4 research outputs found

    Adaptive Approach in Handling Human Inactivity in Computer Power Management

    Get PDF
    Human inactivity is handled by adapting the behavioral changes of the users. Human inactivity refers to as unpredictable workload of a complex system that is caused by increments of amount in power consumption and it can be handled automatically without the need to set a fixed time for changing the computer state. This is happens due to lack of knowledge in a software system and the software self-adaptation is one approach in dealing with this source of uncertainty. This paper observes human inactivity and Power management policy through the application of reinforcement learning approach in the computer usage and finds that computer power usage can be reduced if the idle period can be intelligently sensed from the user activities. This study introduces Control, Learn and Knowledge model that adapts the Monitor, Analyze, Planning, Execute control loop integrates with Q Learning algorithm to learn human inactivity period to minimize the computer power consumption. An experiment to evaluate this model was conducted using three case studies with same activities. The result show that the proposed model obtained those 5 out of 12 activities shows the power decreasing compared to other

    Adaptive approach in handling human inactivity in computer power management

    Get PDF
    Human inactivity is handled by adapting the behavioral changes of the users.Human inactivity refers to as unpredictable workload of a complex system that is caused by increments of amount in power consumption and it can be handled automatically without the need to set a fixed time for changing the computer state.This is happens due to lack of knowledge in a software system and the software self-adaptation is one approach in dealing with this source of uncertainty. This paper observes human inactivity and Power management policy through the application of reinforcement learning approach in the computer usage and finds that computer power usage can be reduced if the idle period can be intelligently sensed from the user activities. This study introduces Control, Learn and Knowledge model that adapts the Monitor, Analyze, Planning, Execute control loop integrates with Q Learning algorithm to learn human inactivity period to minimize the computer power consumption.An experiment to evaluate this model was conducted using three case studies with same activities. The result show that the proposed model obtained those 5 out of 12 activities shows the power decreasing compared to other

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper
    corecore