2 research outputs found

    A Biomimetic Approach to Controlling Restorative Robotics

    Get PDF
    Movement is the only way a person can interact with the world around them. When trauma to the neuromuscular systems disrupts the control of movement, quality of life suffers. To restore limb functionality, active robotic interventions and/or rehabilitation are required. Unfortunately, the primary obstacle in a person’s recovery is the limited robustness of the human-machine interfaces. Current systems rely on control approaches that rely on the person to learn how the system works instead of the system being more intuitive and working with the person naturally. My research goal is to design intuitive control mechanisms based on biological processes termed the biomimetic approach. I have applied this control scheme to problems with restorative robotics focused on the upper and lower limb control. Operating an advanced active prosthetic hand is a two-pronged problem of actuating a high-dimensional mechanism and controlling it with an intuitive interface. Our approach attempts to solve these problems by going from muscle activity, electromyography (EMG), to limb kinematics calculated through dynamic simulation of a musculoskeletal model. This control is more intuitive to the user because they attempt to move their hand naturally, and the prosthetic hand performs that movement. The key to this approach was validating simulated muscle paths using both experimental measurements and anatomical constraints where data is missing. After the validation, simulated muscle paths and forces are used to decipher the intended movement. After we have calculated the intended movement, we can move a prosthetic hand to match. This approach required minimal training to give an amputee the ability to control prosthetic hand movements, such as grasping. A more intuitive controller has the potential to improve how people interact and use their prosthetic hands. Similarly, the rehabilitation of the locomotor system in people with damaged motor pathways or missing limbs require appropriate interventions. The problem of decoding human motor intent in a treadmill walking task can be solved with a biomimetic approach. Estimated limb speed is essential for this approach according to the theoretical input-output computation performed by spinal central pattern generators (CPGs), which represents neural circuitry responsible for autonomous control of stepping. The system used the locomotor phases, swing and stance, to estimate leg speeds and enable self-paced walking as well as steering in virtual reality with congruent visual flow. The unique advantage of this system over the previous state-of-art is the independent leg speed control, which is required for multidirectional movement in VR. This system has the potential to contribute to VR gait rehab techniques. Creating biologically-inspired controllers has the potential to improve restorative robotics and allow people a better opportunity to recover lost functionality post-injury. Movement is the only way a person can interact with the world around them. When trauma to the neuromuscular systems disrupts the control of movement, quality of life suffers. To restore limb functionality, active robotic interventions and/or rehabilitation are required. Unfortunately, the primary obstacle in a person’s recovery is the limited robustness of the human-machine interfaces. Current systems rely on control approaches that rely on the person to learn how the system works instead of the system being more intuitive and working with the person naturally. My research goal is to design intuitive control mechanisms based on biological processes termed the biomimetic approach. I have applied this control scheme to problems with restorative robotics focused on the upper and lower limb control.Operating an advanced active prosthetic hand is a two-pronged problem of actuating a high-dimensional mechanism and controlling it with an intuitive interface. Our approach attempts to solve these problems by going from muscle activity, electromyography (EMG), to limb kinematics calculated through dynamic simulation of a musculoskeletal model. This control is more intuitive to the user because they attempt to move their hand naturally, and the prosthetic hand performs that movement. The key to this approach was validating simulated muscle paths using both experimental measurements and anatomical constraints where data is missing. After the validation, simulated muscle paths and forces are used to decipher the intended movement. After we have calculated the intended movement, we can move a prosthetic hand to match. This approach required minimal training to give an amputee the ability to control prosthetic hand movements, such as grasping. A more intuitive controller has the potential to improve how people interact and use their prosthetic hands.Similarly, the rehabilitation of the locomotor system in people with damaged motor pathways or missing limbs require appropriate interventions. The problem of decoding human motor intent in a treadmill walking task can be solved with a biomimetic approach. Estimated limb speed is essential for this approach according to the theoretical input-output computation performed by spinal central pattern generators (CPGs), which represents neural circuitry responsible for autonomous control of stepping. The system used the locomotor phases, swing and stance, to estimate leg speeds and enable self-paced walking as well as steering in virtual reality with congruent visual flow. The unique advantage of this system over the previous state-of-art is the independent leg speed control, which is required for multidirectional movement in VR. This system has the potential to contribute to VR gait rehab techniques.Creating biologically-inspired controllers has the potential to improve restorative robotics and allow people a better opportunity to recover lost functionality post-injury

    Métodos de classificação confiável e resiliente de movimentos de membros superiores baseado em extreme learning machines e sinais de eletromiografia de superfície

    Get PDF
    Apesar de avanços recentes, a classificação confiável de sinais de eletromiografia de superfície (sEMG) permanece uma tarefa árdua sob a perspectiva de Aprendizagem de Máquina. Sinais de sEMG possuem uma sobreposição de classes inerente à sua natureza, o que impede a separação perfeita das amostras e produz ruídos de classificação. Alternativas ao problema geralmente baseiam-se na filtragem do sEMG ou métodos de pós-processamento como o Major-Voting, soluções estas que necessariamente geram atrasos na classificação do sinal e frequentemente não geram melhoras substanciais. A abordagem deste trabalho baseia-se no desenvolvimento de métodos confiáveis e resilientes sob a perspectiva de classificação que gerem saídas mais estáveis e consistentes para o classificador baseado em Extreme Learning Machines (ELM) utilizado. Para tanto, métodos envolvendo o pré-processamento e pós-processamento, a suavização do arg max do classificador, thresholds adaptativos e um classificador binário auxiliar foram utilizados. Os sinais classificados derivam de 12 canais de sEMG envolvendo três bases de dados diferentes onde 99 ensaios compostos pela execução de 17 movimentos distintos do segmento mão-braço foram realizados. Nos melhores resultados, os métodos utilizados atingiram taxas de acerto médio global de 66,99 ± 23,6% para a base de voluntários amputados, 87,10 ± 5,89% para a base de voluntários não-amputados e taxas superiores a 99% para todas as variações de diferentes ensaios que compõe a base de dados adquirida em laboratório. Já para a taxa de acerto média ponderada por classes, nos melhores resultados foram de 53,36 ± 18,2% para a base de voluntários amputados, 77,94 ± 6,22% para a base de voluntários não-amputados e taxas superiores a 91% para os ensaios da base de dados adquirida em laboratório. Ambas as métricas de taxa de acerto consideradas superam ou equivalem-se a alternativas descritas na literatura, utilizando abordagens que não demandam grandes mudanças estruturais no classificador.Despite recent advances, reliable classification of surface electromyography (sEMG) signals remains an arduous task from the perspective of Machine Learning. sEMG signals have inherent class overlaps that prevent optimal labeling due to classification noises. Alternatives to classification ripples usually rely on stochastic sEMG filtering or post-processing methods, like Major-Voting, both solutions that insert constraints and additional delays in signal classification and often do not generate substantial improvements. The approach of this paper focuses on the development of reliable and resilient methods used in combination with an Extreme Learning Machines (ELM) classifier to generate more stable and consistent outputs. Methods of pre-processing and post-processing, a smoothed arg max version of the ELM, adaptive thresholds, and an auxiliary binary classifier were used to process signals derived from 12 EMG channels from three different databases. In total, 99 trials were performed, each one containing 17 different upper-limb movements. The proposed methods reached an average overall accuracy rate of 66.99 ± 23.6% for the amputee individuals’ database, 87.10 ± 5.89% for the non-amputee individuals’ database, and rates over 99% for all variations of our own lab-generated database. The average weighted accuracy rates were 53.36 ± 18.2% for the amputee individuals’ database, 77.94 ± 6.22% for the base of the non-amputee individuals’ database, and higher than 91% for the best-case scenario of our own lab-generated database. In both metrics considered, the results outperform, or match alternatives described in the literature using approaches that do not require significant changes in the classifier's architecture
    corecore