCI(Spirtes et al., 2000). Some variation of these algorithms are developed

to accelerate and increase precision, for example, RFCI/FCI+(Colombo et al., 2012;

Claassen et al., 2013). On the other hand, score-based methods search through many

graphs and compute a score for each one, then selects the graph with the highest

score. Therefore in general they are more robust (require stronger assumption in the

parametric models) but slower than those constrained-based methods. GES (Chick-

ering, 2002) perhaps is the most well-known scored-based DAG learning algorithm,

which proves greedy learning procedure will output global optimal in the limit of

infinite sample size. This was originally known as ’Meek’s conjecture’ (Meek, 1997).

We will prove some result (Proposition 4.3.3) for MAGs by assuming the MAG

version of the conjecture to speed up our algorithm.

4.1.1 An overview of past work on score-based method

There are two key components to such score-based algorithms: the score, and the

search procedure.

Existing score-based algorithms for MAGs (Triantafillou and Tsamardinos, 2016;

Rantanen et al., 2021; Chen et al., 2021; Claassen and Bucur, 2022) all use the

Bayesian information criteria (BIC). Although Drton et al. (2009) and Evans and

Richardson (2010, 2014) have provided methods for fitting Gaussian and discrete

MAG models using maximum likelihood, which allows for obtaining the correspond-

ing BIC score, maximum likelihood estimates cannot be obtained in a closed-form,

and therefore require iterative computation using numerical methods. Moreover,

the optimization function is not generally convex if the model is not a DAG, which

means that the such algorithms may converge to a non-globally optimal point. Ad-

ditionally, the factorization of distributions in MAG models is complex, and the

scores are only decomposable with respect to the components connected by bidi-

rected paths, also known as districts or c-components; this makes search methods

for MAGs computationally intensive. In this chapter, we use a score from Hu and
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Evans (2022), based on work of Andrews et al. (2022), in the framework of imsets

(Studený, 2006); it essentially measures the discrepancy in the data from a list of

independences implied by the graph. This list of independences is equivalent to but

generally simpler than the (reduced) ordered local Markov property (Richardson,

2003; Hu and Evans, 2022).

The search procedure is also very important. Clearly scoring every MAG is in-

efficient, since the number of MAGs grows super-exponentially as the number of

vertices increases. The above mentioned algorithms all search in a greedy manner

by only considering neighbouring MAGs; these are different from the current MAG

by only a difference in an edge or edge mark (see details later). Among them,

only Claassen and Bucur (2022) search through Markov equivalence class (MEC) of

MAGs, and thus avoid repeatedly scoring graphs which, if the distributions are as-

sumed to be discrete or multivariate Gaussian, always have the same BIC. However,

Claassen and Bucur’s method still has some inefficiencies. We address these issues

and provide a new method; we show that for sparse graphs, under some other mild

assumptions, our new algorithm runs in polynomial time.

4.2 Preliminary

The scoring criteria we construct later essentially are measuring the list of inde-

pendence in some Markov property by using mutual information as a continuous

score, in addition to some model complexity. To estimate mutual information, it

is sufficient to compute the entropy given a set of variables. Therefore our scoring

criteria is not restricted to discrete or Gaussian model. As long as one can estimate

entropy, this scoring criteria would be consistent in the limit of infinite sample size.

Definition 4.2.1. For a real-valued and continuous variable X with probability

density function f(x), its entropy is defined as:

H(X) = −
∫ ∞

−∞
f(x) log(f(x)) dx

For discrete variables, one replaces the integral sign and probability density func-

tion with summation sign and probability mass function respectively.

In this thesis we run simulated experiments with Gaussian variables. The plug-

in estimator of Gaussian entropy uses sample mean and variance, which is known

to produce underestimation (Basharin, 1959). If the mean of Gaussian distribution

is known to be zero, then Ahmed and Gokhale (1989) finds an unbiased estimator

with minimal variance, i.e. UMVUE estimator. Further Misra et al. (2005) present
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a UMVUE estimator for the general case. We ran our algorithm for a variety of

estimators mentioned later, and they all produced very similar final result. Entropy

estimation is a widely studied topic and are not focus of this paper so we only briefly

discuss these estimators here.

Recall the inner product notation from Definition 3.3.3

Definition 4.2.2. Given a function f which takes XA for any A ⊆ V as input, and

an imset u over V , we define

⟨u, f⟩ =
∑
A⊆V

u(A)f(xA).

4.2.1 Meek’s conjecture for MAGs

Chickering (2002) proves the Meek’s conjecture for DAGs and we state its analogue

version of MAGs here.

Theorem 4.2.1. Let G and H be any pair of MAGs such that I(G) ⊇ I(H). Let

r be the number of edges in H that are different to the edges in G, and let m be the

number of edges in H that do not exist in G. There exists a sequence of at most

2r +m edge mark change and edge additions in G with the following properties:

• after each edge mark change or edge addition, G is a MAG and I(G) ⊇ I(H);

• after all edge mark changes and edge additions, G = H.

This theorem has been proven for DAGs and therefore it guarantees that greedy

learning can output the optimal solution in the limit of infinite sample size for DAG

models. While this theorem has not been proven for MAG models, many scored-

based algorithms for MAGs implicitly assume it and search greedily, see Claassen

and Bucur (2022), Triantafillou and Tsamardinos (2016), and Rantanen et al. (2021).

Zhang and Spirtes (2005) show that for Markov equivalent MAGs, there exists se-

quence of single edge mark changes for reaching from one MAG to another while

staying in the same MEC, but there has been little progress since then. Through-

out this chapter we will assume that Meek’s conjecture holds for MAG models and

derive some useful facts that accelerate the searching procedure.

4.3 Moving between Markov equivalence classes

Recall in Section 2.7, partial ancestral graph (PAG) is defined to characterize [G],
which captures all the arrowheads and tails that are present in every MAG in [G]. In
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this section, we describe how we move between MECs by using PAGs as a represen-

tation of the MECs. In Ali et al. (2009), they use skeleton and colliders with order

to represent the MEC and Claassen and Bucur (2022) further simplifies this to linear

complexity for sparse MAG equivalence by looking at both collider and noncollider

triples with order. To visit other MECs, they perform graphical operations includ-

ing adding or deleting adjacencies, or altering orientation of colliders with order.

After the modification, they compute the PAG of the resulting MEC and check that

it is valid. We show that this procedure can be simplified and improved using the

orientation rules of PAGs and using PAGs as representation of MECs directly.

4.3.1 PAGs

Recall the definition of PAGs. Given a MAG G, an edge mark in G is invariant if it

is present in every graph in [G].

Definition 4.3.1 (Definition 2.7.1). Given a MAG G, the partial ancestral graph

(PAG) for [G], PG, is a graph with three kind of edge marks: arrowheads, tails and

circles (six kinds of edges: −, →, ↔, −, − , →)1, such that:

• PG has the same adjacencies as any maximal member of [G];

• a mark of arrowhead is in PG if and only if it is invariant in [G];

• a mark of tail is in PG if and only if it is invariant in [G].

Recall that Zhang (2007b) present an algorithm, including a sound and complete

set of rules, R0 to R10, which are listed in Section 2.7, to construct the PAG of a

given MAG.

A direct approach to score a PAG is to construct a MAG represented by the

PAG (Zhang, 2007b) and fit the MAG to the data as Claassen and Bucur (2022)

did. We show that a representative MAG can be constructed by only an arrow

complete PAG and thus save the computational cost of orienting the invariant tails.

Remark 11. We should point it out that this is not new as the proof of Ali et al.

(2005)’s result on characterizing the MEC by arrow complete PAGs partly relies on

it. But we did not find any formal statement of this result in the literature so here

we formulate it properly.

1As we consider only directed MAGs, there are only four kinds of edges
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4.3.2 Representative MAG

Algorithm PAG-to-MAG explicitly describe the steps needed for constructing a rep-

resentative MAG. In fact, just to represent the MEC it is sufficient to only apply

rules R0–R4, which obtain all the invariant arrowheads; this arrow complete PAG

(Ali et al., 2005) is sufficient to characterize the MEC. The remaining rules R5–R10
correspond to finding invariant tails, and generally have higher computation cost

than R0–R4.
Now we show that how to obtain the representative MAG from only arrow com-

plete PAGs instead of fully oriented PAGs. This comes from the following observa-

tions:

• R5 and R6 will not be called if the MEC contains a directed MAG, as pointed

out by Zhang (2007b);

• − is produced only by R6;

• R7 is called only if there is −, which does not exist for a MEC that contains

a directed MAG;

• finally, R8–R10 only change → to→, and we can always do this without loss

of generality.

Lemma 4.3.1. Let P and P ′ be a fully oriented PAG and an arrow complete PAG,

respectively. Suppose they represent the same MEC that contains at least one directed

MAG, then the outputs of Algorithm PAG-to-MAG are the same for P and P ′.

Therefore, we will use the arrow complete PAGs for scoring MECs, since they are

easier to compute. Note that in practice when we are not certain that the incomplete

PAG will be standing for a MEC that contains some directed MAGs, we call R5
once and if there is no undirected edge found then the premise of Lemma 4.3.1 is

satisfied.

Input: A PAG or an arrow complete PAG P
Result: A MAG G such that PG = G

1 Let G = P ;
2 Change every − , → in G into →;
3 Orient − component in G into a DAG with no unshielded collider;
4 return G

Algorithm PAG-to-MAG:
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4.3.2.1 Consistent invariant edge marks

Here we show a result that follows from assuming Meek’s conjecture for MAGs. The

result will accelerate our greedy learning algorithms.

We say two PAGs are inconsistent at an edge mark if it is an invariant arrow

head in one PAG and an invariant tail in the other one.

First we need the following lemma.

Lemma 4.3.2. For any two MAGs G and G ′, that have the same adjacencies but

are not Markov equivalent, it is neither I(G) ⊆ I(G ′) nor I(G ′) ⊆ I(G).

Proof. Consider any unshielded triples a∗−∗b∗−∗c in G and G ′. If it is an unshielded

collider triple in G, then there is an independence a ⊥⊥ c | B in I(G) such that b /∈ B.

If it is an unshielded non-collider triple in G ′, then there is an independence a ⊥⊥ c | B
in I(G ′) such that b ∈ B. Therefore if G and G ′ have any unshielded triple that is

oriented differently, then we are done.

Now suppose G and G ′ have the same skeleton and unshielded collider triples.

The remaining piece of their MECs are orientation of discriminating paths when

we orient their PAGs. Since they have the same skeleton and unshielded collider

triples, any discriminating path arising when orienting one PAG will also appear in

another PAG. For similar reason, these discriminating paths must have the same

orientation(Richardson and Spirtes, 2002), otherwise we are done. But then since

the two MAGs have the same skeleton, unshielded collider triples and orientation of

discriminating path when orienting PAGs, they must be Markov equivalent.

Proposition 4.3.3. Assuming Meek’s conjecture for MAGs holds. Let P and P ′ be

two PAGs such that I(P) ⊇ I(P ′), and P ′ has one more edge {i, j} than P. Then

there is no inconsistent edge mark between P and P ′.

Proof. Suppose b←∗ c in P . By Meek’s conjecture, for some MAG G represented

by P , there exists a sequence of graph operations, consisting of either adding edge

or changing of edge mark, that leads to some MAG G ′ represented by P ′. There

must be only one edge addition. Consider any change of edge mark before the

adding edge operation, it cannot change the arrowhead at b←∗ c, because this edge
mark is invariant, so changing it would lead to another MEC P ′′ with the same

skeleton and such that neither I(P) ⊆ I(P ′′) nor I(P ′′) ⊆ I(P). Therefore after

the edge addition operation, b←∗ c remains. Now by Lemma 4.3.2, any change of

edge mark later will not change the MEC as skeleton remains the same, so it is

always represented by P ′. Now since b←∗ c is in some MAG represented by P ′, the

edge mark then cannot be an invariant tail in P ′.
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Figure 4.1: Examples for redundant triples

In some cases, Proposition 4.3.3 help us to orient new unshielded triples or

discriminating path when we visit a new MEC so we do not need to consider different

orientations of them, and saves computational costs. We will show these in details

later.

4.3.3 Equivalence classes

To construct the PAG of a MEC, we need the following information: (i) the skeleton;

(ii) the unshielded colliders (for R0); and (iii) the orientation of discriminating

paths for which R4 is called. Any characterization of MECs should contain this

information, and so the algorithm of Zhang (2007b) can be adapted to construct

the PAG based upon it. In Section 2.7.2, we showed how to construct a PAG by

using the parametrizing set. Claassen and Bucur (2022) show how to do the same

using colliders with order. Both the parametrizing set and collider with order have

the same information about (i) and (ii), but they contain different triples for (iii);

both characterizations may contain redundant triples.

Example 4.3.1. In Figure 4.1(i), {1, 4, 5} ∈ S3(G) is unnecessary as when orienting

the PAG,R4 will not be called and only skeleton and unshielded colliders are needed.

Similarly, in Figure 4.1(ii), {2, 3, 5} is a collider with order, but again the PAG is

completely determined by the skeleton and unshielded colliders.

Claassen and Bucur (2022) would change the MEC of Figure 4.1(ii) by modifying

both unshielded colliders and colliders with order, and hence visit the same MEC

twice by changing {3, 4, 5} or {2, 3, 5} to non-colliders. Even though the authors

report that, empirically, 95% of the proposed changes result in a valid MEC, they

do not discuss how many classes are repeatedly visited. We do not fully address the

issue here but since we are only changing the orientation of unshielded tripless, it is

clear that this leads fewer repetitions.

In the next few subsections, we present how our algorithm moves between MECs,

overcoming the above issue, together with some observations that improve overall

efficiency compared to Claassen and Bucur (2022). We also have the problem of
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repeatedly visiting the same MECs but our experiment suggests that the overall

efficiency is improved. For each step, Claassen and Bucur (2022) consider every

possible move including adding one adjacency, deleting one adjacency and altering

orientation of one triple with order. We choose to mimic the procedure in Hauser and

Bühlmann (2012) that firstly only adds adjacencies, then only deletes adjacencies,

and finally alters the orientation of colliders. This will reduce the number of possible

moves and is still consistent, provided that Meek’s conjecture is true for MAGs.

4.3.4 Adding adjacencies

4.3.4.1 Determine unshielded collider triples

When we add an adjacency, we need to investigate what happens to the three objects

we use to characterize equivalence. First, given which adjacency we are trying to

add, the new skeleton is clear. For unshielded triples, if it remains unshielded after

adding the adjacency, we keep its orientation status, i.e. collider or non-collider, as

justified by the following lemma.

Lemma 4.3.4. Let G and H be two MAGs such that I(G) ⊆ I(H). If a triple

{i, j, k} is unshielded in both G and H, then {i, j, k} is an unshielded collider triple

in G if and only if it is an unshielded collider triple in H.

If an unshielded triple becomes a full triple after adding the adjacency, then

clearly we remove it from consideration; the difficulty here what happens when

there are new unshielded triples. By simply going through each possible orientation

of these triples and restricting maximal degree of each node to d, we would go

through up to 22d combinations.

Proposition 4.3.3 would help to reduce the complexity. Let P and P ′ be two

PAGs such that I(P) ⊇ I(P ′), and P ′ has one more edge {i, j} than P . Let

i ∗−∗ j ∗−∗ k be an unshielded triple in P ′. If j −∗ k in P then {i, j, k} is an

unshielded non-collider triple in P ′. Thus we only consider the cases for j ◦−∗ k and

j←∗ k.
We show a trick to simplify the situation by imagining the edge mark of the new

edge i ∗−∗ j at j in the PAG P ′ of the new MEC. If it is an arrowhead, i.e. i∗→ j,

then in the case of j ←∗k, {i, j, k} is definitely an unshielded collider triple in P ′.

We use UCd
j to denote all such triples. In the case of j −∗k in P , {i, j, k} may be

an unshielded collider or non collider triple in P ′. We use UCp
j to denote all such

triples and we need to go through each combination. If it is i ∗− j or i ∗− j in P ′,

then {i, j, k} cannot be an unshielded collider triple in P ′.
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Figure 4.2: A PAG with a new adjacency

Given a PAG P and an adjacency i, j to add, Algorithm UC-triples-add sum-

marize the above procedure and output UCd
i , UCd

j , UCp
i , UCp

j . Example 4.3.2

demonstrates the usefulness of this trick. Algorithm UC-triples-add also gives an

incomplete PAG that are only applied R0 by considering all triples that are both

unshielded in P and P ′, and are colliders triples in P . The PAG of any MEC in the

next iteration will be oriented by starting at this incomplete PAG.

Example 4.3.2. Suppose we have a PAG 1 → 2 ↔ 3 ↔ 4 ↔ 5← 6 and we

wish to add the adjacency {2, 5} as illustrated by Figure 4.2. There are four new

unshielded triples and naively going through them would go through 16 combina-

tions. But Algorithm UC-triples-add outputs UCd
2 = {{1, 2, 5}, {2, 3, 5}}, UCd

5 =

{{2, 5, 6}, {2, 4, 5}} and UCp
2 = UCp

5 = ∅. Hence we only need to go through the

four cases when adding UCd
2 ∪UCd

5 , UCd
2 , UCd

5 or ∅ as additional unshielded collider

triples.

The method we described for proposing possible orientation of new unshielded

triples are by no mean sound and complete. Future work can focus on efficient,

sound and complete algorithms for orienting these new unshielded triples.

The main improvement we made is described in the following section.

4.3.4.2 Creating branches for R4

The efficiency of our approach comes to the fact that we only determine orientation

of discriminating paths when R4 is called, which is the remaining uncertain piece for

the new MEC. Claassen and Bucur (2022) determine the new MEC by pre-setting

the skeleton, unshielded colliders and colliders with orders, where the latter may

contain redundant information as we have seen in Example 4.3.1.

Our idea is straightforward: when R4 is called, we create two branches. For one

branch, we orient the triple in the discriminating path as non-collider and for the

other one, the triple is oriented as collider. Then we keep orienting each incomplete

PAG and whenever R4 is called, we perform the same procedure until graphs are

completely oriented.

In some cases, it is unnecessary to create branches. Suppose we are constructing a

new PAG P ′′ from an edge addition to P . SupposeR4 is called for the discriminating

path π = {d, · · · , a, b, c}, if b←∗ c or b ◦−∗ c in P then by Proposition 4.3.3, we can
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Input: A PAG P , {i, j}
Result: A incomplete PAG P ′,UCd

i , UCd
j , UCp

i and UCp
j

1 Initialize P ′ with only − and the same skeleton as P ;
2 Add i − j to P ′;
3 Let UCd

i = UCd
j = UCp

i = UCp
j = ∅;

4 Apply R0 to P ′ by considering all triples that are both unshielded in P and
P ′, and are colliders in P ;

5 for a ∈ {i, j} do
6 let b = {i, j} \ a;
7 let UCa be the set of new unshielded triples that centred at a;
8 for {a, b, k} ∈ UCa do
9 if a−∗k in P then

10 next
11 else
12 if a←∗k in P then
13 add {a, b, k} to UCd

a

14 else
15 add {a, b, k} to UCp

a

16 end

17 end

18 end

19 end
20 return P ′, UCd

i , UCd
j , UCp

i , UCp
j

Algorithm UC-triples-add:
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just orient the discriminating path by the edge mark at b in P . Essentially, we only
need to create branches for the discriminating path if b −∗c in P . See Algorithm

Branch-for-R4-add that summarizes the above procedure. Now we are ready to

present the full algorithm for adding adjacencies.

Input: A PAG P and an incomplete PAG P ′

Result: An arrow complete PAG P ′ or two incomplete PAGs (P ′
c, P ′

n)
1 Exhausitively apply R1−R4 to P ′;
2 if R4 is called for an edge b −∗c then
3 if {d, b, c} ∈ S(P) or b←∗c or b−∗c in P then
4 orient b as collider or non-collider in P ′, respectively;
5 keep orienting;

6 else
7 orient b as collider and non-collider, and let the resulting two

incomplete PAGs be P ′
c and P ′

n, respectively;
8 return (P ′

c, P ′
n)

9 end

10 end
11 return P ′

Algorithm Branch-for-R4-add:

4.3.4.3 Algorithm for adding adjacency

Algorithm Add-adj combines previous algorithms with an additional section that

runs dynamically. When Algorithm Add-adj proceeds to Line 14, the set S consist

of incomplete PAGs that are determined by the same skeleton but different sets of

unshielded collider triples. To visit a new MEC, we need to keep applying these

orientation rules and decide orientation of discriminating path when R4 is called.

In Appendix, we also list algorithms for deleting adjacency and changing direc-

tion of colliders. It is similar to Algorithm Add-adj, so we omit them here.

4.3.5 Deleting adjacency

Similar to the algorithm for adding adjacency, we need to think about what happens

to skeleton, unshielded collider triples, and orientation of discriminating path when

R4 is called. Again the skeleton is clear, given which edge to delete. Then, by

Lemma 4.3.4, we would also like to keep unshielded collider triples that remain

unshielded after deleting the edge. For those full triples that became unshielded

collider triples after deleting an adjacency if the previous PAG contains invariant

edge marks that help to orient them, we then keep the orientation of these triples as

we did by Proposition 4.3.3 before so we do not need to consider different orientation
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Input: A complete PAG P and an adjacency {i, j} to add
Result: A set of arrow complete PAGs

1 P ′,UCd
i , UCd

j , UCp
i , UCp

j = UC-triples-add(P ,{i, j}) ;
2 S = {P ′};
3 for UC ⊆ UCp

i do
4 Apply R0 to P ′ with additional unshielded triples UC ∪ UCd

i ;
5 add the resulting incomplete PAG to S.

6 end
7 for UC ⊆ UCp

j do
8 Apply R0 to P ′ with additional unshielded triples UC ∪ UCd

j ;

9 add the resulting incomplete PAG to S.

10 end
11 for UC ⊆ UCp

i ∪ UCp
j do

12 Apply R0 to P ′ with additional unshielded triples UC ∪ UCd
i ∪ UCd

j ;

13 add the resulting incomplete PAG to S.

14 end
15 O = ∅;
16 for P ′ ∈ S do
17 K = Branch-for-R4-add (P ,P ′);
18 while |K| > 0 do
19 Let P ′′ ∈ K; K ′ = Branch-for-R4-add (P ,P ′′);
20 if |K ′| = 1 then
21 add K ′ to O; delete P ′ from K
22 else
23 add K ′ to K
24 end

25 end

26 end
27 return O

Algorithm Add-adj:
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of each triples. Similarly if R4 is called for some discriminating paths and previous

PAG helps to orient them then we do not need to create branches.

Let the UCp
ij denote the remaining uncertain unshielded triples. We need to

enumerate MECs by exploring different orientations of triples in UCp
ij and creating

branches for new discriminating paths.

Input: A PAG P , {i, j}
Result: A incomplete PAG P ′, UCp

ij

1 Initialize P ′ with only − and the same skeleton as P ;
2 Delete i − j to P ′;
3 Let UCp

ij = ∅;
4 Apply R0 to P ′ by considering all triples that are both unshielded in P and
P ′, and are colliders in P ;

5 Let A be sets of nodes that are adjacent to i, j in P ;
6 for a ∈ A do
7 if i∗→ a←∗j in P then
8 orient i∗→ a←∗j in P ′;
9 else

10 if i ∗−a ∗−∗ j and i ∗−∗ a−∗j not in P then
11 Add {i, j, a} to UCp

ij;

12 end

13 end

14 end
15 return P ′,UCp

ij

Algorithm UC-triples-delete:

See Algorithm UC-triples-delete, Branch-for-R4-delete and Delete-adj.

They are similar to UC-triples-add, Branch-for-R4-add and Add-adj.

4.3.6 Turning phase

Unlike the previous two phases for adding and deleting adjacency, Meek’s conjec-

ture does not allow us to change the status of unshielded triples. In fact, such a

change between an unshielded collider or non-collider triple would result in a new

MEC, which cannot still be an I-map of the true distribution. The turning phase

introduced by Hauser and Bühlmann (2012) that changes unshielded triples in DAG

models is used to correct mistakes made earlier due to finite sample sizes. We mimic

their procedure, and generalize it for MAG models.

We briefly describe what we did here. Suppose we have a PAG from previous

two phases. For the turning phase, we would like to keep the skeleton. Then we

set a parameter t for how many unshielded triples that we can change orientation

at once, which is usually set to one. Once orientation of every unshielded triples is
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Input: A PAG P and an incomplete PAG P ′

Result: An arrow complete PAG P ′ or two incomplete PAGs (P ′
c, P ′

n)
1 Exhaustively apply R1−R4 to P ′;
2 if R4 is called for an edge b −∗c then
3 if {d, b, c} ∈ S(P) or b−∗c in P then
4 orient b as collider or non-collider in P ′, respectively;
5 keep orienting;

6 else
7 orient b as collider and non-collider, and let the resulting two

incomplete PAGs be P ′
c and P ′

n, respectively;
8 return (P ′

c, P ′
n)

9 end

10 end
11 return P ′

Algorithm Branch-for-R4-delete:

Input: A PAG P and an adjacency {i, j} to delete
Result: A set of arrow complete PAGs

1 P ′,UCp
ij = UC-triples-delete(P ,{i, j}) ;

2 S = {P ′};
3 for UC ⊆ UCp

ij do
4 Apply R0 to P ′ with additional unshielded triples UC;
5 Add the resulting incomplete PAG to S.

6 end
7 O = ∅;
8 for P ′ ∈ S do
9 K = Branch-for-R4-delete (P ,P ′);

10 while |K| > 0 do
11 Let P ′ ∈ K; K ′ = Branch-for-R4-delete (P ,P ′);
12 if |K ′| = 1 then
13 O = O ∪K ′; K = K \ {P ′}
14 else
15 K = K ∪K ′

16 end

17 end

18 end
19 return O

Algorithm Delete-adj:
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decided, we further orient the new PAG and whenever R4 is called, we create two

branches and do not consider its edge mark on previous MEC. This is implemented

in Algorithm Turning and Branch-for-R4-turning.

Input: An incomplete PAG P ′

Result: An arrow complete PAG P ′ or two incomplete PAGs (P ′
c, P ′

n)
1 Exhaustively apply R1−R4 to P ′;
2 if R4 is called for an edge b −∗c then
3 orient b as collider and non-collider, and let the resulting two incomplete

PAGs be P ′
c and P ′

n, respectively;
4 return (P ′

c, P ′
n)

5 end
6 return P ′

Algorithm Branch-for-R4-turning:

Input: An arrow complete PAG P , max changes t
Result: A set of arrow complete PAGs

1 Let UT be the set of unshielded triples in P ;
2 S = {P ′};
3 for UTturn ⊆ UT and |UTturn| ≤ t do
4 Change the orientation status of triples in UTturn in P ′;
5 Add the resulting incomplete PAG to S.

6 end
7 O = ∅;
8 for P ′ ∈ S do
9 K =Branch-for-R4-turning (P ,P ′);

10 while |K| > 0 do
11 Let P ′ ∈ K; K ′ = Branch-for-R4-turning (P ,P ′);
12 if |K ′| = 1 then
13 O = O ∪K ′; K = K \ {P ′}
14 else
15 K = K ∪K ′

16 end

17 end

18 end
19 return O

Algorithm Turning:

There are various methods to jump to new MECs that are not I-maps to the

previous MEC. Again working with DAGs, Linusson et al. (2023) give a geometric

interpretation and generalize the turning phase in Hauser and Bühlmann (2012).

Their method can turn more than one unshielded triple at the same time, which is

similar to what we did here. One future work is to extend the work in Linusson

et al. (2023) to MAG models and design a more robust and efficient turning phase.
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4.4 Scoring Criteria

The BIC (Schwarz, 1978) is a consistent (defined below) scoring criterion. For dis-

crete models, Evans and Richardson (2010) provide procedures for fitting ADMGs,

obtaining MLE and thus we can compute the BIC.

Let ℓ be the log-likelihood and qθ to denote the family of distributions that are

Markov to the fitted graph G, with parameter θ, which achieve maximum of ℓ at θ̂.

And let d = |S(G)| be the dimension of the discrete model (Evans and Richardson,

2014). Also let N and N(xV) be the number of samples and the number of samples

such that XV = xV , respectively. Then the BIC for fitting G is:

−2ℓ̂+ d logN,

where ℓ̂ =
∑

xV
N(xV) log qθ̂(xV).

However this score is not very suitable for a greedy learning algorithm for MAGs,

as we need to re-fit the whole graph when we consider new models and often unstable.

Thus in this chapter we aim to develop a scoring criterion that is decomposable with

respect to the parametrizing set S(G). The motivation is that equivalent MAGs have

the same BIC and the parametrizing set, and every time we move between Markov

equivalence classes of MAGs, we simply change the 0-1 vector of the characteris-

tic imset, and it would save a lot computations if for those sets remaining in the

parametrizing set, we do not need to compute their corresponding scores again.

We propose a new scoring criterion: −2N⟨ur
G, Ĥ⟩+ d logN , where Ĥ is the plug-

in estimate of entropy defined below and ur
G is an imset from the refined Markov

property. We can also show that if we use the ’standard’ imset uG in the inner

product and I(G) = I(uG), the inner product approximates ℓ̂/N .

4.4.1 Entropy and interactive information of discrete vari-
ables

In this subsection, we present some useful results on discrete variables to help readers

better understand the idea about scoring using imsets and entropy.

Definition 4.4.1. The entropy of a set of discrete variables XV , is defined as:

H(XV) =
∑
xV

P (XV = xV) logP (XV = xV).

Definition 4.4.2. The interaction information of a set of discrete variables XV , is

defined as:

I(XV) =
∑
S⊆V

(−1)|V \S|H(XS).
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We have the following identity:

H(XV) =
∑
T⊆V

∑
S⊆T

(−1)|T\S|H(XS) =
∑
T⊆V

I(XT ).

The plug-in estimate of entropy of XV , is

Ĥ(XV) =
∑
xV

N(xV)

N
log

N(xV)

N
.

The plug-in estimate of interaction information of XV , is

Î(XV) =
∑
S⊆V

(−1)|V \S|Ĥ(XS).

Theorem 3.4.18 allows us to decompose the entropy in terms of the interaction

information over the parametrizing set.

Let H, I be the entropy function and the interaction information function, respec-

tively.

Proposition 4.4.1. For a MAG G with vertex set V and a distribution p that is

Markov to G, we have

H(XV) =
∑

T∈S(G)

I(XT ) = ⟨cG, I⟩ = ⟨δV − uG,H⟩.

Proof. Recall that P(S) denotes the power-set of S. By Theorem 3.4.18, it is suffi-

cient to show that ⟨uG,H⟩ =
∑

T /∈S(G) I(XT ) = 0.

⟨uG,H⟩ =
∑

S∈P(V)

∑
T∈P(V)
S⊆T⊆V

(−1)|T\S|(1− cG(T ))H(XS)

=
∑

S∈P(V)

∑
T∈P(V)
S⊆T⊆V

(−1)|T\S|δT /∈S(G)H(XS)

=
∑

S∈P(V)

∑
T /∈S(G)
S⊆T⊆V

(−1)|T\S|H(XS)

=
∑

T /∈S(G)

∑
S⊆T

(−1)|T\S|H(XS)

=
∑

T /∈S(G)

I(XT ).

The last equality in the statement then holds, as ⟨δV ,H⟩ = H(XV).
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Remark 12. We will not use interactive information in our algorithms for scor-

ing as we are scoring by taking the inner product between entropy and the imset

constructed by summing semi-elementary imsets from the refined Markov property.

But the equivalence between the inner product of ’standard imset’ and entropy, and

the inner product of 0-1 characteristic imset and the interactive information is in-

teresting. If one further develops an efficient method to traverse between MECs of

MAGs by using 0-1 characteristic imset as representation of MECs, then scoring by

interactive information may be more efficient.

To help readers better understand the inner product score, we first show the

equivalence between BIC and the score for discrete Bayesian networks.

4.4.2 Scoring discrete Bayesian networks

Recall that for DAGs, the maximum likelihood estimate (MLE) of P (xv | xpav) is

N(xv, xpav)/N(xpav). Given N i.i.d. samples, the log-likelihood can be expressed as:

ℓ(P ;N) =
∑
xV

N(xV) logP (xV)

=
∑
xV

N(xV)
∑
v

logP (xv | xpa(v))

=
∑
v

∑
xv ,xpa(v)

N(xv, xpa(v)) logP (xv | xpa(v))

=
∑
v

∑
xpa(v)

∑
xv

N(xv, xpa(v)) logP (xv | xpa(v)).

Replacing P (xv | xpa(v)) by the MLE N(xv, xpav)/N(xpav), the log-likelihood is then

ℓ̂ =
∑
v

∑
pa(v)

∑
xv

N(xv, xpa(v)) log
N(xv, xpa(v))

N(xpa(v))

=
∑
v

∑
pa(v)

{∑
xv

N(xv, xpa(v)) log
N(xv, xpa(v))

N
+

−
∑
xv

N(xv, xpa(v)) log
N(xpa(v))

N

}

=
∑
v

∑
pa(v)

∑
xv

N(xv, xpa(v)) log
N(xv, xpa(v))

N
+

−
∑
v

∑
pa(v)

N(xpa(v)) log
N(xpa(v))

N

= N⟨δV − uG, Ĥ⟩
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= N⟨cG, Î⟩.

The above calculations have appeared in the literature before (Studený, 2006)

but we demonstrate it in our notation to make other proofs clear.

4.4.3 Consistency for MAGs when uG is perfectly Markovian

In this section, we show that when fitted MAGs have ’standard imsets’ that are

perfectly Markovian w.r.t. the graphs, the scoring criterion is consistent. First, we

define what is the requirement for a score to be consistent.

Definition 4.4.3. Let P be the true distribution. A score S(G) is said to be

consistent, if in the limit of infinite sample size, the following is true:

(i) if I(G) ⊆ I(P ) but I(G ′) ̸⊆ I(P ), then S(G) < S(G ′);

(ii) if I(G) ⊆ I(P ) and I(G ′) ⊆ I(P )′ but G has less dimension than G ′, then
S(G) < S(G ′).

Next, we introduce the well-studied Kullback-Leibler divergence.

Definition 4.4.4. For two distributions P and Q defined over XV , and two disjoint

subsets A,C ⊆ V , define the Kullback-Leibler (KL) divergence between PA|C and

QA|C as

KL(PA|C ∥ QA|C) = EPA|C [log
PA|C

QA|C
].

Two nice properties of KL divergence are that it is non-negative, and that it is

zero if and only if P = Q almost surely.

Proposition 4.4.2. For any two distributions P and Q and any semi-elementary

imset u⟨A,B|C⟩, provided that Q satisfies XA ⊥⊥ XB | XC, we have

⟨u⟨A,B|C⟩, KL(P ∥ Q)⟩ ≥ 0,

with equality holding if and only if P also satisfies XA ⊥⊥ XB | XC.

Proof.

⟨u⟨A,B|C⟩, KL(P ∥ Q)⟩

= EPC
[KL(PAB|C ∥ QAB|C)−KL(PA|C ∥ QA|C)−KL(PB|C ∥ QB|C)]

= EPC

[
I(A;B | C)− EPAB|C log

QAB|C

QA|CQB|C

]
= EPC

[I(A;B | C)] (provided Q satisfies A ⊥⊥ B | C)
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≥ 0,

where the last inequality comes from the fact that mutual information is always

non-negative.

Next we show that the score is consistent.

Proposition 4.4.3. The score −2N⟨cG, Î⟩ + d logN , is consistent when IuG = IG,
where G is the fitting MAG.

Proof. Let us first consider any general MAG G and qθ with the parameters θ =

{q(xH | xtail(H)) : H ∈ H(G)} (Evans and Richardson, 2014). Note that qθ can be

factorized by Theorem 3.4.18 and the log-likelihood can be rewritten as the inner

product between δV−uG and log qθ where the inner product is taken over all subsets

of V :

ℓ =
∑
xV

N(xV)⟨δV − uG, log q
θ⟩

= N⟨δV − uG,
∑
xV

N(xV)

N
log qθ⟩.

The difference between ℓ̂ and N⟨cG, Î⟩ is then

ℓ̂−N⟨cG, Î⟩ = N⟨δV − uG,
∑
xV

N(xV)

N
log qθ̂ − Ĥ⟩

= −N⟨δV − uG, KL(P̂ ∥ qθ̂)⟩.

Hence the difference from the BIC of the fitted model qθ̂ with graph G and the new

score is

D1 = 2N × ⟨δV − uG, KL(P̂ ∥ qθ̂)⟩.

Moreover the difference between the fitted model qθ̂ with graph G and the BIC of

the true model pθ̂
′
is:

D2 = −2
∑
xV

N(xV) log q
θ̂(xV) + d2 logN + 2

∑
xV

N(xV) log p
θ̂
′

(xV)− d1 logN

= 2N
∑
xV

P̂ (xV) log
pθ̂

′
(xV)

qθ̂(xV)
+ (d2 − d1) logN

= 2N
∑
xV

P̂ (xV) log

[
P̂ (xV)

qθ̂(xV)

pθ̂
′
(xV)

P̂ (xV)

]
+ (d2 − d1) logN

= 2N ×KL(P̂ ∥ qθ̂)− 2N ×KL(P̂ ∥ pθ̂
′

) + (d2 − d1) logN,
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where d1, d2 denote the dimension of the true model and fitted model, respectively.

To show that the score is consistent, it is sufficient to show that the following

conditions are satisfied:

(i) when D2 = 0, i.e. the fitted model is the true model, D1 = Op(1);

(ii) when D2 > 0, i.e. the fitted model is not the true model, we have D2 − D1

diverges at rate at least Op(logN).

Consider condition (i) when we are fitting the true model. For any subset A ⊆ V ,

the term

2N ×KL(P̂ (XA) ∥ qθ̂(XA))

has χ2 distribution with some degree of freedom. Since δV − uG has fixed number of

terms, D1 = Op(1) on all these as N tends to infinity.

Consider condition (ii), we have:

D2 −D1 = 2N × ⟨uG, KL(P̂ ∥ qθ̂)⟩ − 2N ×KL(P̂ ∥ pθ̂
′

) + (d2 − d1) logN.

The second term 2N×KL(P̂ ∥ pθ̂
′
) has χ2

d1
distribution, so it is Op(1). Moreover,

by Proposition 4.4.2 and given that u =
∑

u⟨A,B|C⟩ is combinatorial, we have:

2N × ⟨uG, KL(P̂ ∥ qθ̂)⟩ = 2N
∑

EP̂C
[I(A;B | C)]

Now we need to split into two cases. The first case is if the fitted model contains

the true model, but has higher dimension and contains more parameters then d2 > d1

so the third term (d2 − d1) logN is at O(logN). For the first term, because the

fitted model contains the true model, it satisfies all the conditional independence

corresponding to the semi-elementary imsets in uG. Treating each 2N×EP̂C
[I(A;B |

C)] as a likelihood ratio test, it has chi-squared distribution, so in total the first two

terms are at Op(1). Thus in this case, D2 −D1 = Op(logN).

For the second case when the fitted model is wrong and does not contain the true

model, given that uG is combinatorial and is perfectly Markovian with respect to the

graph, there exists at least one conditional independence in uG =
∑

u⟨A,B|C⟩ such

that EPC
[I(A;B | C)] = λ > 0. Empirically, when N tends to infinity, EP̂C

[I(A;B |
C)] will be close to λ, and hence the first term in D2 −D1 grows at Op(N). Even

if the third term (d2 − d1) logN is negative, it grows at O(logN), which is slower

than the first term, hence in the second case, D2 −D1 = Op(N).
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4.4.4 Scoring MAGs using the refined Markov property

Given a MAG G, let ur
G denote the imset from the refined Markov property in Hu

and Evans (2022). We propose to use the following score:

Sr
G = −2N⟨δV − ur

G, Ĥ⟩+ d logN,

where Ĥ is the vector of empirical estimates of entropy over every subset of V , d is

the dimension of the model and N is the sample size.

The idea of scoring MAGs with inner product between imsets and empirical

entropy originated from Andrews et al. (2022). They used imsets constructed from

their new Markov property which does not have polynomial bound on number of

independences unlike the refined Markov property.

The BIC of DAGs and MAGs are known to be score-equivalent, that is, Markov

equivalent graphs have the same score. This unfortunately does not hold for Sr
G since

Markov equivalent MAGs may have the different list of conditional independences

in the refined Markov property, which, though, are still equivalent under semi-

graphoids.

For learning algorithms searching in the space of MECs, score-equivalent is not

a necessary property as long as the scores are consistent. Next we show that the

score Sr
G is consistent.

Proposition 4.4.4. The score Sr
G is a consistent score.

Proof. Suppose I(G) ⊆ I(P ) but I(G ′) ̸⊆ I(P ), then there is at least one indepen-

dence I = A ⊥⊥ B | C in the refined Markov property of G ′ that is not satisfied by

P . Then ⟨uI , Ĥ⟩ will converge to the true mutual information c > 0 of I, hence Sr
G′

grows at O(N). On the other hand, N⟨ur
G, Ĥ⟩ grows at O(1) as all the independences

are satisfied, so Sr
G grows at O(logN).

Suppose I(G) ⊆ I(P ) and I(G ′) ⊆ I(P )′. Then both Sr
G and Sr

G′ grow at

O(logN) but since G has less dimension than G ′, S(G) < S(G ′) in the infinite

sample size limit.

In principal, any Markov property can be used to construct an imset for scoring.

The reason to use the refined Markov property is that, Hu and Evans (2022) showed

that if the maximal head size is k, then the imset can be constructed in O(knk(n+e))

time while there is no polynomial bound on computing the global Markov property

or the ordered local Markov property Richardson (2003).

If one assumes additional graphoids, then the pairwise Markov property (Sadeghi

et al., 2014) is shown to be equivalent to the global Markov property and hence can
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be used for scoring. It can be constructed in polynomial time. However, as we will

show by simulation, since the pairwise Markov property requires to condition on

ancestors of non-adjacent pair of nodes, its performance is worse than the refined

Markov property if the ancestral relations are complicated. This is because it would

require to estimate entropy of large set of variables.

Having all the theories being introduced we now are able to describe the full

algorithm to score a MEC represented by an arrow complete PAG.

Suppose we have a n× p data matrix D where Dij is the ith observation of jth

variable. Algorithm SCORE computes the score of P by using the imset from the

refined Markov property.

Input: An arrow complete PAG P , a N × n data matrix D
Result: A score from the refined Markov property

1 Let G = PAG-to-MAG(P);
2 if G is not a MAG then
3 return False
4 end
5 Compute ur

G and dimension d of the model of G;
6 return −2N⟨δ[n]− ur

G, Ĥ⟩+ d logN
Algorithm SCORE:

4.5 Greedy learning algorithm

We describe our MAG learning algorithm here. The Algorithm GESMAG essentially

explores every possible edge to add or delete and score every PAGs returned by

Add-adj, Delete-adj and Turning. If there is a reduction on the score then update

the score and PAG. We only list the adding phase here as the two other phases are

similar.

4.5.1 I-maps given maximal head size

In our package for GESMAG, we also implement a choice for searching with restricted

maximal head size. It has a few practical advantages compared to no such restriction

as we will shown by experiment. But first, let us justify such restriction.

Proposition 4.5.1. Given a MAG G with maximal head size k ≥ 2, then for any

integer k′, where 1 ≤ k′ < k, there exists a MAG G ′ with maximal head size k′ such

that I(G ′) ⊆ I(G).
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Input: A n× p data matrix D
Result: A PAG P

1 Initialize P as an empty graph with n nodes;
2 Score = SCORE(P ,D) and Move = {{i, j} | 1 ≤ i ̸= j ≤ n} ;
3 Update = True;
4 while Update do
5 Update = False;
6 Pprev = P ;
7 for {i, j} ∈ Move do
8 O = Add-adj(Pprev, {i, j});
9 for P ′ ∈ O do

10 Scorenew = SCORE(P ′,D);
11 if Scorenew ̸= False and Scorenew < Score then
12 Score = Scorenew and P = P ′;
13 Update = True;

14 end

15 end

16 end
17 orient tail of P ;
18 end
19 return P

Algorithm GESMAG: Adding phase

Proof. It is sufficient to prove that there exists such a MAG G ′ with maximal head

size k − 1. Consider any head H in G with size k. Let x, y ∈ H and x ̸= y. We

add x→ y to G and let the resulting ADMG be G ′. Then by Proposition 3.6 in Hu

and Evans (2020), which says that the ADMG to MAG projection preserves heads

and tails, it is sufficient to prove that there is no new head in G ′ with size greater

or equal to k and there is a head in G ′ with size k − 1.

Let H ′ := barren(H), since H is in the same district in G clearly H ′ lies in the

same district in G ′. Hence by definition, H ′ is a head and its size is clearly k − 1.

Now suppose there is a new head H ′ in G ′ which has size greater or equal to k and

is not a head in G. Then the reason for this must be that the vertices in H ′ do not

lie in the same district in G. Consider H ′′ := barrenG(anG′(H ′)). By construction,

H ′′ is a head in G and H ′ ⊆ H ′′. If H ′ = H ′′ then H ′ would be a head in G. Hence
H ′ ⊂ H ′′ and H ′′ has size larger than k. This contradicts the assumption.

Our proof is constructive but not for constructing a minimal I-map.

Note that Proposition 4.5.1 essentially generalize the result in Ogarrio et al.

(2016), which shows that the skeleton of output of GES will consistently contain the

skeleton of underlying true MAG in the limit of infinite sample size.
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Hence assuming Meek’s conjecture, we can start to only add adjacency from the

skeleton of output of GES. This would reduce complexity.

We should also point out that although Proposition 4.5.1 ensures that with

restricted head size, in the limit of infinite sample size, the independence model of

the output of GESMAG is contained in the true model, its PAG may contain additional

invariant edge marks that has no causal meaning.

4.5.2 Bounding the complexity

We show here that under some assumption of graph structure, the complexity of

GESMAG can be bounded in polynomial time for sparse graphs in terms of number of

variables, maximal degree, maximal head size and maximal number of discriminating

paths. This is similar to the result in Claassen et al. (2013), which shows that

the constrained-based approach FCI+ is of polynomial time by considering sparse

graphs. We prove similar result for our score-based approach, for which in nature

is more complicated and time consuming than constrained-based algorithms and

therefore require further assumptions.

Proposition 4.5.2. The complexities of the adding and deleting phase of GESMAG

are polynomial, if the following are restricted: maximal degree, maximal head size,

and maximal number of discriminating path.

Proof. It is sufficient to prove that the complexity of adding phase is bounded. In

Algorithm GESMAG. The first and second loop at Line 4 and 7 repeats at most

n(n − 1)/2 times. Because number of maximal degree and maximal number of

discriminating path are bounded, the third loop at Line 9 is bounded. Now if we

fix the maximal head size, Hu and Evans (2022) showed that the imsets from the

refined Markov property can be constructed in polynomial time. Hence scoring at

Line 10 is also polynomial.

We have bounded the complexity of the first two phases of GESMAG. The turning

phase is potentially exponential even if we change orientation of only one unshielded

triple at each time. But in practice, the time spent on turning phase usually does

not exceed one third of the time spent on the first two phases. One can also restrict

the number of iteration in turning phase.

4.6 Experiments

We conduct experiments on simulated data, run GESMAG and make comparison to

GPS (Claassen and Bucur, 2022) (base and hybrid version), GFCI (Ogarrio et al.,
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2016) and the classic FCI (Spirtes et al., 2000). GPS is the only existing purely

scored-based algorithm that searches in the space of MECs. GFCI is a hybrid

learning algorithm that first performs GES and then FCI on the skeleton of GES

output. FCI is a purely constraint-based algorithm. For other score-based algorithm

that explores in the space of MAGs, GPS in Claassen and Bucur (2022) shows

superior performance than them so we do not include them in the experiment section.

4.6.1 Simulate MAGs

For each n ∈ {5, 10, 15, 20} and pd ∈ {0.8, 0.6, 0.4}, we randomly generate 100

ADMGs such that the average degree is 3. For each edge, the probabilities of being

directed is pd and otherwise bidirected. Then we project each ADMG to a Markov

equivalent MAG(Richardson and Spirtes, 2002) and we simulate a linear Gaussian

MAG graphical model such that the coefficients of directed and bidirected edges are

drawn uniformly from ±[0.1, 1].
Most previous score-based algorithms simulated graphs with small districts size

(two or three) (Chen et al., 2021) or low probability of bidirected edges (Claassen

and Bucur, 2022) and hence relatively small maximal head size (around 30, out of

100, MAGs are simple for n = 20, pd = 0.8 ). Part of the reason for this is that BIC

does not perform well when districts are large. We will show by experiments that

the imset score performs better than BIC, and not only when head size is small.

Before we proceed, we’d like to have an empirical study of how pd effects head

size and this will be helpful for the analysis of performance of algorithms later.

4.6.1.1 Different maximal head size

By maximal head size, we mean the size of largest head in a MAG. For each simulated

MAG, we compute its maximal head size, then we use histograms in Figure 4.3 to

illustrate different frequencies of maximal head size under different probabilities of

directed edges and each n ∈ {10, 15, 20} (for n = 5, there is not much difference and

we put in Appendix). This is important as they can partly explain the variation of

performance of algorithms under different probabilities of directed edges.

Clearly, as pd decreases, it is more likely to have larger heads. In particular, the

largest maximal head appear when n = 20 and pd = 0.4, which also most double

the largest maximal head size when n = 20 and pd = 0.6.

As there are many variation of our algorithms, we decide that firstly, we compare

the performance of GESMAG under different turning stages, then we compare GESMAG

to other algorithms with the number of simultaneous turns to consider t being set

to one.
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Figure 4.3: Histograms of maximal head size for n = 10, 15, 20
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4.6.2 Metrics for performance

A common approach to evaluate the performance of structure learning algorithms is

the accuracy of edge marks by comparing the edge marks on the output PAG with

the ground truth PAG. In addition to this, we also include TP (true positive rate),

FP (false positive rate) for each kind of edge in Appendix .1.

Another metric we use is the logarithm (for scale purpose) of difference between

BIC of true model and BIC of estimated model. The lower it is, the closer the

estimated model is to the true model.

4.6.3 Performance of algorithms

Notice that the baseline version of GPS consider new triple with order as non-

collider by default, whereas we explore both options and hence our algorithm should

be compared to hybrid or extended version of GPS. The extended version of GPS

showed similar performance compared to its hybrid version in terms of accuracy and

average BIC, and the computational time is longer than the hybrid version, hence

we omit it in the plot.

Note that ROMP(i,j) stands for scoring by refined (ordinary) Markov property,

searching with restricted head size i and turning phase = j, and anc(j) stands for

scoring by pairwise Markov property (Sadeghi et al., 2014). Also, ROMP(j) stands

for scoring by refined (ordinary) Markov property, searching with unrestricted head

size and turning phase = j.

4.6.3.1 Comparison of GESMAG with different hyper parameters

In Figure 4.4, we plot accuracy of our algorithms with different restricted head

size against number of variables. There are three plots corresponding to each pd ∈
{0.8, 0.6, 0.4}.

Despite of a few fluctuation, there is a tendency for increasing accuracy as number

of variables grows. This is because we fixed the average degree to three, therefore,

as graphs grow, they become sparser and hence easier to determine edge mark

orientations. The performance of ROMP(i,0) for any i is always worse than the

corresponding ROMP(i,1) at costs of more computation time, for which we will

analysis later. Moreover, one can observe that for different pd, the best performance

of ROMP(i,j) is of different restricted head size i. This can be explained by the

following. Suppose the maximal head size of underlying true MAG is i, and if

we search by not restricting head size or restricting to larger head size, then we

explore more MECs and empirically this means that it is more likely to fall into
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Figure 4.4: Accuracy of algorithms that score by using imsets
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local optimum or make false decision at each step. Hence we suggest that if one

has prior knowledge about size of head or district, then restricting search space can

output more robust results.

Similarly, one can observe the above phenomenon for logarithm of difference

between true BIC and BIC of estimated PAG. See Figure 4.5.

Next we plot logarithm of computation time of each variation of GESMAG in Figure

4.6

There are two key observations here. Firstly, scoring by taking imsets from

pairwise Markov property in general are more time consuming, where the computa-

tional cost grows faster than imsets from refined Markov property. The complexity

of computing pairwise Markov property, though, can be bounded in polynomial

time. Secondly, if we do not restrict head size, ROMP(j) spent much longer time

than others apart from when pd = 0.8. This is because we expect much larger head

size when n = 20 and pd = 0.6/0.4 as we have seen in Figure 4.3, and also that the

refined Markov property is computed iteratively, and its computational time goes

exponentially as size of heads grows.

4.6.3.2 Comparison of GESMAG and other algorithms

Now we compare our algorithms to other MAG learning algorithms.

In Figure 4.7 and Figure 4.8, we compare different variation of GESMAG, base-

line/hybrid version of GPS and FCI/GFCI. We have the accuracy plots and the

plots of logarithm of average difference in BIC, respectively.

Clearly, one can see that variations of GESMAG outperforms other algorithms.

Compared to baseline/hybrid GPS, FCI/GFCI show better performance in terms

of edge mark accuracy but much worse performance in terms of BIC. This is not

surprised as the objective of FCI/GFCI is not minimizing BIC but GPS’s objective

is.

For computational time, FCI/GFCI all spend around 1.2 seconds for each data

set regardless of number of variables. This is because of the well designed package

(rcausal in R) that supports the algorithms and the nature of FCI/GFCI (con-

strained based). They explore significantly fewer number of MECs than score-based

approaches. On the other hand, one can clearly see that the time required for hybrid

version of GPS grows much faster than time for GESMAG. While the computational

time of the base version of GPS is close to GESMAG, this baseline version has some

fairly basic flaws in nature. In brief, it sets any new triple with orders to non-collider

by default and does not explore both options and hence easily becomes stuck in the

local optimum.
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Figure 4.5: Log of average difference in BIC of algorithms that score by using imsets
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Figure 4.6: logarithm of computation time of algorithms that score by using imsets
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Figure 4.7: Accuracy of different algorithms
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Figure 4.8: Log of average difference in BIC of different algorithms
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Figure 4.9: logarithm of computational time of different algorithms
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Moreover, as pd decreases, the running time of hybrid version of GPS increases

for fixed number of variables, this suggests that using BIC as score are more easily

to fall into local optimum if district/head size is large. On the other hand, although

GESMAG without restricting head size requires more time if sizes of district or head

grow large, the algorithms still remain high accuracy.

We split our contribution into two parts. The average percentage of time spent

on scoring ranges from around 40% to 60% as head size varies from two to five while

GPS usually spent around 40% − 50% on scoring. As the overall computational

time is improved, we conclude that the revised search strategy improves search

efficiency compared to GPS. This improvement is however not significant and our

main contribution is to propose scoring by imsets from various Markov property, in

particular the refined Markov property clearly shows best performance in terms of

both edge mark accuracy and BIC.

There are still more issues to be sorted so GESMAG can be further accelerated, see

discussion at Chapter 5.
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Chapter 5

Discussion

In this Chapter, we summarize our contribution, then discuss several possible future

work.

5.1 Summary of contribution

In Chapter 2, a new characterization for MECs of MAGs or ADMGs is proposed

based on concept of heads, tails and parametrizing sets, together with efficient poly-

nomial time algorithms to construct such representation. Then by spotting the

similarity between parametrizing sets and characteristic imsets of DAG models, we

propose a formulae for the ‘standard’ imset of MAG models. We explore the for-

mulae in Chapter 3 and provide theoretical proof for when the imsets are valid for

a wide range sub-models of MAG models. Further, based on decomposition of the

‘standard’ imset, we proposed a novel tool called power DAGs that help reducing

the Markov property of MAGs and we show that the new refined Markov property

can be constructed in polynomial time if we restrict maximal head size.

Next, in the Chapter 4, we apply the results in Chapter 3 to propose a new

MAG search algorithm with scoring criteria that is different from BIC. At the same

time, we also present several theoretical results about MAGs whose independence

models contain another (Proposition 4.3.3 and Proposition 4.5.1). The empirical

experiment shows very promising results. In terms of accuracy and BIC, GESMAG

beats both constrained-based and score-based methods. On the other hand, for

complexity, compared to the only other score based method (Claassen and Bucur,

2022) that search in space of MECs, our algorithm’s computational time costs less

and we also provide a polynomial bound on the complexity of algorithms under the

assumption of maximal head size and sparsity of graphs.
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5.2 Future work

We first discuss issues about using the parametrizing set or characterizing imset as

representation of MECs. In this thesis, the result of parametrizing set characteri-

zation of MECs is only used in Chapter 4, where we use it to derive that Markov

equivalent MAGs have the same ‘standard’ imset. In the beginning of development

of GESMAG, we use the parametrizing set as representation of MECs. The problem

is that it is in general difficult to determine what are the possible new sets after

we add a new edge. The unshielded triples are easy to locate but there are many

other possible sets that are non-local in the graph; indeed, the number of possible

combination grows exponentially and we do not have enough theoretical tools to

narrow them down. Moreover, we have to verify if the new parametrizing set actu-

ally corresponds to any MAG. We do not have direct approach to do so. Instead,

we construct PAG based on the new parametrizing set and we check if the repre-

sentative graph of the PAG is actually a MAG. In this way, the computation cost

is certainly more than directly using PAG as representation of MECs. However, if

one finds an efficient way to traverse between MECs that are represented by the

parametrizing set, algorithms could be accelerated by using the parametrizing set

as representation of MECs.

In Chapter 4, we present a method to traverse between MECs represented by

PAGs. We apply orientation rules to construct new PAGs from beginning for every

time we visit a new MEC. This procedure could be improved if one finds a method

that can output the new PAG by directly operating on the previous PAG. This is

in analogue to Chickering (2002), where he presents theorems about necessary and

sufficient conditions for when such a modification is needed.

For DAG models, linear programming techniques have been used for graph learn-

ing algorithms (Jaakkola et al., 2010; Cussens, 2020), the BIC of DAG models can be

expressed as inner product between the standard imsets and empirical entropy (or

characteristic imsets and empirical interaction information), in addition with some

penalty terms for model complexity. For MAG models, we suggest the following to

investigate.

Although we know that the 0/1 characteristic imset or ‘standard’ imset does not

necessarily induce the correct model, we did prove that for simple MAGs, which is a

meaningful generalization of DAG models, these imsets can be used for scoring. The

problem of applying LP approaches for learning simple MAGs is that it is hard to

express the conditions of being simple MAGs into linear constraints. The acyclicity

constraint is the same as DAG models, and Chen et al. (2021) shows how to put

‘ancestral’ into linear constraints. The issue lies on ‘maximal’ and ‘simple’, which

124



are related. If one finds a linear constraint for maximality, then it is easy to check if

the MAG is simple. This is because, in Section 3.3.6, we have discussed that given

the graph is a MAG, a necessary and sufficient condition for being simple is that for

any two siblings of a node, the two siblings must have ancestral relation (Evans and

Richardson, 2013), which is a similar constraint to being ancestral. On the other

hand, it is not necessary to constrain the graph to be a MAG as we have shown

in Chapter 2, any projection from ADMGs to MAGs preserves the heads and tails

structure, so if provided that the maximal head size of an ADMG is two then we

can still use the imset for scoring. However it is then not straightforward to restrict

maximal head size by linear constraints.

We also have the following conjecture. Suppose we have a Lebesgue continuous

prior on the distributions of a true model, and we use the ‘standard’ imset of a

MAG for scoring. If the ‘standard’ imset is structural but not perfectly Markovian

and the distribution is not Markov to the MAG, the probability of giving a zero

inner product is zero. Similarly if the imset is not structural, by Theorem 3.4.18, we

know the inner product is zero if the distribution is Markov to the model, and we

conjecture again that the probability of getting an exact zero inner product is also

zero if the distribution is not Markov to the model. This would be useful because

we can then use the ’standard’ imsets for scoring and it would be a score-equivalent

scoring criteria.

For the refined Markov property, there are two possible directions to dig into. As

we have discussed in Chapter 3, it can be further simplified and we have provided

examples. Secondly, when we use imsets from the refined Markov property for

scoring, we compute the imset from scratch, ignoring the list of independences from

previous MEC. This certainly can be improved if one finds a method to utilize past

information. In the case of the BIC, for example, it can be decomposed into districts.

Therefore, if the district has not changed, as well as the parents of the district, the

local score of this district then would not be changed. This may hold for the refined

Markov property. Consider 1 ↔ 3 ↔ 4 ← 2 ← 1 with numerical ordering. If we

remove 4← 1, the procedure for computing the refined Markov property for 4 would

be changed since previously {1, 3, 4} was a head but not after anymore, the list of

independences, though, remain the same.

Lastly, the power DAG approach to simplify Markov property is intriguing and

one may try to develop similar graphical tools on sets of nodes for other graphical

models.
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Appendices
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Figure 1: Histogram of maximal head size for n=5

.1 Extra plots

Figure 1 is the histogram plot of maximal head size for n = 5.

In addition, we provide extra plots for comparison between variations of GESMAG

and other MAG learning algorithms, in terms of accuracy, true positive rate (TPR)

and false positive rate (FPR) of adjacencies and each kind of edges in PAGs, which

are, directed edge (→), bidirected edge (↔), partially directed edge ( →) and not

directed edge ( − )

Because the accuracy is computed by dividing possible number of edges, which

is large compared to the number of edges that are actually present in graphs, we

suggest that TPR and FPR plots reflect more information.

For plots of adjacencies, GESMAG are better than others. The low TPR value of

FCI and GFCI suggests that the confidence level should be increased. The baseline

and hybrid version of GPS shows poor performance in edge FPR plot, suggesting

that the algorithms add wrong edges more often than others.

For directed or bidirected edges, although FCI and GFCI shows better or close

performance compared to variations of GESMAG in the accuracy plots, GESMAG still

win in terms of TPR. Once again, GPS shows poor performance in terms of FPR,

which means it often gives false directed or bidirected edges. We argue that this

may result from the instability of BIC. When there are more arrows in the PAG, it

is more likely to have large districts. On the opposite of this, GPS performs poorly

in terms of TPR for both partially directed and not directed edges as it tends to

orient triples with orders as colliders. Hence we also believe that it is the reason

for why GPS performs best in terms of FPR of partially directed and not directed

edges.
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In summary, BIC performs poorly in terms of both adjacency and edge orienta-

tion and becomes unstable especially when the sizes of districts are large.
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Figure 2: adjacency accuracy plots
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Figure 3: adjacency TPR plots
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Figure 4: adjacency FPR plots
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Figure 5: directed edge accuracy plots
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Figure 6: directed edge TPR plots
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Figure 7: directed edge FPR plots
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Figure 8: bidirected edge accuracy plots
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Figure 9: bidirected edge TPR plots
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Figure 10: bidirected edge FPR plots
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Figure 11: partially directed edge accuracy plots
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Figure 12: partially directed edge TPR plots
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Figure 13: partially directed edge FPR plots
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Figure 14: not directed edge accuracy plots
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Figure 15: not directed edge TPR plots
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Figure 16: not directed edge FPR plots
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Distributional equivalence and structure learning for bow-free acyclic path dia-

grams. 2017.

Juan Miguel Ogarrio, Peter Spirtes, and Joe Ramsey. A hybrid causal search al-

gorithm for latent variable models. In Proc. 8th Int. Conf. Probabilistic Graph.

Models, pages 368–379. PMLR, 2016.

146



Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal infer-

ence: foundations and learning algorithms. The MIT Press, 2017.

Joe Ramsey, Peter Spirtes, and Jiji Zhang. Adjacency-faithfulness and conserva-

tive causal inference. In Proceedings of the 22nd Conference on Uncertainty in

Artificial Intelligence (UAI-2006). PMLR, 2006.

Kari Rantanen, Antti Hyttinen, and Matti Järvisalo. Maximal ancestral graph

structure learning via exact search. In Proceedings of the 37th Conference on

Uncertainty in Artificial Intelligence (UAI-2021). PMLR, 2021.

Thomas S. Richardson. Markov properties for acyclic directed mixed graphs. Scan-

dinavian Journal of Statistics, 30(1):145–157, 2003.

Thomas S Richardson. A factorization criterion for acyclic directed mixed graphs.

In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence

(UAI-09), 2009.

Thomas S. Richardson and Peter Spirtes. Ancestral graph Markov models. Annals

of Statistics, 30(4):962–1030, 08 2002.

Thomas S. Richardson, Robin J. Evans, James M. Robins, and Ilya Shpitser. Nested

Markov properties for acyclic directed mixed graphs, 2017.

Thomas S. Richardson, Robin J. Evans, James M. Robins, and Ilya Shpitser. Nested

Markov properties for acyclic directed mixed graphs. Ann. Statist., 51(1):334–361,

2023.

Kayvan Sadeghi. Faithfulness of probability distributions and graphs. J. Mach.

Learn. Res., 18(148):1–29, 2017.

Kayvan Sadeghi, Steffen Lauritzen, et al. Markov properties for mixed graphs.

Bernoulli, 20(2):676–696, 2014.

Gideon Schwarz. Estimating the dimension of a model. The annals of statistics,

pages 461–464, 1978.

Ilya Shpitser, Robin J. Evans, and Thomas S. Richardson. Acyclic linear SEMs obey

the nested Markov property. In Proceedings of the 34th Conference on Uncertainty

in Artificial Intelligence (UAI-2018). PMLR, 2018.

147



Peter Spirtes and Thomas S. Richardson. A polynomial time algorithm for deter-

mining DAG equivalence in the presence of latent variables and selection bias,

1997.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causa-

tion, Prediction, and Search. MIT Press, 2000.

Milan Studeny. Conditional independence relations have no finite complete charac-

terization. Inf. Theory Statist. Decis. Funct. Random Process. Trans. 11th Prague

Conf., 1992.
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Marcel Wienöbst, Max Bannach, and Maciej Liskiewicz. A new constructive crite-

rion for markov equivalence of mags. In Proceedings of the 28th Conference on

Uncertainty in Artificial Intelligence (UAI-22), 2022.

Jiji Zhang. A characterization of Markov equivalence classes for directed acyclic

graphs with latent variables. In Proceedings of the Twenty-Third Conference on

Uncertainty in Artificial Intelligence, pages 450–457, 2007a.

Jiji Zhang. A characterization of Markov equivalence classes for directed acyclic

graphs with latent variables. arXiv preprint arXiv:1206.5282, 2007b.

Jiji Zhang and Peter L Spirtes. A transformational characterization of Markov

equivalence for directed acyclic graphs with latent variables. arXiv preprint

arXiv:1207.1419, 2005.

148



Kun Zhang and Aapo Hyvarinen. On the identifiability of the post-nonlinear causal

model. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelli-

gence (UAI-2009). PMLR, 2009.

Hui Zhao, Zhongguo Zheng, and Baijun Liu. On the Markov equivalence of maximal

ancestral graphs. Science in China Series A: Mathematics, 48(4):548–562, Apr

2005.

149


