110,612 research outputs found

    Engineering a QoS Provider Mechanism for Edge Computing with Deep Reinforcement Learning

    Full text link
    With the development of new system solutions that integrate traditional cloud computing with the edge/fog computing paradigm, dynamic optimization of service execution has become a challenge due to the edge computing resources being more distributed and dynamic. How to optimize the execution to provide Quality of Service (QoS) in edge computing depends on both the system architecture and the resource allocation algorithms in place. We design and develop a QoS provider mechanism, as an integral component of a fog-to-cloud system, to work in dynamic scenarios by using deep reinforcement learning. We choose reinforcement learning since it is particularly well suited for solving problems in dynamic and adaptive environments where the decision process needs to be frequently updated. We specifically use a Deep Q-learning algorithm that optimizes QoS by identifying and blocking devices that potentially cause service disruption due to dynamicity. We compare the reinforcement learning based solution with state-of-the-art heuristics that use telemetry data, and analyze pros and cons

    Adaptive Group-based Signal Control by Reinforcement Learning

    Get PDF
    AbstractGroup-based signal control is one of the most prevalent control schemes in the European countries. The major advantage of group-based control is its capability in providing flexible phase structures. The current group-based control systems are usually implemented with rather simple timing logics, e.g. vehicle actuated logic. However, such a timing logic is not sufficient to respond to the traffic environment whose inputs, i.e. traffic demands, dynamically change over time. Therefore, the primary objective of this paper is to formulate the existing group-based signal controller as a multi-agent system. The proposed signal control system is capable of making intelligent timing decisions by utilizing machine learning techniques. In this regard, reinforcement learning is a potential solution because of its self-learning properties in a dynamic environment. This paper, thus, proposes an adaptive signal control system, enabled by a reinforcement learning algorithm, in the context of group-based phasing technique. Two different learning algorithms, Q-learning and SARSA, have been investigated and tested on a four-legged intersection. The experiments are carried out by means of an open-source traffic simulation tool, SUMO. Performances on traffic mobility of the adaptive group- based signal control systems are compared against those of a well-established group-based fixed time control system. In the testbed experiments, simulation results reveal that the learning-based adaptive signal controller outperforms group-based fixed time signal controller with regards to the improvements in traffic mobility efficiency. In addition, SARSA learning is a more suitable implementation for the proposed adaptive group-based signal control system compared to the Q-learning approach

    REinforcement learning based Adaptive samPling: REAPing Rewards by Exploring Protein Conformational Landscapes

    Full text link
    One of the key limitations of Molecular Dynamics simulations is the computational intractability of sampling protein conformational landscapes associated with either large system size or long timescales. To overcome this bottleneck, we present the REinforcement learning based Adaptive samPling (REAP) algorithm that aims to efficiently sample conformational space by learning the relative importance of each reaction coordinate as it samples the landscape. To achieve this, the algorithm uses concepts from the field of reinforcement learning, a subset of machine learning, which rewards sampling along important degrees of freedom and disregards others that do not facilitate exploration or exploitation. We demonstrate the effectiveness of REAP by comparing the sampling to long continuous MD simulations and least-counts adaptive sampling on two model landscapes (L-shaped and circular), and realistic systems such as alanine dipeptide and Src kinase. In all four systems, the REAP algorithm consistently demonstrates its ability to explore conformational space faster than the other two methods when comparing the expected values of the landscape discovered for a given amount of time. The key advantage of REAP is on-the-fly estimation of the importance of collective variables, which makes it particularly useful for systems with limited structural information

    Adaptive PD Control using Deep Reinforcement Learning for Local-Remote Teleoperation with Stochastic Time Delays

    Full text link
    Local-remote systems allow robots to execute complex tasks in hazardous environments such as space and nuclear power stations. However, establishing accurate positional mapping between local and remote devices can be difficult due to time delays that can compromise system performance and stability. Enhancing the synchronicity and stability of local-remote systems is vital for enabling robots to interact with environments at greater distances and under highly challenging network conditions, including time delays. We introduce an adaptive control method employing reinforcement learning to tackle the time-delayed control problem. By adjusting controller parameters in real-time, this adaptive controller compensates for stochastic delays and improves synchronicity between local and remote robotic manipulators. To improve the adaptive PD controller's performance, we devise a model-based reinforcement learning approach that effectively incorporates multi-step delays into the learning framework. Utilizing this proposed technique, the local-remote system's performance is stabilized for stochastic communication time-delays of up to 290ms. Our results demonstrate that the suggested model-based reinforcement learning method surpasses the Soft-Actor Critic and augmented state Soft-Actor Critic techniques. Access the code at: https://github.com/CAV-Research-Lab/Predictive-Model-Delay-CorrectionComment: 7 pages + 1 references, 4 figure

    Fault Tolerant Deep Reinforcement Learning for Aerospace Applications

    Get PDF
    With the growing use of Unmanned Aerial Systems, a new need has risen for intelligent algorithms that not only stabilize or control the system, but rather would also include various factors such as optimality, robustness, adaptability, tracking, decision making, and many more. In this thesis, a deep-learning-based control system is designed with fault-tolerant and disturbance rejection capabilities and applied to a high-order nonlinear dynamic system. The approach uses a Reinforcement Learning architecture that combines concepts from optimal control, robust control, and game theory to create an optimally adaptive control for disturbance rejection. Additionally, a cascaded Observer-based Kalman Filter is formulated for estimating adverse inputs to the system. Numerical simulations are presented using different nonlinear model dynamics and scenarios. The Deep Reinforcement Learning and Observer architecture is demonstrated to be a promising control system alternative for fault tolerant applications

    Reinforcement learning based adaptive control method for traffic lights in intelligent transportation

    Get PDF
    Addressing the requirements and challenges of traffic light control, a reinforcement learning based adaptive optimal control model for traffic lights in intelligent transportation systems is proposed. In the model design, we combined Markov decision process, Q-learning algorithm, and Deep Q-Learning Network (DQN) control theory to establish a comprehensive signal light Adaptive Optimal Control of Signal Lights in Intelligent Transportation Systems (AOCITL) control model. Through simulation experiments on the model and the application of actual road scene data, we have verified the superiority of the model in improving traffic system efficiency and reducing traffic pressure. The experimental results show that compared with traditional fixed cycle signal light control, the adaptive optimal control model based on reinforcement learning can significantly improve the traffic efficiency of roads, reduce the incidence of traffic accidents, and enhance the overall operational effectiveness of urban transportation systems. The proposed method is possible to further optimize the model algorithm, expand its application scope, and promote the development and practical application of intelligent transportation systems
    • …
    corecore