4 research outputs found

    Applying reinforcement learning in playing Robosoccer using the AIBO

    Get PDF
    "Robosoccer is a popular test bed for AI programs around the world in which AIBO entertainments robots take part in the middle sized soccer event. These robots need a variety of skills to perform in a semi-real environment like this. The three key challenges are manoeuvrability, image recognition and decision making skills. This research is focussed on the decision making skills ... The work focuses on whether reinforcement learning as a form of semi supervised learning can effectively contribute to the goal keeper's decision making when a shot is taken." -Master of Computing (by research

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    A Framework for Learning by Demonstration in Multi-teacher Multi-robot Scenarios

    No full text
    As robots become more accessible to humans, more intuitive and human-friendly ways of programming them with interactive and group-aware behaviours are needed. This thesis addresses the gap between Learning by Demonstration and Multi-robot systems. In particular, this thesis tackles the fundamental problem of learning multi-robot cooperative behaviour from concurrent multi-teacher demonstrations, problem which had not been addressed prior to this work. The core contribution of this thesis is the design and implementation of a novel, multi- layered framework for multi-robot learning from simultaneous demonstrations, capable of deriving control policies at two different levels of abstraction. The lower level learns models of joint-actions at trajectory level, adapting such models to new scenarios via feature mapping. The higher level extracts the structure of cooperative tasks at symbolic level, generating a sequence of robot actions composing multi-robot plans. To the best of the author's knowledge, the proposed framework is the first Learning by Demonstration system to enable multiple human demonstrators to simultaneously teach group behaviour to multiple robots learners. A series of experimental tests were conducted using real robots in a real human workspace environment. The results obtained from a comprehensive comparison confirm the appli- cability of the joint-action model adaptation method utilised. What is more, the results of several trials provide evidence that the proposed framework effectively extracts rea- sonable multi-robot plans from demonstrations. In addition, a case study of the impact of human communication when using the proposed framework was conducted, suggesting no evidence that communication affects the time to completion of a task, but may have a positive effect on the extraction multi-robot plans. Furthermore, a multifaceted user study was conducted to analyse the aspects of user workload and focus of attention, as well as to evaluate the usability of the teleoperation system, highlighting which parts were necessary to be improved
    corecore