15 research outputs found

    An experimental study on latency-aware and self-adaptive service chaining orchestration in distributed NFV and SDN infrastructures

    Get PDF
    Network Function Virtualization (NFV) and Software Defined Networking (SDN) changed radically the way 5G networks will be deployed and services will be delivered to vertical applications (i.e., through dynamic chaining of virtualized functions deployed in distributed clouds to best address latency requirements). In this work, we present a service chaining orchestration system, namely LASH-5G, running on top of an experimental set-up that reproduces a typical 5G network deployment with virtualized functions in geographically distributed edge clouds. LASH-5G is built upon a joint integration effort among different orchestration solutions and cloud deployments and aims at providing latency-aware, adaptive and reliable service chaining orchestration across clouds and network resource domains interconnected through SDN. In this paper, we provide details on how this orchestration system has been deployed and it is operated on top of the experimentation infrastructure provided within the Fed4FIRE+ facility and we present performance results assessing the effectiveness of the proposed orchestration approach

    Automated service provisioning in programmable network infrastructures

    Get PDF
    Modern networks are undergoing a fast and drastic evolution, with software taking a more predominant role. Virtualization and cloud-like approaches are replacing physical network appliances, reducing the management burden of the operators. Furthermore, networks now expose programmable interfaces for fast and dynamic control over traffic forwarding. This evolution is backed by standard organizations such as ETSI, 3GPP, and IETF. This thesis will describe which are the main trends in this evolution. Then, it will present solutions developed during the three years of Ph.D. to exploit the capabilities these new technologies offer and to study their possible limitations to push further the state-of-the-art. Namely, it will deal with programmable network infrastructure, introducing the concept of Service Function Chaining (SFC) and presenting two possible solutions, one with Openstack and OpenFlow and the other using Segment Routing and IPv6. Then, it will continue with network service provisioning, presenting concepts from Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC). These concepts will be applied to network slicing for mission-critical communications and Industrial IoT (IIoT). Finally, it will deal with network abstraction, with a focus on Intent Based Networking (IBN). To summarize, the thesis will include solutions for data plane programming with evaluation on well-known platforms, performance metrics on virtual resource allocations, novel practical application of network slicing on mission-critical communications, an architectural proposal and its implementation for edge technologies in Industrial IoT scenarios, and a formal definition of intent using a category theory approach

    Flow Monitoring Explained: From Packet Capture to Data Analysis With NetFlow and IPFIX

    Get PDF
    Flow monitoring has become a prevalent method for monitoring traffic in high-speed networks. By focusing on the analysis of flows, rather than individual packets, it is often said to be more scalable than traditional packet-based traffic analysis. Flow monitoring embraces the complete chain of packet observation, flow export using protocols such as NetFlow and IPFIX, data collection, and data analysis. In contrast to what is often assumed, all stages of flow monitoring are closely intertwined. Each of these stages therefore has to be thoroughly understood, before being able to perform sound flow measurements. Otherwise, flow data artifacts and data loss can be the consequence, potentially without being observed. This paper is the first of its kind to provide an integrated tutorial on all stages of a flow monitoring setup. As shown throughout this paper, flow monitoring has evolved from the early 1990s into a powerful tool, and additional functionality will certainly be added in the future. We show, for example, how the previously opposing approaches of deep packet inspection and flow monitoring have been united into novel monitoring approaches

    An intent-based blockchain-agnostic interaction environment

    Full text link

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design

    A Survey on Information Visualization for Network and Service Management

    Get PDF
    Network and service management encompasses a set of activities, methods, procedures, and tools whose ultimate goal is to guarantee the proper functioning of a networked system. Computational tools are essential to help network administrators in their daily tasks, and information visualization techniques are of great value in such context. In essence, information visualization techniques associated to visual analytics aim at facilitating the tasks of network administrators in the process of monitoring and maintaining the network health. This paper surveys the use of information visualization techniques as a tool to support the network and service management process. Through a Systematic Literature Review (SLR), we provide a historical overview and discuss the current state of the art in the field. We present a classification of 285 articles and papers from 1985 to 2013, according to an information visualization taxonomy as well as a network and service management taxonomy. Finally, we point out future research directions and opportunities regarding the use of information visualization in network and service management

    Progressive introduction of network softwarization in operational telecom networks: advances at architectural, service and transport levels

    Get PDF
    Technological paradigms such as Software Defined Networking, Network Function Virtualization and Network Slicing are altogether offering new ways of providing services. This process is widely known as Network Softwarization, where traditional operational networks adopt capabilities and mechanisms inherit form the computing world, such as programmability, virtualization and multi-tenancy. This adoption brings a number of challenges, both from the technological and operational perspectives. On the other hand, they provide an unprecedented flexibility opening opportunities to developing new services and new ways of exploiting and consuming telecom networks. This Thesis first overviews the implications of the progressive introduction of network softwarization in operational networks for later on detail some advances at different levels, namely architectural, service and transport levels. It is done through specific exemplary use cases and evolution scenarios, with the goal of illustrating both new possibilities and existing gaps for the ongoing transition towards an advanced future mode of operation. This is performed from the perspective of a telecom operator, paying special attention on how to integrate all these paradigms into operational networks for assisting on their evolution targeting new, more sophisticated service demands.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Eduardo Juan Jacob Taquet.- Secretario: Francisco Valera Pintor.- Vocal: Jorge López Vizcaín

    Efficient security management for active networks.

    Get PDF
    Due to the dynamic nature and dynamic routing capability of active packets, security in active networks should be hop-by-hop based. This thesis discusses the identified drawbacks of existing approaches. These drawbacks are: the high performance overhead generated by per-hop Security Association (SA) negotiation prior to secured active packet transmission the high complexity in SA negotiation handshake process active packet can only be securely transmitted after SA negotiations the shared key set generated for protecting active packets may not have Perfect Forward Secrecy (PFS) lack of confidentiality protection on exchanged symmetric keys and active packets lack of SA negotiation power and scalability issues. This thesis presents a novel hop-by-hop active network security management approach known as Security Protocol for Active Networks (SPAN). SPAN is designed to enable secure active packet transmission during a series of hop-by-hop SPAN SA negotiation along a new execution path, instead of after. The design of SPAN has taken into consideration the factors of security, efficiency, flexibility, scalability, and applicability. SPAN is resistant to replay, man-in-the-middle, impersonate attacks. SPAN is designed to detect DoS attacks much more efficiently. Furthermore, SPAN is uniquely designed to enhance the robustness and efficiency of underlying active networking systems
    corecore