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Abstract 

Robosoccer is a popular test bed for Al programs around the world in which AIBO enter­

tainment robots take part in the middle sized soccer event. These robots need a variety 

of skills to perform in a semi-real environment like this. The three key challenges are 

manoeuvrability, image recognition and decision making skills. This research is focused 

on the decision making skills. This thesis considers one particular problem in decision 

making in robosoccer - The goal keeper problem. The work focuses on whether reinforce­

ment learning as a form of semi supervised learning can effectively contribute to the goal 

keeper's decision making when a shot is taken. 

The problem could be addressed in two ways: by using a hand-coded solution to the 

problem or by using a learning algorithm to learn the action to be taken. The hand coding 

technique is a set of input output pairs provided by the programmer. O n the other hand, 

a learning process can start with zero knowledge and will gradually learn to accomplish a 

task without human interference. A specific Reinforcement Learning scheme (Q-learning) 

is used in this thesis to address the goalkeeping problem. 

An agent decomposes a complex situation into basic parts and using Q-learning it 

tries to take a series of optimized actions to accomplish a task and finally learns how to 

reach the goal. In this work the goalkeeper was trained using multiple shots taken from 

different positions by an attacker. W e applied the skill achieved against one attacker, in 

other situations where two attackers were used. There One attacker passes the ball to 

another and the second attacker shoots the moving ball towards the goal. 

The Q-learning based results were compared with a base-line strategy using hand coded 

goalkeeping actions contained in the University of Pennsylvania 2003 Robosoccer code [1]. 

It was found that the Q-learning based technique was as good as the hand-coded technique 
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in both cases. In fact the goalkeeper basically develops skills to follow the ball irrespective 

of the attacker's position. 

The results indicate that Q-learning was able to help the robot learn goalkeeping suc­

cessfully without human interference. This suggests that a similar learning algorithm can 

be used to develop successful decision making strategies for performing other tasks in 

robosoccer. Q-learning uses a state x action table to record the training data and this 

forms a database of experience for the agent's use. The size of this table is determined 

by the number of states and actions required to accomplish the particular task. Future 

work would involve reducing the size of the state x action table using different methods 

and approximation techniques. 
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Chapter 1 

Introduction 

1.1 Robots and Artificial Intelligence 

Humans have always dreamed of intelligent machines as a replacement for human being 

in different kinds of dangerous tasks and day to day activities. Science fiction writers have 

used their imaginations to paint robot characters in their stories for centuries. Mary Shelly 

came up with the idea of a biological machine in her famous novel, Frankenstein [4]. It was 

a partially mindless creature similar to a human. Later on Karel described a story of world 

domination by similar creatures in his play Rossum's Universal Robots [5]. Actually, he 

wrote about intelligent robot, those w h o were working for people. For the last few decades 

wide and extensive research has been conducted to create artificially intelligent machines. 

However, the level of Al 1 Karel described, is still out of reach. In contrast to the science 

fiction writers, scientists also have contributed to robotics in different centuries. 

Once, Leonardo da Vinci, produced some designs of a mechanical knight, capable of 

waving hands, jaws and other body parts [6]. However, this mechanical knight had to be 

operated by a human. It was a fantasy for scientists to create machines for simple tasks 

requiring precision, before the invention of electronics. Even the basics of Al were also out 

of reach without the help of transistors and Integrated Circuits (ICs). Once these devices 

started to introduce complete new faces of technology, people explicitly started to work 

on the idea of analogue computers. However, these devices were not sufficient to process 

Artificial Intelligence 
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1.2. Robocup 

millions of#bits of information in a short span of time, which is a key to the development 

of an intelligent machine. 

Broadly, the process of creating a true artificially intelligent machine could be divided 

into two main categories. They can be addressed using hardware and software both 

techniques. The hardware solves physical functions such as movement, maneuverability, 

environmental interactions and data processing power. However, the software which con­

trols hardware, starts working under the limitations of hardware. The extent of hardware 

is limited within a physical boundary. However, the scope of software development is 

indefinite in order to make a robot more intelligent. 

By the middle of twentieth century, scientists first started to build stand alone robots of 

different shapes and sizes. Furthermore, the concept of multi-agent operations were taken 

into consideration. This idea needed both stand alone capabilities for a robot and team 

management skills to perform a task effectively. In order to standardize and compare the 

concerned research outcomes based on single and multi-agent strategies from all over the 

world, the Robocup competition was suggested as a tool in 1995 [7]. The ultimate goal of 

Robocup is to create a group of autonomous robots effective as stand alone player and a 

team worker too. An autonomous machine (namely robot) can be used as a replacement 

of human workers in the long run. 

1.2 Robocup 

Robocup is a globally accepted event where Al programs are being tested in the form 

of friendly events such as soccer, rescue league and so on. Robosoccer is a part of the 

Robocup competition. Robosoccer is a world wide event which was founded in 1997 and 

it is used as a test bed for research in robotics. At the beginning, Robosoccer was played 

by wheeled robots with cameras fitted on top. It was conducted as a part of Robocup. 

Later on, the legged robot was introduced there as well. Rescue League was introduced 

in the Robocup along with Robosoccer to focus a part of the robotics research on search 

and rescue purposes. Furthermore different kinds of simulation events were introduced as 

well. The ultimate goal of Robocup is set to build a group of humanoids by 2050 which 

can defeat the human world cup champion team [8]. 
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1.2. Robocup 

Along w|£h that, Robocup has several other impacts on society. First of all, it serves 

as a test bed for robotics and the Al society all over the world. It has different events 

to accommodate almost all kinds of existing robots (except very small sized robots). In 

this way different robots are being tested from different points of view. As an example, 

a stand alone humanoid goalkeeper in robosoccer is tested against a robot opponent 

or a non-professional human soccer player too. The idea behind choosing soccer as a 

major competition event of research is to incorporate both stand alone and multi-agent 

skills in a robot team while playing a friendly game. The point to be noted here is, if 

a program could serve as an efficient Al process in the soccer environments, then many 

real life issues with multi-agent environment, could be resolved using this program. As 

an example, inaccessible and dangerous areas could be managed by a group of robots 

with or without minimum human supervision. This application would definitely be a cost 

effective and risk-free solution from different perspectives. Apart from that, a lot of 

general community services could benefit from a team of skilled and intelligent nonhuman 

workers. A dedicated friend and teacher will be available for children. Aged and disabled 

persons will have a companion as well as a helper in their day to day activities. Industries 

can use the relevant technologies as a permanent solution for a cheap and infinite source 

of skilled labor. The multi agent strategy could be used in some other aspects as well. 

An efficient traffic system or an intelligent war strategy decision making program could 

be developed too. 

Robocup not only focuses on soccer related issues as a primary form of competition, it 

also runs another event called the Rescue League parallel to soccer events. This activity 

involves the task of searching for and locating signs of life in an artificial disaster site. 

Some simulator events are also being conducted in Robocup for both soccer and Rescue 

League. Both 2 D and 3 D simulation are used for the purpose. Programmers can focus on 

the Al problems using a simulator leaving the maneuverabilities and pattern recognition 

problem apart. However, some 3 dimensional simulators are almost similar to a real life 

gaming environment and put the virtual agents to test. 
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1.3. Wheeled and Legged robots: T w o different kinds of mobility mechanism 

used in Robocup 

1.3 Wheeled and Legged robots: Two different kinds 

of mobility mechanism used in Robocup 

Although both wheeled and legged robots take part in Robocup, the latter is more suitable 

for the Rescue League. This is due to the uneven nature of surfaces in a disaster site 

and debris scattered all over the area. Again, in an unknown place, such as a Martian 

surface, one can least expect a smooth and even surface for wheeled robots. So, it might 

be said here that the future belongs to legged robots and not wheeled robots. Already, 

small and full sized humanoids are being developed by some companies. These robots are 

not fully capable of doing human like maneuvers yet, but the progress is still admirable 

enough. The QRIO [9] can run and jump. The A S I M O [10] can serve food, detect human 

faces, open up a combination lock, climb stair cases and so on [9]. Some of these abilities 

such as running, jumping and other slow but precise movements are highly recommended 

for robosoccer and rescue league. These qualities can transform a robot into a perfect 

opponent against a human soccer player. W e have chosen a quadrupedal dog shaped 

robot, AIBO [11] by Sony, for use in this thesis. It is equipped with a small computer and 

different sensors. In terms of cost it is one of the most viable choice for researchers, too. 

The Figure 2.2 displays a complete picture of AIBO. 

1.4 The AIBO and Robosoccer 

Robosoccer is a part of robocup, found in 1997. Different types of legged robots that 

could take part in Robosoccer, are commercially available for research purposes now. 

These are QRIO [9], A S I M O [10], AIBO [11], A C T R O I D [12] and so on. The AIBO [ll]is 

a quadruped robot made by Sony. The last released model, ERS-7 has a natural dog like 

structure. The touch sensors on the back, at the chin and on the head add more realistic 

features into it. Additionally its processing quality is impressive too. Other bi-pedal 

robots like QRIO and A S I M O are too expensive and only a few organizations have been 

able to afford those machines due to their high prices. In contrast with that the AIBO 

was initially meant for entertainment purposes. So, the relatively cheap price made it a 
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1.5. Software aspects in Robosoccer and in the A I B O 

good choice^for researchers throughout the world. In 1998 a new sub event was started in 

the Robosoccer section, namely four-legged robot(middle size) league. Only Sony AIBO 

robot teams compete in this section from then on. A comprehensive study on Robosoccer 

is available in Chapter 2. 

1.5 Software aspects in Robosoccer and in the AIBO 

Previously, people had limited choice over hardware to play robosoccer. However, a num­

ber of different models are available now for this purpose. Some of them are equipped 

with a high degree of data processing power. As a result a number of software appli­

cation possibilities have been released over time. Sony released a Linux based Software 

Development Kit (SDK) for the AIBO, at the beginning. Programmers had no choice but 

using to use that S D K at that time. However, later on a few wrappers were designed to 

make other languages able to communicate with the core. It made the SDK, platform 

independent to some extent. The Aperius [13] real time Operating System (OS) is used 

to run the onboard computer in the AIBO. This O S basically boots up the robot and 

performs coordination between different hardware modules, so that parallel instructions 

can be processed at a time. The principle of a real time O S is to produce response within 

a reasonable amount of time after receiving an input. Using this, the program observes 

the environment using the onboard sensors and produce output accordingly. A few pre­

sumed states and corresponding action pairs were used to determine the right action in 

a particular state during the game. This state x action pair approach was acceptable as 

a starting effort for playing Robosoccer during the first few years. However, slowly and 

gradually the Robosoccer environment become more complex and close to real life. Dif­

ferent unexpected events made it impossible for programmers to use input-output action 

pair as a basic idea to program the robots further. A new approach was definitely needed 

to tackle this issue. 
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1.6. Machine learning 

1.6 Machine learning 

Researchers around the world looked for an alternative way to overcome the problem of 

having just a few input-output pairs only for programming a robot. Finally an idea was 

arrived at to create an automatic system which, in a new situation, would be able to 

decide an optimum move based on previous experiences. In that scenario, the concept 

of the learning paradigm was found to be more realistic than using a straight forward 

input-output pair. A learning algorithm could copy the way in which an animal gains 

experience throughout the whole life. Generally, an animal inherits some characteristics 

from its parents and develops other qualities over time. Accordingly, the learning algorithm 

could be divided into genetic and other kinds of learning algorithms. A machine learning 

algorithm may consists of either learning algorithm or genetic algorithm are both of them. 

1.7 Reinforcement learning 

The three existing learning paradigms are supervised, semi-supervised and unsupervised 

techniques. A fully supervised technique requires complete human interference. It learns 

a few input-output pairs for accomplishing a given task [14]. However, these input-output 

pairs follow a pattern strictly. It may not work properly in a situation which is not a part 

of the learned pattern. The unsupervised technique needs no human interference during 

the training period and so it considers all possible ways to accomplish a task. In addition 

to that the unsupervised learning also learns about the working environment. So, a fully 

unsupervised process takes a considerable amount of time to complete the training for 

a task. The semi-supervised technique tries to bridge these two extreme processes and 

optimizes the training time vs output performance trade off. 

Human society itself uses the philosophy of using semi-supervised training exercises in 

different aspects. For example, a soccer player is usually trained in a similar way. A few 

basic maneuverability skills are provided to him and the player sharpens his skill through 

practice. A similar process could be followed in the case of Robosoccer as well. However, 

in case of a robot it needs to learn about the environment in addition to the soccer skill. 

The robot player could start its training with partial knowledge of the environment and 
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1.8. Overview 

some basic ̂actions to follow. However, no clue should be given about the right action 

in a given situation. A right action is strengthened by reward point and a wrong action 

looses its probability by receiving punishment in the form of negative factor. This kind of 

semi-supervised learning system such as Reinforcement Learning (RL) could be used to 

train a robot to take an optimum action at any situation. The same technique(RL) is used 

in this thesis to program the learning agent to perform a particular task in robosoccer. 

1.8 Overview 

Robosoccer encapsulates many dimensions in terms of robotics applications. Both basic 

maneuverabilities and team coordination skills are important in order to play Robosoccer 

efficiently. As discussed, reinforcement learning could be used in different aspects. It 

is already applied in optimizing some basic maneuvering skills in the AIBO for playing 

Robosoccer. However, decision making process currently use hand coding. In this thesis, 

we have applied one of the basic RL algorithms to develop an optimized decision making 

process for a given task. Robosoccer is an event where Al programs are being tested in 

the form of soccer, where goalkeeping is one of the important tasks. In Robosoccer an 

attacker may take a straight shot to score a goal or more than one attacker may attack 

as well. Based on these scenarios two major problem areas are listed in this thesis. 

• The first and the basic problem is goalkeeping against one attacker, who shoot the 

ball from different positions. 

• The second problem is an extension of the first one. The knowledge base achieved by 

the goalkeeper against one attacker was used to save the goal against two attackers. 

There, the first attacker passes the ball to the second while it takes a shot towards 

the goal using that flying pass. 

The research question in this thesis is "Whether a basic reinforcement learning algorithm 

can perform as well as hand coding/input-output pairs to solve the goalkeeping problem"? 

W e have trained a robot as a goalkeeper against goal kicking using RL. In the experi­

ment, the attacker took penalty shots towards the goal and the goalkeeper tried to save 



1.8. Overview 

it. The keeper gained experience using several training epochs using penalty shots. After­

wards, we tested the RL results against a base line of Upenn'03 goalkeeper's performance. 

The logic of Upenn'03 [1] goalkeeping code was used to create a benchmark to compare 

the goalkeeping efficiency achieved by RL. The outcome of both the experiments were 

more or less similar. The only difference exists between the benchmark code and our 

experimental process is the decision making technique. 

The key is to introduce a dynamic decision making process using a learning technique 

over Upenn's hand coded static decision making process. The RL algorithm started with 

a zero efficiency, gained experience over time and finally proven as efficient as the bench 

mark without human supervision. In contrast with that the benchmark program used 

input-output pair which was made using human intelligence. W e had further extended our 

experiment using two attackers with the existing knowledge base from the RL experiment. 

Another benchmark experiment was created with the upenn'03 code using two attackers 

as well. The result showed that the knowledge base from goalkeeping training using RL, 

performed similarly to that of the benchmark hand coded technique. 
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Chapter 2 

Literature review 

2.1 A brief history of robotics 

The word Robot was first introduced by Czech writer Capek in his play, Rossum's Universal 

Robots [5], in 1920. The term 'Robot' was derived from the Czech noun Robota which 

means forced labor. Indeed, the aim behind the invention of a robot was to make a machine 

which could replace human workers. In fact, different kinds of automatic machines were 

created in different centuries for similar purposes. Reportedly, the first mechanical robot 

was made by Al-Jazari in 1206. It was a simple mechanical boat that consisted of four 

automatic musicians that would play music using the ups and downs of the waves in the 

water. In 1495, Leonardo da Vinci designed a mechanical knight which was able to stand 

up, wave hands and make a few movements of its jaws and other facial parts [6]. One 

more early automation was created by Japanese craftsman Hisashiga Tanaka in 1738. It 

was a group of mechanical toys capable of serving tea, firing arrows and even painting 

some Kenji characters [15]. In 1898, Nikola Tesla publicly demonstrated a radio controlled 

robot similar to modern remote operated vehicles [16]. 

Elsi was the first modern autonomous electronics robot [17] capable of sensing light 

and reacting to it. The age of digitally operated, programmable and teachable machines 

started with the Unimate, a robotic arm made by George Devol in 1954. This was the 

first robot used in a metal plant for collecting and placing red hot metal pieces into dice. 

One more contemporary invention was the wall mounted Tentacle arm by Marvin Minsky 
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2.1. A brief history of robotics 

in 1968 whjph was able to lift the weight of a mature person. The design of the Stanford 

arm by Victor Scheinman in 1969 still influences some of the related technologies currently 

as well. The first ever computerized mobile robot Shakey was equipped with wheels and 

a television camera. This type of robot was usually huge in size and expensive which 

researchers could not afford. The first Legged robot was made at M I T in 1989 [18]. 

This was one of the early successful steps in creating small and cheap robots for research 

purposes. A number of robots are available currently for entertainment as well as research 

purposes. They are relatively cheap, small and equipped with different sensors. As for 

an example Lego mindstorm robots are widely used at high school educational level. 

Other models such as Pioneer, Hemission, AIBO, Roomba, Khepera are used for different 

purposes. Khepera, Pioneer, Hemission are wheeled robots with IR sensors and cameras 

attached onboard. Roomba is a small domestic vacuum cleaner. AIBO is a quadruped 

robot and an example of a sound improvement in making small entertainment robots. 

Altogether it can be concluded that modern robotics has developed a lot with the help of 

electronics and digital technology. A time line view of the history of robotics is shown in 

in the Figure 2.1. 

Chart Title 

AlJazIri Leonardo O B Hisashiga Nikola Tesla George Devol Marvin Minsky Victor Legged Robot in 

Vinci Tanaka Scheinman MIT 

Figure 2.1: A brief history of Robotics 
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2.2 Overview of modern robotics 

Modern robotics uses mechanical, electronics and software engineering combined to pro­

duce an intelligent piece of hardware, called a robot. The mechanical engineering deals 

with the design of body parts while electronics takes care of the sensory issues and the 

software relays between the sensors and the actuators. A legged robot has to perform 

different basic movements just to walk properly even on a plane. For the walking pro­

cess, the center of gravity of the whole system starts shifting in such a manner that the 

torso must not fall down while moving. Robotics Vision is another prominent challenge. 

Pattern recognition, color detection and tracking more than one object are all part of it. 

These problems become more complex for a moving robot, especially for a legged robot 

due to its type of motion. Usually a legged robot leaned on left and right sides as well 

as back and forth at each and during each step for balancing issue. Decision making is 

another major problem in robotics. It is necessary for a robot to make decisions from its 

experience in a given situation. N o human supervision should be used in this case after 

finishing the training exercises. This particular problem needs a lot of onboard computing 

resource and software expertise. As a whole, it can be concluded that a number of differ­

ent technologies must be used at a time to build up a smart robot. Different researchers 

tried to solve these problems in different ways. The idea of 'robot playing soccer' was first 

mentioned as an international test bed for comparing those different approaches around 

the globe [7]. 

2.3 Introduction to Robosoccer 

Robosoccer is an attempt to promote Artificial Intelligence (Al) and robotics research 

by providing a common task for the evaluation of various theories, algorithms and agent 

architectures [19]. "Robosoccer superseded chess as a challenging problem and bench­

mark for artificial intelligence research and robotics" [20]. The ultimate aim is to build 

a team of humanoid players by 2050 to defeat the human world cup champion team [8]. 

The robosoccer committee organizes its events based on two different goals. These are 

Robosoccer and Robocup rescue League. Robosoccer is a game of soccer between robot 
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teams in rê l life and in a simulated environment. Robocup rescue league consists of a 

search and rescue operation in an artificially created disaster area. The search is basically 

dedicated to look for signs of life.These two topics are divided into five main events to 

work out for robot teams around the world [21]. These events are discussed briefly in the 

next section. 

2.4 Different types of Robosoccer 

2.4.1 Robosoccer 

• Simulation League 

Simulation league is arranged using a Unix server. Both 2D and 3 D physical en­

vironments are provided for this virtual gaming event. Physical world sensory data 

such as vision, verbal communication and other position related data are supplied 

by the server to the software bots. In reply the software bot sends some signals 

to notify the server that it has made a physical movement such as run or kick or 

change in position and so on. The update is recorded on the server and used to 

define the world model. In such a match, up to 22 players can play in two teams 

against each other at a time. The soccer server is intended to provide a challenging 

environment for Al researchers, by allowing them to concentrate on designing only 

intelligence for the simulated bodies. Along with 2D and 3D league, a mixed reality 

or physical visualization league is also arranged. 

• Small Robot League 

This small sized robosoccer event takes place between two teams of robots with 

five robots on either side. Each robot must fit within an 1 8 0 m m diameter circle 

and must be no higher than 15cm unless they use on-board vision. The robots play 

soccer on a 4.9m by 3.4m green carpeted field with an orange golf ball. These 

robots come in two different models. One with local on-board vision sensors and 

other with global vision. Global vision robots use a centralized overhead camera and 
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a sepa/ate Personal Computer(PC) to identify and track the movements of other 

robots and the ball around the field. The overhead camera is attached to a camera 

bar located 4 m above the playing surface. O n the other hand, local vision robots 

have onboard sensors. The visual information is either processed within the robot 

or is transmitted back to the off-field P C for processing. The P C is used for differ­

ent communication purposes such as sending referee commands, overhead vision, 

position information and so on. Typically, this P C also performs most, if not all, of 

the processing tasks required for coordination and control of the robots. C o m m u ­

nication techniques are wireless and typically use dedicated commercial Frequency 

Modulator (FM) transceiver units [22]. 

• Four-Legged Robot League 

In 1998 Sony provided their first legged robot platform to three different research 

teams. These robots were a bit bigger than the small sized robots and consisted 

of an on-board computer. The most striking feature of this type of league is no 

off-field P C is used at all. Once the game starts, robots play on their own. Only 

built-in sensors are allowed in this case and robots are allowed to communicate to 

each other using verbal or wireless communication [23]. 

• Humanoid League 

The ultimate goal of robosoccer is to win against the football world cup cham­

pion team by 2050 [8]. Only humanoids are able to fulfil this goal. In year 2002, 

the Humanoid League started in robosoccer. The robots are divided into two size 

classes: kid-size (30 — 60cm height) and teen-size (80 — 130cm height). They are 

autonomous in nature and in addition to soccer games, penalty kick competitions 

and technical challenges take place as well. Walking, running, and kicking the ball 

while maintaining balance, visual perception of the ball, other players, and the field, 

self-localization, and team play are among the many research issues investigated in 

the Humanoid League [24]. 

13 



2.4. Different types of Robosoccer 

2.4.2 Exhibitions 

• RoboCup Commentator Exhibition 

RoboCup is not just for the teams who compete against each other in the leagues. 

In the year 1998 there was an exhibition of RoboCup-related technologies which are 

not directly related to competing teams. The RoboCup Commentator Exhibition 

demonstrates a number of systems which automatically generate soccer commen­

tary for simulation league games. The commentator understands and analyzes the 

performance of each player in a game, creates hypotheses on interesting topics to 

provide comments on and generate fluent commentary in different languages. The 

applications of such technology are enormous and require a lot of attention [25]. 

2.4.3 Robocup Rescue League 

• Rescue Simulation League 

The Rescue Simulation League is a relatively new concept in Robocup compared to 

that of soccer. It was first introduced in the year 2005 [26].The purpose is to pro­

vide emergency decision making support by the integration of disaster information, 

prediction, planning, and human interface. A generic urban disaster simulation en­

vironment is constructed on network computers. Heterogeneous agents such as fire 

fighters, commanders, victims, volunteers, etc. conduct search and rescue activities 

in that virtual disaster world. Real-world interfaces, such as a helicopter image, 

synchronize the virtuality and the reality by sensing data. 

This problem involves advanced and interdisciplinary research themes. The be­

havioral strategy consists of multi-agent planning, realtime/anytime planning, het­

erogeneity of agents, robust planning, mixed-initiative planning and so on. The 

RoboCup Rescue simulation league works as a standard platform to develop practi­

cal comprehensive simulators adding necessary disaster modules to disaster rescue 

researchers. 

• Rescue Robot League This event is a real life version of the rescue simulation 

league. However, the scope of the problem here is much less due to the lack of 

14 



2.4. Different types of Robosoccer 

maneuverability skills and other technical problems in practical robotics. In this 

event, robots look for signs of life such as a waving hand in a disaster site. Team 

work and other skills are also being tested here. 

2.4.4 Robosoccer©Home (since 2006) 

The © H o m e league consists of an open challenge in the form of few tests to demonstrate 

the abilities of participant's robot. The robot should perform at least one test. The test 

should maintain the following cases: 

• include human machine interaction 

• be socially relevant 

• be application directed/oriented 

• be scientifically challenging 

• be easy to set up and low in costs 

• be simple and have self-explaining rules 

• take a small amount of time [26] 

2.4.5 Robosoccer Junior 

This is an event organized for under graduates and school level students. The rules are 

more straight forward and relatively simple robots are taking part in this event. The 

challenges available in this case are as follows: 

• Soccer Challenge 

• Dance Challenge 

• Rescue Challenge 
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2.4.6 A particular task of Robosoccer, used in this thesis 

The research topic in this thesis is related to Four-legged robot league stated under 

Robosoccer events. A few real life situations of a soccer environment are imitated in 

there and only AIBO robots are allowed to take part. Both individual and team-work 

skills are required to play these soccer games. Basically, in this event, robots try to 

perform few tasks such as shooting a goal, defending their own territory and so on. The 

basic skills are maneuverability, shooting in a particular direction, blocking a ball, sharing 

information, visualizing the environment properly, team coordination, strategy acquisition 

and others. S o m e of these techniques could be used with little modification to make a 

robot team work in different situations efficiently. This research examines an approach 

to making a robot capable of acting appropriately in an unknown/complex situation. In 

this study the AIBO is programmed to respond to an unknown situation in the position of 

goalkeeper. It has been trained at the beginning and then saved the goal, both without 

human supervision. The description of the AIBO robot is available in next section. 

2.5 The AIBO 

AIBO means companion in the Japanese language. It is said that dogs are the best friend 

of human beings among other animals in our history. So, engineers at Sony Co. Ltd. 

decided to make a replica of dog as a robot. The initial structure of the AIBO was 

designed by the famous Japanese artist, Hajime Sorayama [11]. 

As described previously, different kinds of robots take part in Robosoccer. They are 

divided into two main categories depending upon their mobility mechanism, namely the 

wheeled robot and the legged robot. Wheeled robots are much faster and also have a 

relatively more stable vision while in motion to that of legged robots. This is due to the 

fact that a wheeled robot goes smoothly on a plain surface using wheels, whereas the 

moving technique of a legged robot is quite different. O n the other hand, a legged robot 

can move through uneven surfaces which is completely impossible for a wheeled robot. 

A quadrupedal robot like the AIBO, first adjusts its torso in order to put the center 

of gravity on any three legs. Then it lifts the free leg(which is not in use for balancing, 
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temporarily), puts it ahead and repeat this cycle for each of the other legs to move. The 

torso tilts on different angles during this whole process and the camera captures different 

frames of a particular object from different angles. So, the system receives multiple 

images of a single object. This brings a shaking effect (this is sometimes mentioned 

as "handshaking" effect as well) to the captured picture and makes it worse for further 

processing. Wheeled robots are largely free from this problem. However this problem in 

legged robots could be solved by different image processing techniques. But, wheels can 

not navigate through certain surfaces such as rocks, various gradients, staircases, places 

filled with scattered objects, forest, shallow water logged areas and so on. Only legged 

robots are free from those problems. Sony released a bi-pedal robot QRIO, which revealed 

the secret of jumping motion in bipedal movement. It can take both of its feet fully off the 

ground and regain balance after touching down. This facility allows it to run efficiently 

like a bipedal animal. Another bi-pedal robot, A S I M O , is capable of serving food, opening 

combination locks, equipped with voice and face detection technology and so on. 

Sony started marketing the AIBO in the year 1999 for entertainment purpose. It was 

chosen for our experiment due to its portability, computing power, availability of different 

sensors and comparatively cheap price to other robots. Each and every model of AIBO is 

able to play soccer under Four-Legged robot league in Robosoccer. Three ERS-7 models 

were used for the experiments in this study. The ERS-7 was the latest model, released by 

Sony before they ceased production of their product. 

This model resembles a dog and Sony programmed some spontaneous dog-like Al 

behavior to make it act like a real life animal. It has face detection, voice recognition, 

color detection (magenta by default) features and many more. It is capable of tuning its 

behavior depending upon the owner's mood. It detects harsh and polite tones of voice 

and acts accordingly. It has an in built wireless local area network card (IEEE 802.11b 

standard). One can set up an Simple Network Management Protocol ( S N M P ) server 

inside the AIBO and configure it to send the pictures taken by the nose camera over the 

internet using a workstation as a gateway. In this way it can be used as a moving in-house 

security device. The AIBO has a striking feature in that it can find its charging station 

while having a low battery signal. It uses complex pattern recognition technique for this 

purpose and locates a particular image printed in the tower of the charging station. This 
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feature makes it a perfect watch dog. 

The different components of the AIBO are listed in Table 2.1. 

Table 2.1: Specification 

CPU 

CPU Clock Speed 

R A M 

Programming media 

Operating Temperature 

Operating humidity 

Built in sensors 

Movable parts 

Power Consumption 

Operating time 

LCD Display on charger 

Operating system 

Weight 

Dimension 

64-bit RISK Processor 

576MHz 

64 M B 

Memory Stick™ 

10°C to 60°C 

10 - 8 0 % 

Temperature Sensor, IR distance sensor, 

Acceleration sensor, Touch sensor, 

vibration sensor, Pressure sensor 

Three parts in head module, 

Three parts in each of the four legs 

Approximately 9 W 

(Standard operation in autonomous mode) 

1.5 Hour (In standard operation) 

Time date, volume, Battery condition 

Aperius 

Approximately 1.6 Kg including battery and Memory stick 

180mm high and 18mm in diameter. 

There are several different sensors available in the AIBO. One of those is a color camera 

situated at its nose with maximum 208/160 pixels. It is capable of capturing 25 frames 

per second at the highest resolution. Four pressure sensors at the four paws are available 

to determine whether the robot has toppled or not. These four sensors are binary in 

nature and quite noisy too. These sensors sometimes do not fire even when the full body 

weight is resting upon them. Three touch sensor plates are available on the back, one at 
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the chin anyone on the upper portion of the head. These plates are extremely sensitive 

and give the dog some realistic features. For example, the dog makes a happy sound if 

someone touches the chin sensor. The dog has three infrared distance sensors. T w o of 

them are situated over the nose camera and one at the chest. The chest sensor is used 

to detect an edge or other close objects which can not be seen through the nose camera 

due to limited movements of head joints. T w o distance sensors at the nose are regarded 

as Near distance sensor and Rear distance sensor. The working range of the near sensor 

is from 5.7cm to 50cm and the other one works between 20cm to 150cm. The last and 

most advanced sensor of the robot is the in built accelerometer. It is the only sensor 

in AIBO that is able to sense three dimensional readings. Its accelerometer can measure 

acceleration along the x axis, y axis and z axis. The velocity and displacement of the robot 

can be calculated using time difference and the data from this sensor. There are also two 

microphones fitted on top of the ears. These are capable of capturing stereophonic sound. 

They enable the AIBO to determine the direction of incoming sound. The Al program 

made by Sony allows users to register a name for a particular model, when someone calls 

the name AIBO can point its head towards that direction. 

There are three stepper motors fitted at each of the four legs, two at the head joints 

and two at the tail. A stepper motor is a device which converts electrical pulses into 

discrete rotational motion; it creates a precision control over the motor. These motors 

are also fitted with safety devices in AIBO. This device shuts down the whole system 

whenever a motor is stuck at any point during operation. This feature is built to prevent 

any mechanical damage to the joints. 

The AIBO has similar computational power to that of an early age Pentium III personal 

computer (PC) which was quite impressive at the time of release. However, the last 

upgraded model accepts at most 1 2 8 M B memory stick made by Sony itself. This much 

memory is enough for programming the robot with existing languages such as C + + , Java 

and Matlab, but it is not enough to record sensory data over a long period. Also, its 

infrared distance sensors are not good enough to measure the distance of any particular 

object. This is due to the reflection from adjacent materials around the target. So, a dif­

ferent method was developed to calculate the distance of the ball using the nose camera, 

which is described later on in this thesis. 
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Figure 2.2: Sensors in ERS-7 [2] 

In the year 2006 Sony announced it would stop producing and marketing AIBO. But, 

the last model ERS-7, which was used for the experiments, would be supported up to 2013 

by the company. The next section describes reinforcement learning theory in general. A 

part of this RL theory is used as the programming logic in this thesis. 

2.6 Reinforcement learning 

2.6.1 Introduction 

The theory of reinforcement initially started in the field of psychology a few decades 

ago. Perhaps the first signature of this idea was found in the words of Thorndike in 

expressing the trial-and-error learning. In his words "Of several responses made to the 

same situation, those which are accompanied or closely followed by satisfaction to the 

animal will, other things being equal, be more firmly connected with the situation, so 

that, when it recurs, they will be more likely to recur; those which are accompanied or 

closely followed by discomfort to the animal will, other things being equal, have their 

connections with that situation weakened, so that, when it recurs, they will be less likely 

to occur. The greater the satisfaction or discomfort, the greater the strengthening or 

weakening of the bond" [27]. 

This theory is called the law-of-effect by Thorndike. There are two important things 
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associated with this idea: responding to the situation and repeating the similar actions 

associated with the reward when facing the same situations again. The law-of-effect is 

used in selecting an action over others while facing the same situation. Only the action 

that brings satisfaction in a particular situation is likely to occur again over others. This 

satisfaction is categorized as reward whilst the discomfort is denoted as punishment which 

weakens the bond between a particular situation and an action [27]. This idea is defined 

more generally below. 

Reinforcement learning is basically a dynamic situation-to-action map which helps the 

actor to gain comfort or reward through the process. The word dynamic implies that 

the agent dynamically chooses the correct action for the current situation. An agent is 

a decision maker within a learning system and anything except the agent is denoted as 

the environment. The agent interacts with the environment, observing a situation which 

is called state in this regard. The agent responds with an action to the environment and 

receives a reward in terms of numerical value. It is the goal of the agent to maximize 

the reward over time. An agent carries out a particular task using reinforcement learning. 

Figure 2.3 below describes a hypothetical view of a system engaged in reinforcement 

learning. 

2.7 A basic model of Reinforcement learning 

In Figure 2.3 the agent finds itself in a state steS at any discrete time t (t=l,2,3,4 ) 

in an environment where S is the set of all possible states. An action at is selected where 

ateA(sf) and A(st) is the set of actions available in st. As a consequence of the action, 

the agent receives a reward rt+ieR and finds itself in a new state st+i. 

The following steps could be used to summarize reinforcement learning: 

1. An input state is observed 

2. An action is selected in response 

3. The action is performed 

4. An input state is observed 

21 



2.7. A basic model of Reinforcement learning 

state 

s. 
reward 
r, 

action 
a, 

Figure 2.3: A general reinforcement learning system 

5. A scalar reward or reinforcement is given 

6. The reward for the state is recorded 

The goal of the agent is to maximize the reward point through reinforcement learning. 

Finally, the agent follows the action associated with the highest reward point in each 

state and performs the given task at minimum effort. So, a path is ultimately defined 

to accomplish the task. A policy in reinforcement learning is how to define the actions 

to be chosen to meet the goal. The reinforcement learning techniques discussed in this 

paper are always following policies in one way or other. There are two basic techniques 

used in reinforcement learning along with other forms, namely Q-learning and SARSA. 

The following definitions explain the basic terminologies related to reinforcement learning, 

used in this thesis. 

2.7.1 Exploration vs exploitation problem 

One of the main trade offs in reinforcement learning is the exploration and exploitation 

dilemma. An agent has no choice other than taking random actions when it starts learning 
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with a zero^alue table. However, once it receives a reward, it starts acquiring an action 

sequence to reach the goal from the starting position. N o w the question is whether 

the agent should follow this sequence repeatedly or whether it should try out some new 

actions. This dilemma between exploitation of the acquired knowledge and exploring some 

other actions is one of the main issues in reinforcement learning. Usually the agent needs 

to explore different actions to build up a policy whereas the policy has to be followed to 

finalize the table. One may try to keep the balance between exploration and exploitation 

and create a 50-50 ratio for reinforcement learning training. Some well known policies are 

described in the following part of this section. 

2.7.2 On-policy Learning 

It is said to be on-policy learning if an agent starts learning with a particular policy and 

finds out the state action values within the scope of that policy. S A R S A [28] is an on-

policy learning approach. Soft policies are used to ensure that the agent has enough room 

to explore. In other words, the policies are not so strict so as to simply only follow the 

successful moves. Three such policies are e-greedy and softmax. 

2.7.3 Off-policy Learning 

In contrast with on policy learning, the agent starts updating the table with a strict greedy 

policy in the case of off-policy learning, but it is free to take any action without using any 

policies to make sure that enough opportunity is given for exploration. Finally, it learns 

a separate policy from the values updated in the table. So, this indicates that off-policy 

learning has the capability of working with a random action selection policy at the initial 

stage and finding out a new policy at the end. Because of this feature, off-policy learning 

is chosen to tackle our research question. Q-learning [29] does not use a policy to update 

the state x action table and so it is called off-policy learning 

2.7.4 Different Action Selection Policies 

A policy is a mapping from state to action. All RL methods learn and use policies 

during training and working period after completion. A soft-policy is a method which 
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gives a very, small number of suggestions to the agent to choose between exploration 

and exploitation. The agent works throughout the training period with a random action 

selection process. Even after obtaining a reward it follows the successful moves with the 

same priority compared to the other less prioritized ways. On-policy learning only uses one 

of the available policies from the beginning. Some of these policies are described below. 

2.7.4.1 e-greedy 

This policy is named greedy [29], which means the highest-reward action or the greediest 

is chosen for most of the time. Other actions are chosen only with a small probability e 

and all the actions are given the same priority. This policy ends up with a converged state 

x action table, if enough trials are done. That is as the number of trials becomes very 

large the state x action Table 2.7.5 no longer changes. 

2.7.4.2 Softmax 

According to e-greedy and e-soft [29] methods all the actions are chosen uniformly except 

for the one associated with the high est-reward. A worse action is chosen with the same 

priority as the second-best action. The softmax remedies this by assigning a rank or weight 

to each of the actions according to their value-function estimate. These ranks are used 

as probabilities to choose an option. This approach is perfect where the worst possible 

action is not at all favorable. 

2.7.5 Value function 

A Value function is a state action pair function that estimates the return to any state after 

taking a particular action (A). This function is used to update the cell values mentioned 

in the previous definition. Once an action is taken, the agent finds itself in a new state, 

the value function calculates the cell value corresponding to that state and the action 

using the available reward. 

Vn(S,A) — > The value of a state S under policy II. The expected return when 

starting in S and following II thereafter. 
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2.7.6 State x action Table 

State x action table is used as the data base of a reinforcement learning agent. The 

learning starts with a matrix with all the elements set to zero for most of the cases which 

is called the state x action table. However, occasionally the table may contain some 

numbers to make the learning faster. The Convergence of state x action table values 

indicates the end of the learning sequence. A state action table should resemble the 

example described in Table 2.2. 

Table 2.2: State x Action table with no initial knowledge 

Action 1 

Action 2 

Action 3 

State 1 

0 

L ° 
0 

State 2 

0 

0 

0 

State 3 

0 

0 

0 

The states and actions are different for different experiments. These kinds of tables are 

in use in this thesis. Zero values indicate that no experience is available so far. However, 

in some instances, the programmer may like to provide only a small amount of prior 

knowledge to the agent. In that case some of the cells of the state x action table will 

contain a non-zero number. Value function 2.7.5 formulae are used to update the cell 

values while learning. 

Sometimes, the size of state x action tables is too large for the agent to try and reach 

the goal within a reasonable amount of time. In those cases the agent might look for 

a reward indefinitely and so the learning will not be effective. So, in those cases a few 

numerical values are supplied to make sure that the agent must has some prior knowledge 

to start with. In the long run, this technique yields a time efficient solution for a learning 

process with a large sized state x action table. This may look like the Table 2.3. 

Only those state x action tables having all zero values are used in this thesis. 
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Table 2.3: State x Action table with few existing knowledge 

Action 1 

Action 2 

Action 3 

State 1 

60 

50 

0 

State 2 

0 

0 

0 

State 3 

0 

36 

74 

2.7.7 Temporal Difference 

Temporal Difference (TD) Learning methods can be used to estimate these value func­

tions. If the value functions were to be calculated without estimation, the agent would 

need to wait until the final reward was received before any state x action pair values could 

be updated. Once the final reward was received, the path taken to reach the final state 

would need to be traced back and each value updated accordingly [30].The formula stated 

below shows the mathematical form. 

V{St) <— V(St) + a * [Rfinal - V(St)] (2.1) 

St = State visited at time t 

Rfinal = Reward, received at the end 

a — constant parameter 

On the other hand, with T D methods, an estimate of the final reward is calculated 

at each state and the state x action value updated at every step of the way. Expressed 

formally: 

V(St) < — V(St) + a * [Rt+1 + 7 * V(St+1) - V(St)\ (2.2) 

Rt+1 = Reward at time t+1 

7 = Discount factor 

2.7.7.1 SARSA 

SARSA [28] is an on-policy learning technique and it updates the state x action table in 

reinforcement learning process. The algorithm is shown in Algorithm 1 

26 



2.7. A basic model of Reinforcement learning 

Algorithm \ S A R S A 

Initialize Q(S,A) Arbitrarily 

repeat 

Initialize S 

choose A from A(St) using selected policy 

repeat 

take action A, observe S and A' 

choose A' from S' with selected policy 

update table using V(S,A) <— V(S,A) + a[R + 7V(S',A') - V(S,A)] 

S < — S' 

A<— A' 

until terminal S reached 

until Q-values have convergeds 

R E T U R N V(S,A) 

end 

a is denoted as the learning rate. The value stays between 0 and 1. The learning does 

not take place while the value is zero; This is because of the fact that the table is never 

updated. Learning is the slowest at a = 0.1 and quickest at a = 0.9. It is preferable to 

keep the value of a at 1 in a noiseless environment. 

7 is denoted as the discount factor. It also takes a value between 0 to 1. 

The name S A R S A is derived from the sequence S,A,R,S',A'. This sequence indicates 

that the agent starts with an action A at situation S, observes reward R, takes another 

action A' and finds itself in situation S'. Here the observed reward is based on the next 

action taken by the agent. This action is dependent on the policy which is chosen at the 

beginning of the experiment. Finally, the agent develops a policy based on the reward 

system and so restricts itself within the scope of the chosen policy. 

The term V(S,A) is similar to Q(S,A) which is used in Q-learning. Actually, it is used 

to update the cell values in almost the same way except that the maximum value of the 

available actions from the next state is chosen. A detailed theory of Q-learning is as 

follows. 
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2.7.8 Q-Learning 

In case of Q-learning [29] the state x action table converges with 1 0 0 % probability to 

a close approximation of the value function provided enough training is given for any 

arbitrary target within a Markov Decision process. The step-wise procedural approach is 

displayed in Algorithm 2. Q learning differs from S A R S A only at the point of selecting the 

Algorithm 2 Q-Learning 

Initialize Q(S,A) Arbitrarily 

repeat 

Initialize S 

choose A from A(St) using random/selected policy 

for each step do 

take action A, observe S and A' 

choose A' from S' with random policy 

update table using Q(S,A) < — Q(S,A) + a[R + 7 rnoxA* Q(S\A*) - Q(S,A)]s 

S*— S' 

A<— A' 

A* e All A 

end for 

until terminal S reached 

R E T U R N V(S,A) 

end 

reward at a state-transition point. Although any action could be chosen using Q-learning, 

only the maximum reward is considered to update the state x action table; it guarantees 

the convergence of the table in most cases, whereas in SARSA, only the reward associated 

with the action taken is considered for calculation. Moreover, the policy tries to keep a 

balance between exploration and exploitation as well. It was found during a maze learning 

experiment [31] that S A R S A sometimes ends up without convergence of the state x action 

table and the ultimate policy can not be revealed. This issue is addressed thoroughly in 

the methodology chapter with a maze-learning example. 
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2.8 Real life Examples 

The following examples define a few real life problems where reinforcement learning can 

be used or is already in use [32]. 

2.8.1 Firing a machine gun at a moving target 

Basically four factors simultaneously control the path of a moving bullet. These are 

gravity, air velocity, the viscosity of the air and the speed of the bullet itself. So, the 

resultant of these forces would determine the velocity of a bullet in a real life scenario. It 

becomes challenging when the target is moving fast such as a fighter plane, high speed 

vehicle and so on. In that case the resultant of the initial velocity of the bullet and the 

velocity of the moving body should intercept the target within a suitable range. So, all 

of these factors are involved in the successful firing from an anti-aircraft machine gun. A 

human operator takes many years to develop this skill. The reinforcement learning, in this 

case, starts with the trial and error method and gradually a policy is developed. It can be 

concluded here that this is a tune up process of different parameters to accomplish the 

task. Reinforcement learning could be used here better than any deterministic formula to 

do the same. In this case the learning will be based on two particular points. The flight 

pattern of the enemy aeroplane and the average velocity of air. The word average is used 

here as the velocity always changes with time. The agent finally should be able to develop 

a policy to fire a bullet with such velocity which will maximize the chance of intercepting 

a moving object in a 3-Dimensioned environment like an aeroplane. 

2.8.2 Quadrupedal locomotion technique acquisition of a new 

borne gazelle calf 

As Sutton said in his book [29], quadrupedal locomotion is one of the most complex 

locomotion techniques among animals. The parameters involved here are the center of 

gravity (CG) of the torso and the speed of the moving body. Whenever a quadrupedal 

animal walks, the C G transfers on top of three legs while the other leg is lifted and placed 

in a different position. While it runs, the C G rests upon two legs only and the torso works 
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in such a way, that it goes forward instead of falling down. Both of these processes needs 

complex synchronization between movement of body and different postures of leg. A calf 

learns this critical process within half an hour after its birth, using the intuition and trial 

and error method. It should be mentioned here that the locomotion of the A I B O was also 

tuned successfully using reinforcement learning [33]. The hand tuned parameters were 

successfully discovering out using reinforcement learning [34]. 

2.8.3 Acquiring cycling technique for both human and machine 

Preben and Jatte [35]applied reinforcement learning in a bicycle riding problem. The 

main problem in riding a bicycle is to properly maintain balance while riding. S A R S A [28] 

algorithm was used to accomplish the learning process. This problem was extended to 

find the goal after the agent learned how to drive. So, the paper described and solved 

two problems using SARSA. The first problem is that of learning how to ride a bicycle 

after extensive training and the other is finding an optimal path to the final destination. 

Both were solved successfully by reinforcement learning. 

2.8.4 Operation of an autonomous mobile cleaner robot 

According to Sutton [29], as mobile robot cleaner should decide whether it enters a room 

for collecting trash or goes back to its battery charger. The decision is influenced by two 

different parameters. These are the expected time to clean up the trash and the time to 

reach the charger and accordingly the robot receives a reward or punishment. So, finally 

the cleaner learns to clean a place and charge itself in a balanced way. The previous 

knowledge of the house m a p could be used for defining the way back to the charger and 

the amount of the area to be cleaned [29]. 

These problems could be addressed with reinforcement learning in a better way than 

with the supervised learning process or hand coding. Usually training data with input 

output pairs are used with supervised learning. So, specific information is needed for each 

and every situation in the case of supervised learning. However, it is impossible to provide 

such information due to the vastness of the problem dimensions discussed above. The 

anti-aircraft problem has basically four different parameters involved and each of those 
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could take several continuous values. So a large number of training data is required to 

cover all possible situations. The second problem consists of the different positions of the 

four legs and the position of the torso. Altogether these parameters create a significant 

problem space to solve. The third problem is the leaning angle and the speed of the 

bicycle as input parameters. Again, together there could be several combinations between 

them. The fourth example has the two different problems. The first is getting used to the 

interior of a particular house, the second is finding a balanced way to capture the garbage 

and find the charger in time. 

A handful of training data is not sufficient for any of the problems discussed above. 

Either they need the data from each and every segment of the environment while per­

forming or a large amount of data needed to be stored well in advance. This indicates 

that supervised learning is not the answer to these problems. A more generalized solution 

is required and the agent should acquire experience rather than relying on a database. 

Reinforcement learning suits these points and has already proved worthy in some cases as 

cited with the examples. 

2.9 Robosoccer using the AIBO 

The ultimate goal of the Robosoccer event is to create a fully autonomous robot team 

which can defeat the human world-cup champion team [8]. In order to play soccer as 

efficiently as humans, a robot has to perform some basic maneuverability skills. Physically, 

humans are still much more capable than a robot. Moreover, a robot has to think like a 

human to take quick decisions on the field when playing soccer. But, until now, no machine 

on earth has the capability of taking independent decisions like a human. Robocup is an 

event to promote research all over the world towards making a machine as efficient as 

humans. 

The first Robocup world cup took place in Paris in 1997 [36]The research platform, 

the AIBO, was released in July, 1998, and it also took part in Robocup in the same year 

in an exhibition match [37]. It was played at RoboCup98 in Paris. Three teams from 

Osaka University Baby Tigers (Japan), CarnegieMellon University CMTrio98(USA) and 

Laboratoire de Robotique de PARIS (LRP) Les 3 Mousquetaires (France) took part there 
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and used Al§0 robots for the first time. In 1999, six more teams competed in the four 

legged autonomous robot league in a three-on-three match. Since any change of hardware 

was not allowed, only the software program could be developed through it. However it 

was discovered that the prototype had some serious hardware limitations. 

Five issues were pointed out in the 1999 Robocup [37] as the key problems to Robocup 

using quadruped medium sized legged robots. These are: 

• Vision 

• Navigation 

• Playing skill 

• Localization 

• Team work 

Different universities worked on these key areas and tested their skill against other 

teams in the Robosoccer championship. A brief description of the winning team in some 

of the Robosoccer competitions is given below. There some of the rapid development of 

robosoccer are outlined to give an appreciation of the breadth and complexity of issues 

involved. 

2.9.1 Robosoccer 1999 

It is obvious that a robot easily loses sight of the ball due to the limited visual angle 

of the Charged Couple device (CCD) camera attached to the nose. This problem was 

considered to be a major one in Robosoccer 1999. It was decided that the key to winning 

the tournament was to make an efficient object recognition program to minimize the ball 

finding time. The challenge was there to make an optimized object recognition program 

to bridge between improved vision and available hardware resources. 

In the 1999 Robocup most of the teams used the walking programs provided by Sony 

due to the limited availability to develop their own walking program. The preference was 

given to the tactics. However, the LRP [37], which developed a stable and robust walking 

program, won the league. This stable walking indeed helped improve the vision of the ball 



2.9. Robosoccer using the A I B O 

while player and ball were both moving [38]. The team of Osaka university [37] developed 

a trot walking to achieve faster speed. Another most important issue in Robocup is 

localization. Due to slippage of Sony's walking technique, it was impossible to localize 

the AIBO properly. So, different universities took a different approach to overcome this 

problem. The Carnegie Melon university used probabilistic sampling to minimize errors 

caused by movement and unexpected errors. Multi-fidelity behavior was also introduced 

to gracefully degrade or upgrade it with a different localization model. Osaka university 

team used a landmark system for the purpose. It should be mentioned here that in the year 

1999 no color pole was placed by the field side as a landmark. So, LRP, the winning team, 

used the goal post for the task accomplishment and achieved a relatively fast localization 

process. Finally, the playing tactics were more important than the others stated above. 

Unlike other problems, the LRP has its uniqueness hidden in the decision making activities. 

In an other way, it uses all four key skills as the basic action, but these actions have to be 

processed against a situation in order to take right action at right moment. In the year 

1999, most of the team assigned one robot as the goalkeeper and two robots as players 

except Osaka team. All three robots in their team performed both defensive and offensive 

roles [37]. 

2.9.2 Robosoccer 2000 

Some of the rules of the game in the year 2000 were changed compared to the last time. 

In particular a few beacons were added to the field to support localization more precisely. 

The overall significant improvement in this year was in ball controlling technique [39]. 

University of Osaka introduced head kick, which was effective as a long range shot [37]. 

Almost all contestants adopted this technique in the next year league. U N S W introduced 

an effective ball controlling technique in this season. Using it AIBO captured the ball 

within two front legs, moved to the desired direction and pushed it. It was proven to 

be an accurate and high powered kick for the competition. The winning team of U N S W 

year in 2000 [39] focussed on color detection. They have used a polygon growing model 

for the problem. AIBO has an in-built color detection mechanism. However, the same 

color could be considered as different colors in different brightness conditions. So, a code 

was developed to perform an off-line learning from different images taken from different 
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parts of the |ield. The image is not at all stable while the robot is on the move. So, a 

modified locomotion technique was developed for this reason [38]. The paws moved in 

a rectangular fashion to minimize the vertical and horizontal instability [39]. There, the 

behavioural strategy of goalkeeper was described by three high level strategies as found 

in U N S W golie code. These are as follows: 

• Finding the ball 

• Tracking the ball and acquiring a defensive position 

• Clearing the ball 

2.9.3 Robosoccer 2001 

In 2001 U N S W defended their previous year's title. In this year many teams made signifi­

cant changes in basic functions based on ERS-210 prototype of AIBO. its leg motors were 

stronger than previous models and onboard processor MIPS-4000 was faster too. A bunch 

of new physical maneuvers and skills could be realized using this model. The new model 

had a different body geometry over previous ERS-111 prototypes. So, a number of skills 

were obsolete too. But the new model was much better compared to the previous one due 

to the upgraded hardware. Also, due to faster C P U speed, a code was written to process 

high resolution images during game play [40]. A new keeper charge rule was introduced 

into this year's competition which gave the goalkeeper an advantage. The rule said an 

attacker would be removed for 30 seconds if it touched the ball while the goalkeeper had 

its grip on it. The goalkeeper was programmed to hold the ball between its front legs and 

turn forward within five seconds. But in the actual game it did not work, because the 

goalkeeper was never charged while holding the ball. A locking up problem at goal post 

corner was also noticed during weekly practice match [41], too. This problem seems to 

be related to real life oriented issue. In any automated process, a robot may stick to a 

corner if propels towards it at high speed. A simple solution was provided for this problem 

to the robots. It defined that if the distance between the ball and robot was not changing 

over a particular threshold then possibly the ball was hooked up at a corner. A separate 

maneuver was written to control the situation. 
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2.9.4 Robosoccer 2002 

Carnegie Melon University won the title of legged Robosoccer in the year 2002 [42].This 

time they focused on single and multi robot control and multi robot team work [43]. 

The introduction of new robots and the increment of field size made it difficult for the 

programmer to take care of the role assignment issue. However, the wireless communi­

cation was used to coordinate movements and assign roles between available robots [44], 

These roles were a primary attacker, which approaches the ball and attempts to move it 

up field; an offensive supporter, which moves up the field from the primary attacker and 

positions itself to recover the ball if the primary attacker misses its shot on goal; defensive 

supporter, which takes care of the ball if the opponent team approaches the goal with 

the ball and the goalkeeper takes care of the goal area. Three players always negotiate 

between each other and switch their roles accordingly. Also, they always keep in touch 

with the goalkeeper to avoid blocking or approaching the ball while the goalkeeper tries 

to clear it from the defense zone [45]. 

2.9.5 Robosoccer 2003 

rUNSWIFT, the team from U N S W won the title again after losing it in 2002 to Carnegie 

Melon university of USA. They already had a large code base due to the previous years' 

experience. So, the code was divided into some Aperius [13] modules. Distributed sensor 

fusion using wireless communication was improved. Each robot team consisted of four 

players instead of three. It was observed in the year 2002 that uses of the fourth robot 

introduced more complexity into the game. So, this year U N S W team focused on the 

robustness of the gaming environment. In other words, their approach was to enable a 

robot to consider the complete environment. The overall efficiency of this approach was 

better in terms of managing the complexity than the previous years. But, this approach 

lacks in taking the right decision at any moment. So, the players were not able to take 

the optimum action although it was able to define the environment [46]. Theoretically, a 

learning system may solve the problem [29]. 
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2.9.6 Robosoccer 2004 

The German national RoboCup team won the middle size official robocup title in the year 

2004. Four universities across the country took part in making the winning team that year. 

They had used Agent Behavior Specification Language(XABSL) [47], [48] for behavior 

control issues. This is an X M L based programming language to take care of behavior in 

autonomous agents. According to the mentioned hierarchy, the German team had four 

main stages in their software coding, namely perception, object modeling, behavior control 

and motion control. In the perception stage, it collects data from sensors which leads 

to calculating world model in the object modeling section. This world model actually 

helps the agent to take decisions in the behavior control stage and provides input to the 

motion control state. In practice, less work was being done to improve high level skills in 

comparison to ball handling skills such as dribbling, kick selection, and navigation. But, 

they had introduced Dynamic Team Statistics(DTT) using wireless channel which was an 

extension of the X A B S L behavior by a meta-layer that helps to represent the dynamics 

of the game and environment. Practically, agents shared world model information using 

D T T and had chosen the most appropriate job for it leaving other options for teammates. 

This approach lead to the problem of evaluating the position and prospect of success for 

every robot and each task. A hand coded solution was proposed for the purpose [49]. 

2.9.7 Robosoccer 2005 

In the year 2005 Carnegie Melon University regained their honor after 2002 in the middle 

size legged robot championship. This time the software they developed was fully designed 

over the knowledge of previous teams from the university. Its world model acquisition 

process was equipped with sensor fusion technology. Each and every robot on the field 

tried to get the information of a single object from different angles. This information 

is unequal due to difference in offset values introduced by different sensors. Moreover 

when a team of mobile robots are trying to define the environment, a large amount 

of noise interferes with the actual data and makes the model extremely complex if not 

impossible to define. A method for reasoning over a discontinuous hypothesis space is 

used to solve the problem where the sources of information was used with strict ordering. 
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A prioritized* hierarchy of state estimate is made by segmentation of information sources 

into different classes. This hierarchy is used in deploying the decision process that governs 

each individual robot's actions. It can easily select the most informative state estimate 

to use as its input. An efficient reasoning about the expected utility of certain classes of 

estimates over others can help the robot to select the best estimate from the set to act 

upon. The updating process of ordered hierarchy of possible estimates could benefited 

from that reasoning. This system is a prioritized state estimation technique. It could be 

applied to a real-time adversarial multi-agent domain. However the selection of priority 

used in this system is assigned statically by programmer. As a result, any undefined change 

in an environment may result in a malfunction or system crash [50]. 

Finally Figure 2.4 reveals a graphical view of the winners stated in last few paragraphs. 
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Figure 2.4: A time line displays the winning teacm 

2.9.8 Summary 

So from the above discussion, it could be concluded that various teams are designed from 

different points of view to play efficiently in Robosoccer using AlBOs. Physical maneuvers 
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could not bg improved over a certain limit due to the limitation of hardware resources. 

Also, the robocup authority provides a partially dynamic environment for its participants. 

This is to make an agent encounter with different hidden states during game play. It is 

to make sure that the software may not only work for one particular purpose but also 

in other dynamic environments with similar ideology. World model prediction is the way 

of sensing the environment and already some efficient software techniques are devised by 

CMU'05 team based on prioritized hierarchy [50]. However, it is not defined how to take 

an optimized decision at any moment. In soccer, a number of different situations may 

come up. Hand coded techniques are not at all a permanent solution to encounter these 

large numbers of problems. It may be effective for an environment with limited dynamic 

nature, but it will definitely get out of control with the increment of complexity. So, 

a different technique was introduced to solve this problem. At the beginning the fuzzy 

logic [33] and later on the machine learning system was introduced to take care of the 

problems stated above. 

2.9.9 Discussion about learning techniques introduced in 

Robosoccer using the AIBO 

So far learning techniques are widely used to manage physical movements in the AIBO. 

However, some studies have also been conducted to apply the next level of action taking 

process in the AIBO. Studies for both basic and high level programming for the AIBO 

involving RL is described here. 

In 1999 [51] and 2000 [52], two studies were being conducted to solve walking problem 

using reinforcement learning. The aim was to develop a walking strategy to minimize 

the trade off between speed and stability in the prototype. In the year 2004, a function 

approximation technique called policy gradient was applied to improve the walking gait 

[53].In 2001 some teams such as baby tigers [40] and Cerberus [40] used learning technique 

for their teams. In this year D.Gu and H.Hu applied fuzzy logic controller for AIBO 

[33]. Gradually people started to apply the learning methods for common problems of 

Robosoccer. For example, adaptive methods and real time decision making methods 

were applied to localization problems in 2002 [54]. Also, in the same year RL and fuzzy 
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logic both were applied [33] at the same time to manage the locomotion problem in the 

prototype. Other learning methods than reinforcement learning were applied for color 

detection at U N S W in 2003 [55] and in visual object recognition for legged robots [42], A 

genetics based learning program was applied for ball chasing and position reaching [56]. 

Other physical actions like ball acquisition were also optimized using learning algorithm 

[57]. Again, a learning technique used to solve the walking problem, but this time to 

make it faster [14] yet stable. A slightly different approach was taken by applying learning 

algorithm in the camera pointing strategy [58]. That research was to find a bridge between 

pointing at a particular object and having an overall view of the field. The main idea of 

this study was to find a way to keep a watch on more than one object at a time. This 

paper described a high level action on the basis of a physical process using reinforcement 

learning. Few papers also described the similar walking gait problem using some new 

technique, such as the fitness function from genetic algorithms [59]. This discussion 

shows that researchers have a tendency to apply the learning technique to solve the basic 

maneuver skills. 

2.9.10 Real world scenario vs simulated Robosoccer 

Apart from real life experiments much effort has been made in soccer simulators using 

learning techniques. The Robosoccer simulation league was started in 2002. In this event, 

the 2 D simulation league was first organized in a soccer server. The server consisted of a 

physical soccer simulation system. Matches were being displayed on screens using simula­

tion monitors. This effort was made to present a semi physical environment to researchers 

to take care of particular Al related problems in Robosoccer. It relieves programmers from 

handling issues like object recognition, communication, maneuverability, ball handling and 

other hardware limitations. O n the other hand it simulates the multi-agent environment 

not only with a high level of uncertainty, but also with real life demands such as a minimum 

time for thinking processes of agents, proper strategy between team mates and so on. 

As a result much time has already been spent to combat Al issues in simulation league. 

Reinforcement learning has already been implemented successfully in simulators for some 

critical sub tasks such as keep away soccer [60]. This paper shows a complex multi-agent 

learning in a noisy unpredictable environment. A team of robots try to keep the ball in 
— — , 
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their possessjon within a rectangular area. At the same time they try to keep it away 

from the opponent team. Another multi agent learning was developed in A Multi-agent 

Algorithm for Robosoccer games in Fira Simulation League [61]. The paper concentrated 

on the placement of players in order to score a goal or to make an efficient pass which 

minimizes the risk of losing the ball to a nearby opponent player. The position of the 

ball, nearby goal posts and the position of enemy players were three main criteria for 

the purpose. The proposed algorithm was tested against the 2002 champion team and 

proved efficient over hand-coded technique. In another paper, Peter Stone, et al described 

the use of some simple reinforcement learning techniques for the multi-faceted learning 

process [53]. These examples solve that the implementation of the learning process in 

simulators is easier than in real life cases due to the absence of physical problems. Until 

2003, only a 2D simulator was available in the Robosoccer simulation league. 

However, in 2004 a new 3D simulation soccer was introduced. It was much more 

realistic than the previous 2D one. A large number of physical rules were used to build up 

the environment with the help of S P A D E S simulation system. A change to 3D from the 

2D environment incorporated many differences in terms of complexity. First of all, the 

agent has to choose its task within a large number of states compared to the previous one. 

Secondly a number of physical rules make it realistic in terms of keeping the balance of 

the robot, even in a simulation environment. The model of a bipedal sumo Hoap-2 robot 

was used for this simulator. Its movements, maneuver and other environmental properties 

make it almost similar to a real life system. Moreover, the use of S P A D E S middle-ware 

system removes some of the drawbacks of the 2D system like fluctuation of the team 

performance due to the machine efficiency and the network load. 

The 3D simulator might work as an alternate solution for bipedal robot used in some 

event of Robosoccer. However, it can not be a replacement for the middle size four legged 

official AIBO league due to the differences stated below. 

• First of all the movement of quadrupedal locomotion is more difficult than that of 

bipedal motion. So, the maneuverabilities deployed in the simulator are no match 

for real life AIBO locomotion issues. This is because of the random nature of 

damping forces such as gravity, friction acting in real life. AIBO topples in real life 

if imbalanced a little from its equilibrium whereas it remains on its four legs for the 
_ _ ^ 
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most o/the time in simulators in similar situations. 

• Secondly, visual object recognition is a significant issue in a real life event than in 

a simulator. Actually the object recognition technique is straight forward in the 

simulation environment. However, the presence of shadows may confuse the robot 

in a real life situation. The intensity and part of the simulated shadow can not 

resemble the real life situation.The real life object recognition techniques used for 

robots are crucial to determine each and every situation in Robosoccer. 

In summary, the papers described in this subsection, used reinforcement learning in Ro­

bosoccer in both 2 D and 3 D simulator. So they describe the use of reinforcement learning 

in a much more synthetic and controlled environment and so are not directly comparable 

with the work in this thesis. 

2.9.11 A general approach to the existing problems 

Many difficulties exist for real life robot programming over a simulator. The robotics soci­

ety classified a particular hierarchical approach for different types of problems. There are 

three basic approaches that exist for machine learning, namely black, white and grey box 

approach. In the black box approach a robot automatically and autonomously acquires all 

knowledge base and thus develops the desired skill. No human interference and no model 

is given in advance for this approach. O n the other hand, the white box approach provides 

each and every piece of information to the agent to carry out a particular assignment. 

Everything is strictly determined by the programmer. A middle way in between these two 

extreme methods is the grey box approach. A partial environmental model is provided 

and the desired action sequence would be available for the agent as well [62]. A machine 

learning algorithm is used here to complete the world model and to tune the sequence 

parameter. Then, finally, the agent comes up with an optimal policy. This semi-supervised 

term explains that a part of the information about the environment and task is provided 

to the agent. Actually in this case the environment is quantized and supplied in advance 

to the agent with basic actions and basic situations. Only some of the basic situations are 

provided to the agent and the rest is available for exploration with some given actions. 

However, there are a few practical problems that exist in real life machine learning which 
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make it challenging for programmers [63], [64], [65]. The main issues among them are 

briefly discussed below. 

• High level noise 

Low resolution camera introduces noise in images taken during game play. Moreover 

we are working with quadruped robots. Quadruped motion is not smooth in terms 

of leveling. A bubble level measuring instrument reveals that the horizontal level 

position of the robot constantly varies during the walking gait of the AIBO. So loss 

of frame, overlapping images and so on make image processing a critical issue. 

• Stochastic actions 

The stochastic process is a kind of non-deterministic process. The output of this 

process belongs to a probabilistic distribution [66]. Let us consider that a robot 

is working under a certain environment with few states and actions defined for it. 

It will receive some particular reward after performing any action according to a 

reward matrix. If it is in Si situation in time t and takes a-i action, it could receive a 

particular amount of reward. Again at time t+n if it comes under Si situation and 

takes ai action again then the received reward would probably be a different one. 

This is the essence of the stochastic process in the machine learning algorithm. 

• Time and material constraint 

Convergence of the reward matrix must be achieved by a small number of learning 

processes. It depends upon how fast the agent can react under a real world situation. 

• Real world real time requirements 

So many real world applications, such as soccer, require quick decision making 

abilities. Using adaptive methods should enable a robot to process input information 

and act quickly like a living animal. Present hardware and associated software 

methods are not yet able to collaborate fast enough to yield such output. 

• Task complexity 

Sometimes task complexity does not permit programmers to make a white box 

model. Quadruped locomotion is such a process. The locomotion process of the 

AlBOs quadruped, involves some basic steps. It takes one of its front legs up from 
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the flopr and so the center of gravity of the torso will be balanced by three other 

legs. The lifted leg is placed in front then followed by the same action with the 

corner wise hind leg while the three other legs take care of the robot's weight. The 

level of the robot is affected a lot by this process and so are the images taken 

by nose camera. So, balance should be maintained between leg movement and 

horizontal movement of the torso by flap control. A learning process should work 

here better than a hand tuned model due to the wideness of available situations 

and corresponding solutions. 

The complexity of real-world robotics tasks force researchers to use the complex white box 

model. Previously programmers used to learn about the particular task and environment 

and then tune the parameters accordingly to one or more autonomous agents. Only re­

cently the robotics community is more openly suggesting to employ the grey box approach 

so that robot could be trained on selected aspects of the task and certain parameters set 

could be automatically tuned [62,67,68]. 

Already a lot of work has been done with reinforcement learning for managing basic 

maneuverability skills in AIBO. W e have concentrated on developing the high level behavior 

(real time decision making) in the AIBO. One paper [69] already used which technique 

in high level action selection algorithm. Three challenges were pointed out for a robot to 

achieve the goals there: 

• Exceedingly noisy action effects often with irregular noise distributions. 

• Dynamically changing environments. 

• Real time decision making despite limited processing power 

In that paper the first point was considered and an instance-based action model was in­

troduced. W e have focused our effort on the third point with simple off line reinforcement 

learning algorithm Q-learning for the purpose. 

2.9.12 Introduction to next chapter 

Robosoccer involves many different challenges. W e chose to focus on the goal keeping 

problem because it has a definite maneuverability aspect and its importance to the game 
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as well. W e also have chosen the grey box approach to train our AIBO as a goal keeper 

to defend penalty shots. Reinforcement learning could be used to tune sequential actions 

in a grey box approach. In this thesis it was used to find out suitable actions in a given 

situation for goal keeping. The goalkeeper was chosen to train using penalty shots taken 

by another AIBO from different spots. The first experiment ended up with a single step 

reinforcement learning process. This single step calculation excluded some important 

features of reinforcement learning and so a second experiment was conducted with more 

simplified actions and using more precise quantization of the available environments. At 

this stage, it was shown that the learning system was working as efficiently as the hand 

coded technique. The UPenn2003 code base was used for producing a bench mark and 

to prove the efficiency of the learning system. Moreover this experiment was extended to 

the two attacker problem using knowledge acquired from one attacker experiment. In that 

case, one attacker passes the ball to another and the second agent takes a shot towards 

the goal using the running ball. The knowledge bank obtained from the second experiment 

was used for the two attacker problem as well. It was deemed useful for the purpose. The 

point to be noted here is the knowledge of the goalkeeper is completely determined by the 

programmer using hand coded technique. In contrast the reinforcement learning started 

with no knowledge and ended up with a similar output. So, the reinforcement learning is 

used to solve the goalkeeping problem in this thesis and the reason of using a particular 

RL technique will be addressed in the next chapter. 
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Chapter 3 

Methodology 

3.1 Introduction 

Broadly, the research problem in this thesis is about how to apply reinforcement learning 

in Robosoccer. To be precise, the focus is on applying a specific RL technique in decision 

making for goalkeeping. The aim here is to use an RL technique in the AIBO for it to 

learn the best action in a given situation to perform goalkeeping. The reason for using 

a particular learning technique for this problem is addressed in this chapter. Moreover, 

it is shown here that the particular technique, Q-learning, is more appropriate than its 

counterpart S A R S A in this regard. 

The incorporation of a learning process into a physical robot is a significant issue for 

Al research groups [70]. In robotics, a learning process can be used in performing several 

tasks. The basic idea is to make an agent take decisions autonomously in a novel situation. 

In a controlled and limited environment, a robot can work efficiently with a white box 

model as described in Chapter 2. In such a model, a programmer is aware of each and every 

possible situation well in advance. So, a model with perfect input/output working pairs 

can be defined for the agent. The input signals are mostly free from noise in a controlled 

environment. As a result, the agent can detect any situation almost correctly and m a p 

the perfect output action in response. However, the problem considered here starts with 

a partially known or fully unknown environment which could better be addressed with 

the grey box or black box model respectively, described in Chapter 2. As an example, 
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the strategic, actions become difficult due to the presence of team mates and opponent 

players in a partial noisy environment like Robosoccer. Moreover an agent often misjudges 

a situation due to a partly noisy environment. Secondly, an agent has to take an optimized 

or best action after correctly determining the situation. In this thesis, we will establish 

that a learning process proves as good as hand-coding in determining the right action for 

the right situation, without human supervision during the training exercise. 

A learning process like RL has already been applied in learning low level actions [57] such 

as managing basic skills like locomotion, image processing in different versions of robots 

including AIBO and ball acquisition as discussed in Chapter 2. The RL is a semi supervised 

system and so it partially works without human supervision. The learning system used 

in this thesis, does not deal with physical behavior at all. The system only manages 

the decision making process for performing the goalkeeping task. More precisely, the RL 

is basically used here to develop the right maneuver at the right moment. T w o basic 

experiments were conducted to demonstrate the efficiency of RL against Upenn'03 code. 

An environment set with Robosoccer field specifications was used for these experiments. 

However, before proceeding with the main experiments it is necessary to decide on 

a particular RL method to use. T w o basic RL methods are Q-learning and SARSA. A 

comparison between these two similar processes is described here based on a simulated 

maze-learning environment. Finally, the comparison led us to select one of them for the 

goalkeeping experiments. 

In the first goalkeeping experiment, an attacker takes some shots from three fixed points 

towards the goal and the goalkeeper learns to block the ball using a 3x3 state x action 

table. However, after performing this experiment it was observed that the experiment 

was almost a trial and error method and was not actually using the temporal difference 

feature of RL as discussed in Section 2.6. The single step learning process was preventing 

it from doing so. As a result, it was decided to perform another experiment which used a 

three step, back-propagation learning process using the Q-learning formula.The theoretical 

overview behind these two experiments is discussed further in this chapter. 
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3.2. Choosing a preferred learning approach 

3.2 Chdosing a preferred learning approach 

3.2.1 A simulated maze learning example using Q-learning and 

SARSA 

A 

E 

s 

c ̂ 

K 

B 

D 

X Goal 

F 

J C 

Figure 3.1: Maze learning environment 

Let us consider an existing example with maze learning simulation systems to find the 

difference between two different learning techniques. This can be found in the existing 

example [31]. An agent is being placed in an environment consisting of six separated areas 

which are called as rooms in here. The task of the agent is to navigate to a particular 

room using the shortest possible distance from any room. The environment plan is given 

below. 

According to Figure 3.1, the outside region F is the target room for the agent. The 

agent may start from any of the rooms including the target room 'F'. A quarter circle 

between two rooms represents a door. Every room name including F is denoted as a 

state. It will be considered as an action when the agent changes rooms, too. This letters 

(room names) are used to present the states in state x action Table 3.1 as well. However, 

the access between the rooms are restricted and described in the reward matrix shown in 

Table 3.1. 

Both Q-learning and S A R S A were applied to this problem. The value of the learning 

parameter (a) and discount factor (7) used in Q-learning Equation 3.1 are 1.0 and 0.8 
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respectively. ̂ This experiment was designed in a computer simulated environment. As a 

result, it was a completely noiseless environment which allowed us to use the value of 

learning parameter as 1. 

So, using a = 1 and 7 = 0.8 the simplified Q-learning shown in Algorithm 1 and S A R S A 

shown in Algorithm 2 formula are described below 

Q-learning 

Q(state,action) <— l.0*R(state,action)+0.8*Max(Q(nextstate,allaction)) (3.1) 

SARSA 

V(state, action) <— R(state, action) + 0.8 * V(nextstate, nextaction) (3.2) 

The value of R is considered as 100 in this case. This is used in terms of reward quantity 

in table 3.1 here. This matrix shows that the agent achieves a reward only when it moves 

to room 'F' from rooms 'B' and 'E'. If it starts from Room 'F' then it is rewarded straight 

away without making a move. The reward matrix also reveals the location of doors between 

rooms with a '0' at the intersections of two rooms mentioned in the corresponding row 

and column. The restriction of movement between rooms is shown using '—'. In other 

words, the action denoted by ' —' can not be selected from that particular state. The 

agent can take an action at any state if the state x action pair is linked by either 0 or 100. 

The reward is denoted by the numerical value '100' at the proper state transition point. 

The full reward matrix with permissable actions is shown in at Table 3.1 with states along 

the rows and actions along the columns. The matrix shows that only rooms 'B','E' and 

'F' have a door to the target room that is 'F'. If the agent starts at room 'F', then it 

stops right there and receives a reward. The agent starts with a blank memory which is 

a state x action matrix with all values set to zero, as displayed in Table 3.2. 

3.2.2 Q-learning 

The agent follows a few steps to complete the learning process using the Q-learning al­

gorithm 2 in Chapter 2. The agent may choose an action randomly using this algorithm. 

Apart from that the agent could choose a different policy instead of taking actions ran­

domly. The 8 5 % greedy policy algorithm is described in this regard. This 8 5 % greedy 
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Table 3.1: Reward table 
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action selection policy is nothing but the e greedy policy with e = 0.15. Due to main­

taining a balance between exploration and exploitation in S A R S A we have chosen an 8 5 % 

greedy policy with the maze-learning using SARSA. In order to present a comparison, the 

Q-learning with 8 5 % greedy policy is described in Algorithm 3 in this chapter. 

So, two different policies are used to update Table 3.2, using Q-learning in this case. 

Policy 1 Use random action selection policy 

Policy 2 Use 8 5 % greedy action selection policy 

The point to be noted here is that strictly the maximum available reward from the next 

state is chosen here to update the table irrespective of the action selection policy. The 

size of the full state x action matrix permits the agent to get the training done within a 

reasonable amount of time. The convergence of the matrix ensures that enough chances 

are given to try out all possible actions. In the next chapter, we have explicitly described 

the learning technique using a random training epoch. 

Consider that the agent starts from room 'A', moving randomly. It will not receive 

any reward until it reaches room 'F'. Let us consider that at a point it reaches room 

'F' through room 'E'. Using the Q-learning formula, the reward is derived from the state 

transition from 'E' to 'F' using the following steps. 
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able 3.2: Initial State x Action Table for Q learning and S A R S A 

s 
T 

A 

T 

E 

A 

A 

B 

C 

D 

E 

F 

C 

A 

0 

0 

0 

0 

0 

0 

T 

B 

0 

0 

0 

0 

0 

0 

1 

c 
0 

0 

0 

0 

0 

0 

0 

D 

0 

0 

0 

0 

0 

0 

N 

E 

0 

0 

0 

0 

0 

0 

F 

0 

0 

0 

0 

0 

0 

• Q(State, Action) = 100 (As R= 100 for the given state transition) 

• It is the terminal state and so learning stops here. 

• This is the terminal state and so the term 0.8MaxQ(NextState, All Action) is 

invalid according to the Q-learning formula. 

The resultant state x action matrix would look like Table3.3. 

Table 3.3: First intermediate State x Action Table by Q-learning 
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Next time, consider that the agent starts somewhere except for room 'E' and 'F'. During 
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Algorithm 3, Q-Learning with 8 5 % greedy policy 

Initialize Q(S,A) Arbitrarily 

Initialize S 

choose A from A(St) using 8 5 % greedy policy (If no reward available use random policy) 

repeat 

take action A, observe S and A' 

choose A' from S' with random policy 

update table using Q(S,A) <— Q(S,A) + a[R + 7 maxA* Q(S',^*) - Q(S,A)] 

S < — S' 

A < — A' 

A e A* J J A* denotes all possible states 

until terminal S reached 

R E T U R N Q(S,A) 

end _ ^ _ _ _ _ 

training it may go to room 'E' from room 'D' as there is a door that exists in between. 

The following mathematical steps are involved to upgrade the state x action table, in this 

case. So the summary we have from this training is as follows. 

• Q (State, Action) = 0 (From reward matrix) 

• Max (Q(next state, all action)) = 100 

Q(state, action) +— 0 + 0 + 0.8 * 100 (3.3) 

Q(state, action) <— 80 (3.4) 

Now the state x action table would appear as in 3.4. In this way, the whole matrix 

would be updated and converge to Table 3.5 after completion of the training. This table 

contains the final output using both the 8 5 % greedy and random action-selection policies. 

The result shows perfect convergence which indicates the end of training. Using this 

matrix, the agent can find the shortest path to the target room 'F' from any room. Let 

us consider that the agent starts at room 'C. The shortest path to the target room would 
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Table 3.4: Second Intermediate State x Action Table by Q-learning 
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be C-D-E-F or it could be C-D-B-F as well. Accordingly if the agent starts at room 

'E', it will go straight to room 'F' from there and if it starts from room 'F', it stays 

there. This table is a product, obtained by Q-learning formula, which uses the highest 

reward available on the next state to update the table and a random policy to pick up 

an action. This ensures a fare amount of exploration while exploiting the experience at 

the highest level. This is the reason why the Q-learning formula makes a perfect balance 

between the exploration and exploitation dilemma. This experiment takes more or less 

4000 training cycles to converge while using an 8 5 % greedy action selection policy and 

highest reward selection method. In contrast with that it completes the training using 

only 1800 to 2100 training cycle while using a completely random policy. A difference of 

less than 0.01 between the two consecutive output matrices is considered as convergence 

in this case. So, it is clear at this point that this maze-learning process has successfully 

completed using Q-learning [31]. Moreover, it takes less time while using the random 

action selection policy than using the 8 5 % greedy policy. 

3.2.3 SARSA 

S A R S A was applied to this problem in the same way. The same 8 5 % greedy policy from 

Q-learning was used here. This level of exploration ensures that the agent uses strictly 

greedy policy for most of the training period. It also ensures that enough chance is given 
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Table 3.5: Complete State x Action table by Q-learning 
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to the agent to explore the environment while exploiting the available experience as well. 

The final outcome of using S A R S A is shown in Table 3.6. 

Table 3.6: Complete State x Action Table by SARSA 
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The optimal path to target room from 'D' is either D-B-F or D-E-F, whereas according 

to SARSA, the optimal path is only D-E-F and not D-B-F. The Q-learning revealed both 

the path by assigning an equal weight to the cells corresponding to columns 'B' and 'E' 

in row 'D' in Table 3.5. So, all the optimal paths were not fully revealed by SARSA. 

This happened due to choosing a particular action and the reward associated with it to 
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complete the,table. But Q-learning always considers the maximum available reward out 

of all available actions from the next state. It was also noticed that the output state 

x action table by S A R S A does not converged to that of Q-learning. Different output 

matrices were produced from multiple runs of the same program using SARSA. Each time 

50000 training exercises did not end up with the same output matrix and each time one 

or two of the shortest paths were not discovered. So, it is clear that Q-learning with 

8 5 % greedy action choosing policy is better than S A R S A for producing a full proof result 

for the simulated maze-learning problem. Again Q-learning with random action selection 

policy takes almost half the time to converge than that with 8 5 % greedy action selection 

policy. 

This discussion points out that the high learning rate influences the results of both 

the experiments using Q-learning and SARSA. Due to this high rate, S A R S A is sensitive 

to the recent exploratory action. A high learning rate is also not recommended for a 

partially noisy environment like Robosoccer. The presence of different players and their 

activities are responsible for introducing noise in Robosoccer environment. O n the other 

hand, Q-learning acts faster with random action selection policy. This policy is suitable 

for a partially noisy environment like goalkeeping. However, an overview of the concerned 

goalkeeping experiment should be discussed before choosing the right method for training. 

3.3 A brief description of state x action tables used in 

experiments 

There are two state x action tables used for goalkeeping experiments. These tables 

were developed according to the requirements of goalkeeping against penalty shots from 

different positions and also against two attackers. The first table was designed in such a 

way that an attacker takes shots from the penalty box three different positions. It is a 

3 X 3 state x action shown in Table 3.7. 

Due to the absence of temporal difference learning feature of this experiment it was 

decided to extend it further with a table appeared as a 4 X 7 matrix described in Table 

3.8. 
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Table 3.7: Initial State x Action Table 
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One of the challenges in this research was to find the right learning method one that is 

suitable for suits two state x action Tables 3.7 and Tables 3.8. 

3.4 Choosing the correct method for the goalkeeping 

experiments 

So far, a simulation experiment has been discussed here which consists of a 6x6 table 

and uses a completely noiseless environment. The nature of a state x action table for 

the upcoming goalkeeping experiments is described as well. Accordingly, the goalkeeper 

experiments have two key features which influence the choice of a particular method to 

work with. 

T h e size of the state x action table There are two state x action tables in use for the 

goalkeeping experiments. The biggest table consists of four columns and seven rows 

which is less in size than that used in the maze learning experiment. 

Practical hazards AIBO robots are made to shut down when a software exception occurs 

in the operating system (OS) code or any of the joints experiences an obstruction 

beyond a threshold. This feature made the robots to go off line several times while 

experiment was on. Each time the boot up process was draining a large amount of 

energy and it resulted in draining the battery life quickly. The environment we used 

was far less noisy than a full scale Robosoccer environment. However, the jerks 
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Table 3.8: Initial State x action Table 
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due to movement of the goalkeeper introduced a little noise in calculating the ball 

distance using the nose camera. 

These two points forced us to use a technique which could yield a suitable result with the 

4x7 state x action table and at the same time enable it to converge as soon as possible. 

It is obvious from the previous discussion that Q-learning with random action selection 

policy is better than S A R S A in case of noiseless maze learning for two main reasons: 

• High speed converging rate 

• Full consideration of each and every possible solution 

So, finally it was decided to use Q-learning with random action selection policy but with 

a high value of alpha. It was chosen due to the fact that the Robosoccer environment 

involves negligible amount of noise signal only which makes it similar to maze-learning 

scenario. The experimental setup used in this thesis will be discussed in the next chapter. 

The goalkeeping training experiments will be performed using this setup and the Q-learning 

formula with random action selection policy. 
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3.5 Choice of the software environment for 

programming 

Officially, Sony released a Standard Development Kit (SDK) for programmers around the 

globe [71]. It is a fully Linux based development environment. The script was written for 

Vine Linux distribution initially, but it has also been supported by other Linux distributions 

having some particular dependencies. Unlike windows, Linux softwares are available in the 

form of code. This is due to the Copy Left idea from Open Source Society. The user has to 

compile the code using some special commands and generate the particular machine code 

for the Linux distribution being used. This compilation process needs a different program 

compiler to be installed already in the system. In addition to that, those compilers should 

have some particular features which vary from one version to another, these are called 

dependencies for compiling a software code in Linux. Moreover more than one version 

of a similar compiler could be available in a single Linux system. But the system will 

recognize a particular version as the default option declared in the user profile. The Sony 

S D K was developed using the C + + programming language. First of all we started testing 

some of the programs which are already provided in the SDK. But, compilation of a 

new program in the local machine needed few more software dependencies. W e started 

with Cygwin1 and installed PERL to run some existing programs, but further packages, 

needed to compile a new program were not available with Cygwin for Windows. So, we 

have focussed on choosing an open source O S and installed Fedora Core 6. It was too 

advanced for the S D K compiler. As the S D K was released long ago and so some of 

the dependencies were not available for the the full installation in Fedora 6. S D K was 

made for low level programming. All the primitives were available in it and one could 

write a code from scratch for AIBO using it. A high level frame work Tekkotsu [72] 

was made on top of that to provide one step ahead solution for programmers around the 

world, but one still had to install Sony S D K with full features to play with Tekkotsu. 

So, the idea of using Sony S D K in the thesis was abandoned. In the recent past, some 

interpreters developed to write program for AIBO through Linux, Windows and M A C O S 

1A command prompt utility work under windows environment to simulate a group of Unix commands 
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as well. In addition to that these wrappers were equipped with the facility to make some 

common programming language compatible with AIBO from the windows environment; 

these languages are namely Python, Matlab, Java and C + + . 

First of all, the focus was to concentrate on one of the simulators made for AIBO 

embedded inside the Knoppix Linux distribution. This distribution does not need to be 

installed in the hard drive and can run directly from C D R O M . Unfortunately, this feature 

does not allow the user to save any data in hard drive formatted with New Technology File 

System (NTFS). Moreover, we found that some of its features lead to frequent breakdown 

of the software and make it almost impossible to use. So, the Universal Realtime Behavior 

interface (URBI) system [73] was chosen at last. This is a software wrapper over Sony 

S D K and allows other programming languages to communicate with AIBO with an in­

built program interpreter. A simulator for AIBO namely Webots was released to assist 

programmers to test their skills virtually using URBI scripts and other languages. Both 

the URBI and Webots were made for Windows and Linux. A user has the privilege to 

change the environmental variables in this simulator, which makes it more realistic. In 

the simulator there is a separate window to show the nose camera view of AIBO. But no 

option exists to program the AIBO camera using it. So, we have tested our maneuver 

programs only into the simulator before testing it practically. Those programs worked 

properly in real life situation with little calibration. 

The essence of URBI control lies in its simple yet powerful nature. It has two different 

architectures for programmers. The first feature is available with the Windows installer. It 

allows a programmer to run AIBO using a scripting language only provided by URBI. The 

language consists of commands to control the primitives and some new features created, 

combining the existing techniques. The in built ball object helps the programmer to 

make the robot look at the ball and track its center with a single command, whereas the 

primitives allow for movement of a single leg joint at a desired angle. These codes could 

be copied to the memory stick or could be sent instantly via wireless link to the temporary 

memory of the robot. W e used this feature and sent our raw codes through wireless link 

until it worked fully. Once it started working fully, it was copied into the stick. The" URBI" 

programmable memory stick (PMS) software contains an easy architecture to follow. The 

IP edition process is the same for both Sony S D K and URBI. The " W L A N C O N F . T X T " file 
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available at " O P E N - R S Y S T E M C O N F " location contains the IP and related information. 

One can toggle the dynamic host configuration protocol (DHCP) on and off by changing 

a command line in this file too. This is the feature of a local area network (LAN) 

card for acquiring a dynamic IP against the media access control address(MAC). But we 

experienced many problems with having the D H C P server on and so decided to use static IP 

using class C private IP pool. The A P was addressed as 192.168.10.1 and three robots with 

192.168.10.2, 192.168.10.3 and 192.168.10.4 with 255.255.255.0/default subnetmask. 

Writing a new script and modifying an existing one is one more simple nature of the URBI. 

Being open source software, all the scripts are available inside the P M S . In fact we have 

started by altering some available scripts and worked on the existing walking procedure to 

make it efficient. However, the lay-to-stand function was not up to the mark. It caused 

the robot change its direction while standing up from a complete lying position. So, a 

different approach was introduced which is similar to the stand up technique of a camel. 

W e put that script inside the P M S with the others and made it one of the default features. 

The URBI.inf file takes care of the list which is being used to load programs at the start 

up. W e developed a new script for sidewise movement. This action is one of the most 

important among others during Robosoccer. The next stage program creation using URBI 

involves different object creation rather than writing simple functions. This feature would 

be helpful for the future work. 

The following chapter describes about the experiments in detail, that have been per­

formed to find an answer to the research question stated in Chapter 1. 
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Chapter 4 

Experiments 

4.1 introduction 

This chapter describes seven experiments, stated below. The experiments stated below, 

will provide a practical overview of using Q-learning in playing Robosoccer using the AIBO. 

1. Ball distance measurement experiment using nose camera 

2. Ball distance measurement experiment using IR sensors 

3. The experiment for goalkeeping training with single attacker and a 3x3 state x action 

table using Q-learning 

4. The experiment for goalkeeping training with an extended 4x7 state x action table 

over the first Q-learning experiment 

5. The two attacker experiment using the available knowledge base from the goalkeep­

ing experiment with 4x7 state x action table 

6. The one attacker benchmark experiment 

7. The two attacker benchmark experiment 

The next section specifies a common environment which was made using official Robosoc­

cer field specifications. These will be used for all the experiments from now on. 
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4.2. Common setup for all experiments 

4.2 Common setup for all experiments 

The experimental setup for goalkeeping training and ball distance measurement technique 

were processed using the official field specification for Robosoccer using AIBO as men­

tioned in Figure 4.1. W e used one half of the total field area without colored poles situated 

by the side. These poles are for ease of the localization process and the localization tech­

niques were not coded or used in these experiments as we have discussed in chapter 1. 

This thesis is dedicated to study the application of the reinforcement learning process 

on AIBO and train it as a goalkeeper. The URBI system was used as the programming 

environment. Unfortunately, the URBI had no particular function to calculate the distance 

of the ball from AIBO. So, a separate method is described for that and an experiment 

was devised accordingly. 

The entire thesis consists of seven experiments: 

4.3 Ball distance measurement experiment 

4.3.1 Background of the experiment 

The AIBO is one of the few low cost robots, consisting of several different sensors in a 

single prototype. Engineers at Sony tried to make it similar to a real life dog and so tried 

to put all sensors on its different parts and made it as close as possible to a real-life dog. 

Some of these sensors are used in playing Robosoccer too. One of the mandatory actions 

in Robosoccer is to calculate the distance of the ball and other players from the robot. 

AIBO has two different Infra Red (IR) sensors at its nose. One is to sense the distance 

of nearer objects and the other is for the far objects. Infrared ray is one of the members 

of the electromagnetic spectrum family. It falls within the wave length range between 1 

nanometer(nm) and 750nm and is invisible to human eyes. The working principle of those 

two IR sensors are stated below. 

One sensor emits the infrared ray at a time at the direction of head pan angle. This 

reflected ray is received by two different sensors at a time, situated by the side of the 

transmitting device. The difference between the transmitted and reflected times are used 
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4.3. Ball distance measurement experiment 

t + 1 

,.___, . H 
2700 

r - » 

6000 

Figure 4.1: Arrangements for first experiment (Units are measured in millimeter) [3] 

to determine the distance. It is wise to use the data from the near sensor when an object 

is situated closer than 20cm in front of the robot. On the other hand, the rear distance 

sensor is appropriate for the objects situated between 20cm and 150cm distance from the 

robot. These two IR sensors are supposed to return a rough idea of the nearest object in 

front of the robot, but in Robosoccer we need more accurate measurements of distances 

from few particular objects and their recognition is also important in this context. There 

are two basic problems that exist with using the IR sensors to obtain ball distance in the 

field. First of all, it has to move its head towards the floor when looking at the ball. At 

this moment, the IR receiver receives part of the reflected ray from the ball and some from 

the adjacent floor. As a result the data become fuzzy and fluctuating. Furthermore, IR 

sensors can not recognize the difference in color between the red ball and other objects. 
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4.3. Ball distance measurement experiment 

So, if another player comes in front of the ball then the agent will consider the distance 

of that player as the distance of the ball. So, we have taken a different approach for ball 

detection to calculate its distance from the agent. 

The AIBO also has a color video camera situated below the nose IR sensors. It has a 

Complementary Metal Oxide Semiconductor ( C M O S ) sensor with the highest resolution 

of 108 X 260. Few existing codes were used for to develop the main code used in this 

experiment. T w o of the existing codes are used from URBI repository. These are ball 

tracking code (modified) and ball.ratio function. The way we used those functions in our 

experiment is described below. 

The ball tracking code performs two functions. 

1. It detects the pink colored circular ball 

2. The nose camera is pointed at the center of the ball 

The viewing angle of the video camera is such that it accommodates the ball within its 

view at a distance greater than 3cm from the nose. So, we can make sure whenever 

the ball is visible beyond that range, the agent is looking at its center. In that case, a 

part of the full available scenery to the nose camera is then occupied by the ball. At a 

particular distance, the ball will occupy a fixed amount of image area. Ball.ratio function 

yields the percentage of the area occupied by the ball in a picture. The major goal of this 

experiment is to calculate the distance of the ball using the value of ball.ratio. The robot 

also needs to know the ball direction, but the value of head tilt angle can be used directly 

to determine the direction of the ball. So this experiment emphasize on calculating the 

ball distance. 

4.3.2 Experiment for measuring the distance between the ball 

and robot using the nose camera 

4.3.2.1 Aim 

This experiment was designed to find a method to determine the distance between the 

pink ball and the nose camera and to establish the accuracy of this method. 
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4.3. Ball distance measurement experiment 

4.3.2.2 Equipment 

W e used one AIBO, the ball and points at fixed distances on the floor for this experiment. 

4.3.2.3 Setup 

The robot was placed in a fixed position with the ball tracking code enabled on it. It looked 

at center point of the ball with a fixed neck value and two variable parameters, namely 

head pan and head tilt. The ball.ratio function calculated the ratio of area occupied by 

the ball to the full visible area in picture and returned the value. W e put the ball at 

different points in front of the robot. Five sets of values were taken at each point due 

to the minute fluctuation of placement by the natural forces and due to the variation in 

electromagnetic signal obtained from the IR receiver. 

The radius of the ball is nearly equal to 3cm. So we put points 3cm apart from each 

other for the experiment. Ball.ratio values were recorded after placing the ball at each 

point. A total of 5 samples were taken at every point and an average value was determined 

using them. W e considered a total of 31 points starting from 3cm distance to 99cm. The 

distance was measured approximately from the projection of the joint of neck and torso, on 

the base. So, the look up table we created using this experiment, permits the goalkeeper 

to detect the distance of the ball from 3cm to 99cm only. A picture shown at Figure 4.2 

reveals the real life experimental scenario. 

4.3.2.4 Method 

W e built up a table with the actual ball distance and corresponding ball.ratio values in 

order to find out a relation between them. But, no simple statistical method was able to 

generate an equation which could be used to reproduce the distance using ball.distance 

values as input. So we used the entire table for the distance measurement purpose and a 

two point linear equation method was used to calculate the distance in between each of 

the two extreme points situated at 3cm spacing. 

Theoretically, if either the x or y coordinate of a point is given, the other could be 

calculated using two point equation form, provided the point is situated on a straight line 
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4.3. Ball distance measurement experiment 

Figure 4.2: The ball distance measurement scenario from the point of view of a goalkeeper 

going through two fixed points. The formula is as follows 

(y - Vi) + {x- xi) = (y2 - yx) -r- (x2 - n ) (4.1) 

(x,y) — any point on the straight line 

((xi,yi), (x2,y2)) = T w o fixed points on the line 

Consider that the ball.ratio value at any instant is 0.0050.. It indicates that the ball is 

between 96cm to 99cm from the look up table. The values of the parameters would be 

as follows 

x\ = 96, 

x2 = 99, 

yi = 0.0048, y2 = 0.0053, 

y = 0.0050 

The value of x corresponds to the value of y that is 97.8, calculated using two point 

equation mentioned above. So the ball is at 97.8cm distance if ball.ratio value is 0.0050. 

Applying two-point equation of a straight line, a more accurate distance could be found 

with the assumption that change of distance is linear within each pair of readings. Table 
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4.3. Ball distance measurement experiment 

5.1 shows tjje recorded ball.ratio values against the actual distance. 

4.3.3 Experiment for Measuring the ball distance with IR sensors 

4.3.3.1 Aim 

This experiment was designed to measure the distance of the pink ball from the robot 

using IR sensors. Those sensors are situated just below the nose camera. 

4.3.3.2 Equipments 

An AIBO robot and a pink ball were used only for this experiment. 

4.3.4 Setup 

There are three IR sensors available just below the nose camera in a AIBO ERS-7 model 

of which two are receiving sensors. The near sensor is to determine the distance of an 

object within 20cm in front of it. The other one is denoted as the far sensor and is made 

to measure a distance between 20cm and 150cm. The pink ball is placed at each and 

every points 3cm apart. 

4.3.4.1 Experimental Methods 

The near and far IR sensor values were recorded here at each of every 31 points. Five 

readings were taken at each point due to the minute fluctuation of placement by the 

natural forces and the variation in electric signal obtained from sensor. These values are 

available in Chapter 5 in Table 5.2. The average of five readings was placed under the 

average value column and the two extreme readings as highest and lowest values. The 

results obtained using the IR sensors and those obtained from the camera were compared 

to know the relative accuracy of this two methods, discussed in Chapter 5 
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4.4. T h e experiment for goalkeeping training with single attacker and a 3x3 

state x action table using Q-learning 

4.4 The experiment for goalkeeping training with 

single attacker and a 3x3 state x action table 

using Q-learning 

4.4.1 Aim 

The aim of this experiment was to train an AIBO as a goalkeeper using Q-learning method. 

At this stage, A 3x3 state action table was used as a state x action table. 

4.4.2 Setup 

T w o robots, a pink ball and a penalty area with dimension set by official Robocup au­

thorities were in this experiment shown in Figure 4.1. There the attacker shoots the ball 

straight away at the goal. 

4.4.3 Experimental Method 

One AIBO took penalty shots from a point situated at 63 centimeter distance from the 

goal line, at three different points as shown in Figure 4.3. The goalkeeping agent was 

waiting in the middle part to block the shot. The agent was allowed to take three different 

actions. These were, stay in the middle, go left and go right. The striker was also allowed 

to take shots at left, right and middle from the penalty point. At the end of the training the 

goalkeeper should learn to block these shots while start the training with zero knowledge. 

According to Q-learning theory an agent starts learning from a zero Q-value matrix and 

updates its value after completion of each training cycle. The state x action table used here 

consists of basic states, and actions in the headings of rows and columns successively. It 

was decided to use three basic types of shots as three basic states and three corresponding 

movements as three basic actions. The attacker stayed at three different points on the 

penalty line and was allowed to take shots towards the right, middle or left side of the 

goal from each point. These shots are considered as states. The goalkeeping agent can 

watch over the incoming ball and decide the corresponding state according to the value 
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4.4. T h e experiment for goalkeeping training with single attacker and a 3x3 
state x action table using Q-learning 

of headpan,angle. The relevant Also the goalkeeper could take three different counter 

measures to block these shots, which are regarded as actions in this case. According to 

the defined actions, it could move towards the direction of incoming shots and block it. 

The initial state x action table is described in Table 4.1 

Table 4.1: Initial State x Action table 

s 
T 

A 

T 

E 

A C T 

Sl 

s2 

S3 

1 

Oi 

0 

0 

0 

0 

a2 

0 

0 

0 

N 

«3 

0 

0 

0 

States 

Si = Ball is moving towards the left side of the goal. 

s2 = Ball is coming straight towards the goal through the middle area. 

s3 = Take shot at right side of the goal. 

Actions 

ax = Move towards left side of the goal and block/stop. 

a2 = Stay in middle position (and block). The agent will not take any action physically 

in this case because it always starts from this position of the goal. 

a3 = Move towards right side of the goal and block/stop. 

Figure 4.3, displays the view of the field from the point of view of the goalkeeping agent. 

Figure 4.4 and Figure 4.5 state the actual situation with space quantized according to 

state x action table. 

The three states, described above, are few particular situations sensed by the agent 

while playing. Here, the AIBO sensed the direction of the incoming ball from its head 

pan angel. According to the code, the AIBO always looks at the center of the ball. As 
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4.4. T h e experiment for goalkeeping training with single attacker and a 3x3 

state x action table using Q-learning 

Figure 4.3: A goalkeeper's view of the experiment with 3x3 state x action table 

a result, if the value of the head pan angel is equal to or more than + 7 degrees, the ball 

is considered to be on the right side. If it is equal to or less than - 7 degrees, the ball is 

assumed to be on the left side. So, when the ball is on the move, the AIBO calculates 

the distance after every 1.5 seconds and acts accordingly. The amount of this interval 

was chosen depending upon the processing power of the robots and the tasks involved. 

As the millisecond factor is allowed to be used with URBI, it was easy to define a fraction 

of seconds properly. Each of three actions devised here, are combination of two basic 

maneuvers. The first one is a sidewise movement and the second one is block (Stop 

in front of the ball). ax and a3 are two actions that consist of the left and right side 

movements consecutively followed by block for each case. For a2 describes the robot to 

stay in the middle and then block the ball when it is in close vicinity. 

The values of the state x action table 4.1 indicate that the agent started with zero 

knowledge. It gains experience as the experiment goes on.The working formula to update 

the table is as follows. 

V(St) +— V(St) + a * [Rt+l + 7 * V(St+i) - V(St) (4.2) 



4.4. T h e experiment for goalkeeping training with single attacker and a 3x3 

state x action table using Q-learning 

Figure 4.4: A goalkeeper's view of the experiment with 3x3 state x action table 

Rt+i = Reward observed at time t+1 

St = State visited at time t 

Rt — Reward after time t 

a — step size (a constant parameter throughout the whole experiment) 

7 = Another constant parameter 

W e have used a simplified form of this formula. The value of a will be 1 due to low noise 

environment. So the formula would be as follows: 

V(St) < — Rt+i + 7 * V(St+i) (4.3) 

Furthermore, single step learning is automatically used here due to the size of state x 

action table. So, the second parameter on the right side of the equation could be omitted 

as well and the final form of the operating equation would look like the following equation 

4.4. 
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4.4. T h e experiment for goalkeeping training with single attacker and a 3x3 
state x action table using Q-learning 

Figure 4.5: A goalkeeper's view of the experiment with 3x3 state x action table 

V(St) R, t+i (4.4) 

In this case the reward Rt+i = 100 as a reward of finishing the given task. During the 

experiment, the attacker took a total of 30 successful shots in three halves. Each of the 

10 shots were directed at each of the three directions to cover all states. First of all, the 

agent (the goalkeeper here) tried to find out the particular state, in which the ball belongs. 

Practically, it pointed the nose camera at the ball using the ball tracking code and found 

the position (distance and direction) of the ball. Accordingly, it decided whether the ball 

was on the left, middle or on the right part of the penalty area. According to RL theory, 

the goalkeeper starts with no knowledge which is indicated by a state x action table filled 

with zeros. So, at the beginning it randomly chosen different actions to block the shots. 

However, whenever it finds some experience, it started to exploit it and acted accordingly. 
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4.5. T h e experiment for goalkeeping training with an extended 4x7 state x 

action table over the first Q-learning experiment 

4.5 The experiment for goalkeeping training with an 

extended 4x7 state x action table over the first 

Q-learning experiment 

4.5.1 Aim 

The aim of this experiment is to train the goalkeeper using 4x7 state x action table. It is 

an extension of the first experiment using Q-learning. 

4.5.2 Setup 

T w o robots, a pink ball and a penalty area with dimensions set by the official Robocup 

authorities shown in Figure 4.1 were used in this experiment. The attacker AIBO took 

few penalty shots from different spots towards the goal. 

4.5.3 Experimental Method 

This experiment was conducted using a similar setup and characteristics as the previous 

one. But the initial state x action table we used here is more descriptive than the one 

used in previous experiment. The initial state x action table is given listed in Table 4.2 

s\ — Ball is at far left 

s2 = Ball is at far right 

S3 = Ball is at far and middle 

s4 = Ball is right in front and heading straight towards goalkeeper 

s5 = Ball is located at close left corner 

s6 = Ball is located at close right corner 

S7 = Ball is located and close in front 

a\ = Go right 

a2 = Stay where you are 

a3 = G o left 



4.5. T h e experiment for goalkeeping training with an extended 4x7 state x 

action table over the first Q-learning experiment 

Table 4.2: Initial State x Action Table 

s 
T 

A 

T 

E 

A C 

Sl 

s2 

S3 

S4 

S5 

S6 

Sl 

T 

Ol 

0 

0 

0 

0 

0 

0 

0 

1 

a2 

0 

0 

0 

0 

0 

0 

0 

0 

»3 

0 

0 

0 

0 

0 

0 

0 

N 

a4 

0 

0 

0 

0 

0 

0 

0 

According to the code, the ball will be considered at far side when it is at least 0.52 

meter away from the goalkeeping agent. Figure 4.4 states the actual situation with space 

quantized according to the state x action table. The working formula to update the table 

is displayed in Equation 4.5. 

V(St) <— V(St) + a * [Rt+1 + 7 * V(St+i) - V(St)} (4.5) 

Rt+i = Reward observed at time t+1 

St = State visited at time t 

Rt = Reward after time t 

a = Step size 

7 = Constant parameter 

This formula is evaluated using the value of a = 0.9 and 7 = 0.8 and stated in Equation 

4.6. 

V(St) ^— 0.9 * Rt+i + -yV(St+1) - 0.1 * V(St) (4.6) 

So, the following values of the parameters are used for the system where applied. 

R = 100 (The amount of reward when the task is accomplished) 
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4.6. T h e two attacker experiment using available knowledge base from the 
goalkeeping experiment with 4x7 state x action table 

Figure 4.6: A goalkeeper's view for the experiment with 4x7 state x action table 

R = 0 (Rather than 100) 7 = 0.8 

a = 0.9 

And the formula becomes as stated in Figure 4.7 

V(St) < — 0.9 * Rt+1 + 7 * V(St+1) - 0.1 * V(St) (4.7) 

The data obtained from this experiment is displayed in Chapter 5. 

4.6 The two attacker experiment using available 

knowledge base from the goalkeeping experiment 

with 4x7 state x action table 

4.6.1 Aim 

The aim of this experiment was to test the goalkeeping skills obtained in the previous 

experiment against two attackers. The point to be noted here is that the training was 
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4.7. A n experiment to find out the efficiency of Upenn'03 code to create a 

benchmark for one attacker goalkeeping experiment using Q-learning 

completed against one attacker. However, in this experiment, two attackers were intro­

duced to check whether that experience works against those attackers or not. 

4.6.2 Setup 

W e used three robots, a pink ball and a penalty area with dimensions set by official 

Robocup authorities for the purpose. 

4.6.3 Experimental Method 

This experiment was conducted inside the penalty area and with two attackers. W e 

conducted four different experiments with the different positions of those two attackers. 

The attackers were static in all four cases. One of them was located at penalty line 

(Far region) and the other is in the near region. The attacker at far region pass the ball 

towards its team mate located at near region and the second player took a shot towards 

goal using the running pass from his team mate. The first two test cases are explained 

with Figure 4.7 and Figure 4.8. There the second attacker directed the ball towards the 

opposite direction it was destined for. 

The other two setups are displayed in Figure 4.9 and Figure 4.10. Here the attacker 

could take two different shots. However, most of the time it was taking shots towards the 

far end and only a small number of shots were directed towards the middle position. 

4.7 An experiment to find out the efficiency of 

Upenn'03 code to create a benchmark for one 

attacker goalkeeping experiment using Q-learning 

4.7.1 Aim 

A bench mark result was created through this experiment using the logic from UPenn'03 

code base. 
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4.7. A n experiment to find out the efficiency of Upenn'03 code to create a 

benchmark for one attacker goalkeeping experiment using Q-learning 

Figure 4.7: First setup for two attackers experiment 

4.7.2 Setup 

There were two AlBOs, a pink ball and a penalty area with dimensions set by official 

Robocup authorities shown in Figure 4.1 used in this experiment. 

4.7.3 Experimental Method 

This experiment was conducted using similar setup inside a penalty area created with the 

field specification stated in Figure 4.1. Altogether, three major high level decisions were 

found in Upenn'03 code base for the goalkeeping task: 

• Find the ball if it is not within 0.8m 

• Move to intercept the ball on the left or right side if it is within 0.8m 

• Block the ball if it is found in front (Less than or equal to 0.03m) 

The data obtained from this experiment are displayed in the next chapter. 
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4.8. A n experiment to create benchmark for two attackers experiment using 

Upenn'03 code 

Figure 4.8: Second setup for two attackers experiment 

4.8 An experiment to create benchmark for two 

attackers experiment using Upenn'03 code 

4.8.1 Aim 

The aim of this experiment was to create a bench mark result for the two attackers 

experiment by using a hand coded goal keeping set of actions. 

4.8.2 Setup 

Three AlBOs, a pink ball and a penalty area with dimensions set by official Robocup 

authorities from Figure 4.1 were used here. 
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4.9. Summary 

Figure 4.9: Third setup for two attackers experiment 

4.8.3 Experimental Method 

This experiment was conducted using a similar setup to that described in Figure 4.3 

and Figure 4.4 for one attacker experiment and using Figures 4.7, 4.8, 4.9, 4.10 for two 

attackers experiments. Three major high level decisions were used in those experiments 

to block the shots using the Upenn'03 code logic described above. The data obtained 

from this experiment is displayed in the next chapter. 

4.9 Summary 

So far the working principle and environmental setup of all experiments has been described 

in detail in the previous sections. The next chapter will describe the results obtained from 

these experiments. 
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4.9. Summary 

Figure 4.10: Fourth setup for two attackers experiment 
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Chapter 5 

Experimental results 

5.1 Introduction 

The following four sections describe, the results in detail, achieved for the experiments 

described in Chapter 4. 

5.2 Results for the ball distance measurement 

experiment using nose camera 

5.2.1 The ball.ratio values at several distances using nose camera 

The following table consists of ball.ratio (discussed in Chapter 4) values at different 

distances. 

Table 5.1: Experimental readings from nose camera 

Actual ball 

distance 

3 

Maximum 

ball.ratio 

value 

0.6088 

Average 

ball.ratio 

value 

0.6050 

Minimum 

ball.ratio 

value 

0.6013 

80 

Continued on next page 



5.2. Results for the ball distance measurement experiment using nose camera 

Table 5.1 - continued from previous page 

Actual ball 

distance 

6 

9 

12 

15 

18 

21 

24 

27 

30 

33 

36 

39 

42 

45 

48 

51 

54 

57 

60 

63 

66 

69 

72 

75 

78 

Maximum 

ball.ratio 

value 

0.5549 

0.3699 

0.2696 

0.2 

0.1431 

0.1058 

0.0831 

0.0672 

0.0548 

0.0466 

0.0402 

0.04 

0.0323 

0.029 

0.0246 

0.0215 

0.0191 

0.017 

0.0151 

0.0135 

0.0125 

0.0111 

0.0105 

0.0087 

0.0081 

Average 

ball.ratio 

value 

0.5476 

0.3610 

0.2673 

0.1957 

0.1371 

0.1022 

0.0809 

0.0652 

0.0541 

0.0443 

0.0401 

0.0391 

0.0321 

0.0275 

0.0245 

0.0211 

0.0185 

0.0168 

0.0149 

0.0134 

0.0123 

0.0111 

0.0104 

0.0085 

0.0080 

Minimum 

ball, ratio 

value 

0.5338 

0.3533 

0.265 

0.1902 

0.1324 

0.0994 

0.0792 

0.0636 

0.053 

0.0433 

0.0401 

0.0387 

0.0315 

0.0253 

0.0245 

0.0209 

0.0182 

0.0165 

0.0149 

0.0134 

0.0122 

0.011 

0.0103 

0.0084 

0.0079 

Continued on next page 



5.3. Results for the ball distance measurement experiment using IR sensors 

• Table 5.1 - continued from previous page 

Actual ball 

distance 

81 

84 

87 

90 

93 

96 

99 

Maximum 

ball.ratio 

value 

0.0077 

0.0071 

0.0065 

0.0061 

0.0058 

0.0052 

0.005 

Average 

ball, ratio 

value 

0.0075 

0.0070 

0.0065 

0.0061 

0.0057 

0.0053 

0.0048 

Minimum 

ball, ratio 

value 

0.0074 

0.007 

0.0064 

0.006 

0.0056 

0.0054 

0.0048 

5.2.2 Conclusion 

This distance measurement method was evaluated against the actual distance table. The 

nose camera yielded an average accuracy of 9 7 % over a ball distance range of 3cm to 

100cm. The average readings from the table stated above were tested with the ball placed 

at 33 fixed points with given distance. The range could be increased with readings taken 

above 99cm. However, due to the speed of the ball and the limited maneuverability of 

the AIBO, it would not be necessary to measure the distance of the ball in Robosoccer 

over lmeter distance. The next section reveals the readings taken using IR sensors. 

5.3 Results for the ball distance measurement 

experiment using IR sensors 

5.3.1 The ball distance measured by near and far IR sensors 
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5.3. Results for the ball distance measurement experiment using IR sensors 

Table 5.2: Experimental readings from IR sensors 

Actual ball dis­

tance (cm) 

3 

6 

9 

12 

15 

18 

21 

24 

27 

30 

33 

36 

39 

42 

45 

48 

51 

54 

57 

60 

63 

66 

69 

72 

75 

Near IR Sensor 

value (cm) 

10.44 

12.26 

14.53 

15.49 

16.32 

18.31 

21.25 

19.31 

21.47 

22.86 

33.84 

30.75 

38.80 

36.15 

34.39 

32.79 

31.33 

47.52 

47.67 

38.80 

40.28 

50.00 

50.00 

50.00 

50.00 

Far IR Sensor 

value (cm) 

20.00 

20.00 

20.00 

21.34 

27.06 

30.94 

31.59 

33.51 

37.93 

37.00 

48.59 

51.93 

55.76 

61.59 

66.85 

68.36 

70.76 

88.97 

93.79 

87.05 

85.81 

87.05 

93.79 

115.23 

119.80 

Continued on next page 



5.3. Results for the ball distance measurement experiment using IR sensors 

Table 5.2 - continued from previous page 

Actual ball dis­

tance (cm) 

78 

81 

84 

87 

90 

93 

96 

99 

Near IR Sensor 

value (cm) 

50.00 

50.00 

50.00 

50.00 

50.00 

50.00 

50.00 

50.00 

Far IR Sensor 

value (cm) 

120.45 

150.00 

150.00 

150.00 

150.00 

150.00 

150.00 

150.00 

5.3.2 Conclusion 

The result displayed in Table 5.2 was tested using 15 given distance points while the ball 

was in a moving condition. The IR method reproduces the actual ball distance with 34.7% 

overall accuracy only. It is suspected that the IR reflections from adjacent objects of the 

ball are creating an interference with the IR signal reflected from the ball itself. This 

problem makes the IR measurement system invalid in any multi-agent environment, due 

to reflection from other team mates. There the reflection of IR from other players would 

make it worse. Furthermore there are two different IR sensors to choose for sensing near 

and far distance. The right sensor should be chosen at the correct moment to measure 

the accurate distance of the ball. However, the readings of two sensors are fuzzy at the 

range transition region. A decision making process is needed here to choose the right 

sensor at the transition period. So, for these reasons, we have decided to use the distance 

measurement system using nose camera for our experiments. 

Sony released an S D K with the AIBO and there they had introduced a similar function 

to ball.ratio. However, no mapping between the ratio value and the mapping existed to 

find out the ball distance. Moreover, due to downward compatibility issues of the available 
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5.4. T h e goalkeeping experiment with a 3x3 state x action table using 

Q-learning 

Linux OS, vye have used URBI in stead of the Sony SDK. It had no in-built function for 

measurement the distance of an object from the robot. So the ball distance measurement 

experiment had to be performed using nose camera. At the end, we suggest that our 

technique could be used in calculating the speed and direction of a moving ball while the 

agent is in a static position. However, the readings changes tremendously within a very 

small amount of time if both the agent and the ball are moving simultaneously. A less 

system hungry image stabilizing technique can be used in order to resolve this problem. 

5.4 The goalkeeping experiment with a 3x3 state x 

action table using Q-learning 

5.4.1 Results 

The state x action table converges perfectly in this experiment. The final form is described 

in Table 5.3. 

Table 5.3: Goal keeping experiment with 3x3 state x action table 

s 
T 

A 

T 

E 

A C T 

Sl 

s2 

S3 

1 

ai 

100 

0 

0 

0 

a2 

0 

100 

0 

N 

a3 

0 

0 

100 

5.4.2 Conclusion 

This table indicates that if the ball goes left (state si), the goalkeeper goes left (action 

ai), stays in the middle (action a2) if the ball moves towards middle (state s2) and moves 
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5.5. T h e Goalkeeping experiment with one attacker using a 4x7 state x action 

table using Q-learning 

right (action a3) if the shot is directed to the right side (state S3). It is a single stage 

learning, and so the agent learns with a single successful movement in each case. The 

efficiency of the goalkeeper would be 100 percent using the knowledge database using 

the final state x action table. In practice, we observed that our robot was unable to 

save 8 shots only during evaluation due to the unpredictable trajectory of the incoming 

ball caused by natural damping forces. Actually the ball took an unexpected turn at the 

eleventh hour and so the robot was unable to intercept it due to lack of maneuverabilities 

issues, although it chose the right action in the right situation. 

The above results establish the truth that Q-learning technique worked as well as hand 

coded technique in defending penalty shots. Although, one hundred percent success should 

be achieved, we have almost 83.3% of average success in this experiment. However, 

this experiment was turned out to be a trial and error method due to the size of the 

state x action table. So, we have split one single state into two simpler states in the 

next experiment. First of all, this approach adds the lost essence of temporal difference 

technique of the Q-learning method. Secondly, it made the learning more effective and 

enables what to perform more accurate actions in an unknown situation. 

5.5 The Goalkeeping experiment with one attacker 

using a 4x7 state x action table using Q-learning 

5.5.1 Results 

The second experiment was devised due to the absence of a back propagation feature in 

this experiment. This experiment consists of a 4x7 state x action table and the quantiza­

tion of the spaces is more accurate in this case. The final score is displayed and listed in 

Table 5.4. 

5.5.2 Conclusion 

The experimental results showed that the agent has learned the knowledge of goalkeeping 

using Q-learning from zero experience and without human interference. The agent overall 
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5.5. T h e Goalkeeping experiment with one attacker using a 4x7 state x action 
table using Q-learning 

Table 5.4: Expected final State x action Table 

s 
T 

A 

T 

E 

A c T 

Sl 

s2 

S3 

s4 

«5 

«6 

s7 

1 

&1 

0 

0 

0 

0 

0 

80 

0 

0 

a2 

64 

64 

64 

100 

0 

0 

80 

N 

«3 

0 

0 

0 

0 

80 

0 

0 

achieved 80.7 percent success in goalkeeping after completion of the training. 

5.5.3 Experimental results using Upenn'03 code 

The one-attacker Q-learning experiment with 4x7 state x action table was an extension 

of the previous Q-learning experiment which was designed with 3x3 state x action table. 

W e have used Upenn'03 code base as a base line code to compare the efficiency of the 

goalkeeping training using Q-learning. A benchmark was produced that shows an overall 

success of 79.9% achieved by Upenn'03. 

It was noticed that the Q-learning experiment with 4x7 state x action table yielded a 

success rate of 80.7 percent after completing the training. This success rate is similar to 

the result obtained from the experiment conducted with Upenn'03 code. However, unlike 

the hand-coding, the agent started from zero knowledge and ended up with virtually 100 

percent efficiency. 

87 



5.6. Results from the third experiment with two attackers using the knowledge 

base obtained in second Q-learning experiment and Upenn'code 

5.6 Results from the third experiment with two 

attackers using the knowledge base obtained in 

second Q-learning experiment and Upenn'code 

The results of the four cases are described in Table 5.5 using both Q-learning and Upenn'03 

code base. Altogether 20 shots were used to evaluate each and every separate attacker 

formation. 

Table 5.5: Score boards of two attacker experiment 

Attacker Arrangement 1 

Attacker Arrangement 2 

Attacker Arrangement 3 

Attacker Arrangement 4 

Success rate achieved 

by U Pen '03 code base 

15 

16 

14 

17 

Success rate achieved 

by Q-Learning 

15 

14 

15 

14 

5.6.1 Conclusion 

The experimental result shows that the achievement of Q-learning and Upenn'03 is more 

or less similar for each formation of the attackers. 

5.7 Summary 

The experimental results of the ball distance measurement experiment, Q-learning experi­

ments and benchmark experiments led us to compare the effect of the approach stated in 

the methodology chapter. The next chapter focuses on the comparison and a detailed dis­

cussion of the comparison between the Q-learning approach and benchmark experiments. 
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Chapter 6 

Discussion 

6.1 Research aim 

The research question in this thesis was whether a particular reinforcement learning (RL) 

technique can be used to achieve comparable results with standard hand coding for a 

decision making task in Robosoccer or not. In particular, the goalkeeping problem was 

chosen and Q-learning was used as the chosen RL algorithm, described in Chapter 3. 

Hand coding specifies input-output state x action pairs to carry out a specific task or a 

group of tasks; there a programmer has to define the environment specifically to the agent 

as well. O n the other hand, a programmer has to define only the environment and an empty 

state x action table, using reinforcement learning. N o specific input-output pair is defined 

in advance to perform the action in a given situation. The agent learns the right action 

for a novel situation using training exercises and a reward system. After completion, the 

robot uses the obtained experience to complete tasks for acting in the future. Q-learning 

is such a process and it also enables an agent to learn while performing. The state x 

action table provides the necessary solution to a given situation. The table contains some 

basic situations which could be combined to represent more complex ones. Accordingly, 

the agent produces a series of actions to suit the anticipated situation optimally. 

Altogether, three RL experiments were performed to find out an answer to the research 

question. The experimental results are described in Chapter 5. However, before com­

mencing with the RL experiments, another experiment was performed to find out a better 
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6.1. Research aim 

method for measuring the distance between the ball and the AIBO. The outcome of the 

experiment was an improvement over the existing method of URBI that uses IR sensors 

for sensing the ball distance [73]. 

6.1.1 The outcomes of the experiment designed to measure the 

distance between the ball and robot 

The nose camera method was evaluated using Table 5.2 obtained from the experiment and 

the two point equation described in Equation 4.2. This test revealed that an overall 9 7 % 

accuracy was achieved in regenerating the distance using that method. This evaluation 

test was performed while only the ball was moving an the robot was at rest. The same 

condition produced 3 5 % accuracy in regeneration of the distance using IR sensors. The 

problems that prevent the IR sensors from producing a clear distance measurement are 

described below. 

• There are two different IR sensors available for near and far distance measurement. 

The near distance sensor measures effectively from 3cm to 20cm and the far sensor 

takes care of distances from 20cm to 150cm. The border between the two distance 

sensors is often mixed up during real life operation. So, at that point, it usually 

becomes critical to decide which sensor data should be used. The experiments were 

designed in such a way that a point at 20cm distance from the goalkeeper lies in 

the near region. The goalkeeper starts moving whenever the ball comes within the 

near region. As a result it is highly recommended to calculate the distance properly 

at this point to anticipate the state correctly in order to save the goal. So, a fuzzy 

output at this point by IR sensors is not acceptable for the experiments. 

• IR rays reflect from all the other sources around the ball. These could be the carpet 

around the ball, other players roaming around or the boundary wall of the fields. The 

rays reflected from these object creates interference and produce confused results 

out of the IR sensors. 

Considering these two major problems, the IR sensors were not used to measure the 

distance of the ball in both hand coding and Q-learning experiments. Separate approach is 
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6.1. Research aim 

devised hereto solve the problem using the nose camera and pink ball detection algorithm. 

The following points describe the logic behind that proposed technique. 

• The pink ball detection algorithm enables the AIBO to find the pink colored ball 

and look at its center. 

• The AIBO has a 2D vision system which represents the ball as a circle within the 

field. So if it goes away the circle will appear smaller and vice versa. This was the 

logic applied to find out the actual distance between the nose camera and the pink 

ball. After performing ball distance measurement experiment a relationship table 

was established. The table indicates the amount of area the ball occupied in the 

the robot's 2D vision and the corresponding ball distance. 

It was concluded that the AIBO measured the distance of the moving ball with an ac­

ceptable degree of accuracy as described at the beginning of this section. The Q-learning 

therefore extensively used the ball measurement technique. The next section describes 

the experiments, conducted using Q-learning. 

6.1.2 The outcomes from goalkeeping experiments using 

Q-learning 

6.1.2.1 T h e achievement from the one attacker experiment with 3x3 state x 

action table 

This experiment was designed using a 3x3 state x action table. The Q-learning learning 

was accomplished using a single action form the starting position. The point to be noted 

here is that two basic actions were combined to form a single action for the goalkeeper 

as displayed in Table 3.7. These two actions were moving and blocking the ball. So, 

the combined action was called move and block/stop. Finally, the state x action table 

ended up with a converged matrix. The goalkeeper followed the table after completing the 

training against the three different shots, it was trained with. All three different shots were 

tested with the final state x action table and an average of 83.33% success was achieved 

by the goalkeeper. The limitations of maneuverability stopped the AIBO from achieving 

complete success. However, the single step learning prevented the learning agent from 



6.1. Research aim 

using the temporal difference feature of Q-learning. As a result, the second experiment 

was devised with a more generalized state x action table. 

6.1.2.2 The achievement from the other one attacker experiment with 4x7 

state x action table 

This experiment was carried out with a state x action table displayed in Figure 3.8 and 

it showed convergence after completion of the training sessions. The point to be noted 

here is that the agent started without any previous knowledge taken from previous 3x3 

state x action based experiments. The state x action table permitted more than single 

step learning to block the ball. It means that the reward was propagated through few 

steps backward from the final state. Thus the temporal difference technique involved in 

this experiment. Finally, it produced a stable output matrix in the form of the defined 

state x action table. 

The research question we started with was whether a basic Q-learning technique is able 

to take decisions as well as standard hand coded technique in the Robosoccer environment 

or not. In this case, the goalkeeping problem was solved using Q-learning. The goal of the 

thesis was to enable the robot to take an optimum decision using the acquired knowledge 

base. The final outcome should resembles the real life goalkeeping scenario hypothetically. 

Usually, in real life soccer the human goalkeeper observes the ball from a safe distance 

and at close proximity he may choose to move and intercept the ball. He must stop the 

ball if it comes in front. 

The goalkeeper in our experiment learned to use similar logic to defend the goal. Pri­

marily three different positions were defined according to the space quantization for the 

experiment designed with 3x3 state x action table. These are denoted as different states, 

namely, far region, near region and right in front. Far region and near region were further 

divided into six more regions for more precision training in the experiment consist of 4x7 

state x action table. So, altogether 7 states (Table 3.8) were defined. The final state x 

action table reveals that the agent stays at its starting position (middle of the goal line) 

when the ball is located at the far region. The goalkeeper starts moving when the ball 

comes inside the near region. Whenever the agent detects the ball is detected in front, the 

agent stops there to block it. It moves to the left or right side according to the movement 
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6.1. Research aim 

of the pink tjall when it is found in near region only. These actions hypothetically resemble 

to that of a human goalkeeper in a real life soccer game, too. 

It was noticed that a few shots took an unexpected turn due to friction and spin of the 

ball at the eleventh hour during the evaluation of the acquired knowledge. The goalkeeper 

tracked that change efficiently using the training data and tried to move in the direction 

of the ball. However, sometimes it was a failure due to the physical limitations of the 

AIBO. Altogether, it saved 81.7% of all the shots out of the 50 shots upon completing the 

training. It clearly portrays that the learning system had worked properly in the decision 

making process irrespective of the few failures due to physical limitations. 

6.1.2.3 The achievement from the two attacker experiment 

The final state x action table acquired from the one attacker experiment with 4x7 state 

x action table, was used in this experiment. It was designed to check the efficiency of 

goalkeeper using two attackers. The design of different kinds of this experiment are shown 

in Chapter 4. T w o attackers took shots from different points and distances. The first 

attacker took shot into the second attacker and the second attacker pushed the flying 

ball towards the goal. The first setup of the two attacker experiment (Figure 4.5 and 4.6) 

reveals that the first attacker is situated at far middle region while the second attacker is 

in near left or in near right. This near attacker took a direct shot using the pass from the 

first attacker. In the other two setup the first attacker was at far right or far left, whereas 

the second attacker was at the near middle position. Even at this time, the goalkeeper 

started from the middle position and followed as per the real time decision making process 

using Q-learning to save the game. 

These complex situations introduced with the two attacker problem added a little hassle 

to the goalkeeper. Throughout the time it followed the pink ball only and not the attackers 

due to the distance measurement code shown in Table 3.8. However, the ball was rapidly 

changing direction from the point of second attacker. So, the goalkeeper considered 

sweep changes in its movement during the operation. The second attacker caused a swift 

change in the ball direction and also added additional speed to it. It was found that the 

Q-learning system took the right action at this time. So, the goalkeeper needed to act 

faster here than the previous experiment. However, the physical limitation of AIBO did 
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6.1. Research aim 

not allow it to do so and a few more shots went into the goal. The scoreboard of the four 

separate attacker arrangements for the two attacker experiment is given in Table 5.5. 

The average achievement of these four experiments is 15.5 saves out of 20 shots for 

hand coded technique by Upenn'03 and 14.5 saves by Q-learning technique out of 50 

shots. It can be concluded from this point that both the hand coding and learning 

method produced a similar achievement in two attacker experiment. 

It was found that the movement of the ball was completely controlling the decision 

making process of AIBO. According to real life soccer, the goalkeeper could start up from 

either left or right side according to the state of incoming ball. However, our table does 

not permit the goalkeeper to do so. Moreover, in Robosoccer it is better to stay in the 

middle of the goal to get a complete 180° wide view in both sides using minimum amount 

of head pan. So, in all the cases, the goalkeeper started from the middle of the goal line 

and then acted according to the training data thereafter. Finally, the overall achievements 

of the RL experiments are stated below. 

6.1.3 The results achieved with AIBO using Upenn code 

The Upenn code describes the field information using a world model to the goalkeeper. 

It uses a polar coordinate system to find the distance and angle of the ball. Actually 

the hand-coded technique in this case asks the goal keeper to follow different actions at 

different ball distances. According to the decision making file written in M A T L A B , four 

different activities are described for the goalkeeper: 

• Search for the ball if it is not in the visual range 

• Move forward if the ball is coming straight and not in close proximity 

• Move side ways to the ball if the ball is not too far and coming in from either side 

• Stop it using the torso if the ball is detected just in front 

This logic was applied in a similar environment for three different RL experiments stated 

in the experiment section. The success rate for one attacker experiment using Upenn code 

is 79.9% on average and that of Q-learning is 80.7%. The outcome of the multi-attacker 

experiment is described in Table 5.5. 
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6.1.4 The performance of Q-learning over the hand coding 

• In the first two, one attacker experiments, the goalkeeper (AIBO) updated the 

state x action table through the training session and produced a stable matrix 

without human supervision. It properly used this data afterwards to block the goal 

accordingly. 

• The knowledge database from the experiment designed with 4x7 size state x action 

table was used in the two attacker experiment. It was found that the agent was 

saving the goal perfectly after completing the training. Using it, AIBO performed 

efficiently against two attackers with the same knowledge base learned against one 

attacker and a 4x7 state x action table. 

The physical limitations of AIBO put a limit to its actions in some situations during 

goalkeeping. However, the outputs using hand coding and Q-learning were similar in all 

the experimental trials. It proves that a particular RL technique (Q-learning) can perform 

as well as the hand coding method. 
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Chapter 7 

Conclusion 

7.1 The research question and its origin 

The ultimate goal of Robosoccer is to prepare a team of humanoids to defeat human world 

soccer champions [24]. It demands a robot (humanoid) to be equipped with human like 

maneuverability, image and pattern recognition systems and thinking and decision making 

capacity. The research aim in this thesis was to test a specific artificial intelligence method, 

namely Reinforcement learning (RL), against a fixed hand coding on a particular robocup 

based problem. W e have applied a particular RL technique, Q-learning, in the AIBO 

to address the research question. The research question we started with was "Whether 

a basic RL algorithm can perform as well as hand coding/input-output pairs to solve 

the goalkeeping problem?" The performance of Q-learning was compared with a baseline 

created by Upenn'03 hand-coding technique using the goalkeeping problem. The hand-

coding technique specifies an input versus output table for the agent to carry out a task. 

In contrast with that, the Q-learning helps the agent to learn how to perform a task using 

a state x action table. The comparison of these two approaches is used to determine the 

superiority of a learning process over the fixed hand-coding technique. However, before 

proceeding with the experiments, we developed the reason for choosing Q-learning as the 

proposed method. 
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7.2. Methodology 

7.2 Methodology 

The baseline experiment was completed using the Upenn'03 Robosoccer code base given 

in Chapter 3. As discussed, a limited number of input versus output pairs were used there. 

The goalkeeper (AIBO) block the goal against one and two attackers, using this code. 

In contrast with that, this thesis focused on a learning method which learns to block the 

goal in similar situations using a learning method. Reinforcement Learning was used for 

this purpose and a suitable RL method (Q-learning) was ultimately chosen to perform 

the goalkeeping experiments. W e selected Q-learning for its efficiency in a simulation 

based maze learning experiment as discussed in Chapter 3. The similarity between the 

maze learning experiment and the goalkeeping experiment exists in the form of the size 

of the state x action tables and the information about the environment used in both 

cases. The maze learning used a 6x6 size table whereas the goalkeeping experiment used 

a 4x7 size table and both the experiments was carried out in a noiseless environment. 

Q-learning and S A R S A are two similar algorithms of RL with a few difference in action 

selection policy. So we tested both of them using the maze learning environment. The 

output showed that Q-learning produced a perfectly converged output using approximately 

2500 training exercises whereas S A R S A produced a non-converged output using all 50000 

training exercises each time. 

An AIBO runs on battery and its maximum duration is 1.5hr. So, we chose a method 

which can provide a relatively faster learning rate. It was noticed that Q-learning consid­

ered all the parallel routes in maze learning with equal probabilities. S A R S A failed in this 

regard and assigned different weights to parallel routes. This indicates that Q-learning re­

veals all the similar possibilities using less number of training epoch that SARSA. However 

S A R S A failed to produce a converged matrix even after using 50,000 training epochs. As 

a result, finally we used Q-learning to perform the goalkeeping experiment. 

7.3 The experiments 

The hand-coding experiments were performed at the beginning to set up a base line 

result for the Q-learning method. The experimental setup was made using an official 
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7.4. A comparison between the hand-coding and Q-learning experiment results 

Robosoccer |ield layout displayed in Figure 4.1. One attacker took three different shots 

from three different points situated on the penalty line. T w o attackers were used in another 

experiment against the goalkeeper. In this experiment, one attacker took a direct shot 

towards the other player and the other player pushed the ball into the goal. The knowledge 

obtained from the one attacker experiment was used in the two attacker scenario. 

Subsequently, the Q-learning technique was also tested using similar experiments. W e 

started with the one attacker problem in this case. There the attacker took shots from 

three positions as well. A 3 x 3 sized state x action table was used to record the learning 

experience. All available space in front of the goalkeeper was quantized in three situations 

and three different basic actions were chosen for it. The agent learned to take the right 

decision at the right moment to save the goal in the training exercises. However, the 

essence of back propagation of the reward was lost in this small size state x action table 

due to its single step learning process. So it was decided to break both the situations 

and actions into simpler forms and proceed with another experiment with one attacker 

only. A state x action table with 7x4 size was defined for it. All the available spaces were 

quantized into seven different areas based on different possible positions of the pink ball. 

One more action was added to the table which instructs to stop the robot immediately 

in order to block the ball if it is detected in front. This experiment also showed that the 

given agent had learned successfully to block the shots using the given training exercises. 

In the second attacker experiment, we put two attackers against the goalkeeper while 

the goalkeeper used the knowledge data base obtained from the experiment contains 4x7 

state x action table. The first attacker took a shot towards the second and it pushed the 

ball towards the goal. The goalkeeper showed a satisfactory result in this experiment in 

performing the task. 

7.4 A comparison between the hand-coding and 

Q-learning experiment results 

The success rate of Q-learning in the one attacker experiment with 4x7 state x action table 

was similar to that of Upenn'03 code base. Moreover, the same database was applied 
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to the two attacker problem, both Q-learning and hand coding methods produced similar 

efficiency using four differently designed experiments as indicated in Chapter 5. 

The Upenn'03 code base supplies a code for a hand coding technique. The term Hand 

Coding indicates that all the input versus output pairs are supplied by the programmer. 

However, this approach does not provide any instruction for an unknown situation that an 

agent may encounter during action. So, an unknown situation may result in an undesirable 

action. 

The Q-learning method allows the programmer to define the environment and some 

basic actions only. However, the agent has to learn the correct action in a given situation. 

The agent, in this thesis, focused on the position and distance of the ball. Using the one 

attacker experiment the agent successfully learned to block the ball using two different 

state x action tables. To prove the extent of the acquired skill, we decided to continue the 

third experiment with the knowledge database obtained from the previous experiments. 

It was found that the goalkeeper took the right decisions in order to block the incoming 

shots, even against two attackers. Moreover, it was pointed out that Q-learning allowed 

the agent to work satisfactorily in a novel situation. 

To support this idea, it should be mentioned here that AIBO tracked and followed all 

the shots properly even if the ball took an unexpected turn, described in Chapter 6. Due 

to the spinning action of the ball and friction of the carpet, some of the shots took such 

turns. These sudden state transitions represented new situations for the AIBO which were 

not mentioned in the state x action table. The goalkeeper first developed the database 

using Q-learning and managed these new situations using the learned experience. So, it 

can be concluded that the agent has learned to take the right decision at the right time, 

independently. 

So, Q-learning proved better than hand coding due to the fact that the goalkeeper was 

able to accomplish the task from the beginning and worked out a way to deal with a novel 

situation. 
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7.5 The contributions made in this thesis 

So far, humans have created a number of different robotic models. These are humanoids 

that also include replicas of other animals such as dog, cat, fish and so on. However, 

even a living dog still supersedes its existing robot replica in two major ways. These 

are maneuverability and decision making skills. In some cases, robotic arms and other 

robotic machine parts can deliver heavier duty output and more precision service than 

living bodies. Those can be proven worthy in hazardous areas such as a nuclear reactor, 

under water structures, space stations and so on. However, in non-hazardous and day to 

day jobs, a living animal is still preferred over robots. The examples of police dogs and/or 

guide dogs can be considered in this case. This is due to the fact that an artificial robot 

is not yet smart enough to replace a living animal. 

In this thesis we used Q-learning to make a robot solve a novel situation without provid­

ing specific knowledge about it. The Q-learning technique was tested using Robosoccer as 

a test bed. The goal keeping act was chosen for the purpose and finally it was found that 

the agent had successfully performed the task. W e trained it against one attacker to save 

the goal. Using that one attacker knowledge database, it performed as well as hand coding 

technique against two attackers. It was found that the goalkeeper could not only learn 

to block the ball using the given situation, but also it successfully applied the knowledge 

database to block a few unexpected state transitions. This shows that Q-learning taught 

the AIBO to act independently, like living animals do. Further development possibilities 

using complex learning features and ball distance measurement techniques are discussed 

in the next section. 

7.6 Future work 

A brief description is given below for the possible improvements on the ball distance 

measurement technique. It is also suggested that the outcome of the Q-learning algorithm 

could be improved by adding an approximation technique on top of it. 

Possible improvement for ball distance measurement experiment 

W e had set up a separate experiment for measuring the distance of the pink ball from 
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the rojpot before performing Q-learning. The method was designed for a scenario 

where the AIBO was standing still and the ball was either static or moving. The final 

technique was evaluated while both the objects were moving. The result was not 

at all acceptable for activities for playing soccer. A huge amount of fluctuation of 

the captured images made the result impossible to use in ball distance measurement 

technique. After a detailed investigation, it was concluded that jerks were introduced 

in the picture due to the movement of the nose camera while the AIBO was in 

motion. This problem could be addressed using some low overhead digital image 

stabilization methods or an approximation function involving the different dynamic 

parameters responsible for the jerks in the image. 

R e c o m m e n d e d upgrade for Q-learning experiment 

The proposed learning technique, Q-learning, involves updating a predefined table 

and managing it during the experiment. It means the uses of a large size table can 

slow down the complete process in time. A relatively small table is used with 4 

columns and 7 rows in this thesis. However, a multi player game of Robosoccer 

involves a lot more basic states and actions which in turn increase the size of the 

table and so the complexity of the learning process. An approximation technique 

could be useful here to solve this issue. Thus a policy could be setup after completion 

of a particular learning process which would be useful in ignoring the useless values in 

the table. The use of computational resources would be far less in that case. Those 

resources could be allocated to other accompanying functions such as ball distance 

measurement to increase the efficiency of the complete process. Some of the existing 

work was already focused on a policy gradient [74] function approximation technique 

to maximize the efficiency of the existing walking gait [75]. A similar approach can 

be useful for the approximation of the decision making process as well. 
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Appendix-A 

This chapter is divided into two halves. First half describes the method of using wireless 

access point to communicate with AIBO remotely. The next part consists of the distance 

measurement code that has been developed during the research. 

A-l Communication technique with AIBO using 

wireless 

The model of AIBO comes with an in-built wireless Local Area Network (LAN) card with 

802.116 protocol enabled. It enables the AIBO to connect with another similar device at 

2.4GHz radio frequency spectrum, typically with 4.5Mbps speed. It allows simultaneous 

transfer of video and other sensory data back and forth between the robot and another 

wireless device, mostly a wireless gateway. There are two differen ways to connect an 

AIBO to one or more PCs at a time. 

• Setup a connection using a wireless gateway to connect AIBO and other PCs at a 

time. 

• Setup a single peer to peer connection between a wireless LAN enabled P C and 

AIBO 

Figure A.l shows the schematic representation of the points stated above. 

There are two different files that exist to configure the onboard LAN. These are 

W L A N D F L T . T X T and W L A N C O N F . T X T . The first one is the default configuration and 

should not be altered for safety reasons. The second file contains the following fields to 
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A-l. Communication technique with AIBO using wireless 

Figure A.l: Different methods of communication with AIBO 

edit the IP address and other options for establishing a connection over wireless LAN with 

AIBO. The parameters ofWLANCONF.TXT are listed below. 

• H O S T N A M E = AIBO 

• ETHERJP = 192.168.1.6 

• ETHER_MASK = 255.255.255.0 

• IP_GATEWAY = 192.168.1.1 

• ESSID = AIBOl 

• #WEPKEY = ABCD12U 

• #WEPENABLE = 1 

• APMODE = 2 

• CHANNEL = 3 

• #DNS_SERVER_1 = 192.168.1.1 

103 



A-l. Communication technique with A I B O using wireless 

• # D N § _ D E F D N A M E = ouraibo.net 

• U S E D H C P = 0 

The configuration written above refers to the one of our robots used in the experiments. 

Those fields mentioned in the above list are explained below. 

H O S T N A M E It should contain 8 alphanumeric characters with at least one letter. 

E T H E R J P The IP address must be specified when U S E D H C P parameter is set to 0. 

E T H E R _ M A S K It is specified according to the IP address class. One can use different 

subnet mask at this point in contrast to that of other device used in LAN. 

I P _ G A T E W A Y It specifies the IP gateway address and if none is available on the network 

then the ETHERJP should be used instead. 

ESSID It is the name of the wireless network. Up to 32 alphanumeric character could 

be used for the purpose. 

W E P K E Y W e p key is the set of characters used as a passkey to the wireless network. 

It may be called as encryption characters to the network as well. Only WEP64(40) 

bit or WEP128(104) bit wep key could be defined in this case. An alphanumeric 

character is 8 bit long and the length of a hexadecimal character is 4 bit. Accordingly, 

5 alphanumeric characters or lOhexadecimal characters must be used to define 

a W E P 6 4 key and 13 alphanumeric characters or 26 hexadecimal characters for 

WEP128 key. The hex characters defines must precedes a Ox and only 0 - 9,A-

F and a-f characters could be used after that with appropriate length set for two 

different version of W E P key. 

W E P E N A B L E The value of these parameters enables or disables the use of W E P key 

on the wireless network. 

A P M O D E This parameter sets the mode of LAN into an AIBO. 0 defines Ad Hoc demo 

mode, 1 defines infrastructure mode and 2 defines automatic detection mode. 

C H A N N E L It defines a channel at Ad Hoc Demo mode only. Any value from 1 to 11 

could be used here. 
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D N S - S E R V E R - 1 It defines "Domain Name Server"(DNS) IP. The IP address of the 

wireless gateway is used in this place. 

D N S - D E F D N A M E It is used to specify the domain name and could be used instead of 

the ETHERJP. 

U S E D H C P It defines whether "Dynamic Host Configuration Protocol"(DHCP) has to 

be used to automatically detect IP address or not. 

The wireless setup used for this thesis is given below. 

Figure A.2: Setting up multiple communication channel to different AlBO's using single 

PC 

A-2 The code developed for the experiment 

There is a major code used in the experiments for distance measurement, developed using 

URBI script. The code is 

• Distance measurement and direction calculating process 
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A-2.1 Distance measurement code 

The distance measurement code is made to work according to the supplied table. It 

consists of ball.ratio values at 33 points separated by 3cm distance from each other. The 

AIBO acquires ball.ratio values and the cod returns the corresponding distance from the 

table. The spline technique is used to find out the distance between the two adjacent 

points. The direction calculator returns the head pan angle only. The code and its 

description is as follows. 

#This code is solely developed for the RL experiments 

#of this thesis without referring any previous sources. 

#This file contains the code for calculating 

#the distance of moving ball with respect to nose 

#camera and the direction in the form of head pan angle. 

#The following array contains the distances at which the 

#ball.ratio values were collected. 

x = [6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 

54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99]; 

#The next array contains the ball.ratio values collected 

#at the distances mentioned in the previous array. 

y = [0.6094,0.5476,0.361,0.2673,0.1957,0.1371,0.1022,0.0809,0.0652,0.0541,0.0443, 

0.0401,0.0391,0.0321,0.0274,0.0245,0.0211,0.0185,0.0168,0.0149,0.0134,0.0123 

0.0111,0.0104,0.0085,0.0080,0.0075,0.007,0.0065,0.0061,0.0057,0.0053,0.0048] 

#Variable declaration 

distn = 0; 

a = b = c = d = e = u = m = t = 0; 

#It is important to assign zero value to each and 
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#every Ajariable in order to avoid any possible garbage value 

if (isdef(robot.dist)) 

{ 

delete robot.dist; 

delete robot.pointcal; 

delete robot.stopdist; 

}; 

if (isdef(robot.pointcal)) 

{ 

delete robot.pointcal; 

}; 

if (isdef(robot.stopdist)) 

{ 

delete robot.stopdist; 

delete robot.dist; 

delete robot.pointcal; 

}; 

if (isdef(robot.showdist)) 

{ 

delete robot.showdist 

}; 

if (isdef(robot.showdir)) 



A-2. The code developed for the experiment 

i 

delete robot.showdir 

}; 

#The next function introduces the two point function 

#scheme for finding distance between two consecutive points 

function pointcal(a,b,p) 

{ 

pointcal: 

{ 

m = (y(b)-y(a))/(x(b)-x(a)); 

t = (p-y(a)); 

u = t/m; 

d = u + x(a); 

return(d); 

} 

}; 

function robot.dist() 

{ 

dist: 

{ 

whenever(ball.visible) 

{ 

a = ball.ratio; 

if(a $\leq0.6094$ \&\& a $\geq0.5476$) distn $=$ pointcal(1,2,a); 

if (a $< 0.5476$ \&\& a $\geq0.3610$) distn $=$ pointcal(2,3,a); 

if(a $< 0.2673$ \&\& a $\geq0.1957$) distn $=$ pointcal(3,4,a); 
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# if(a $< 0.1957$ \&\& 

if(a $< 0.1371$ \&\& 

if(a $< 0.0809$ \&\& 

if(a $< 0.0652$ \&\& 

if(a $< 0.0541$ \&\& 

if(a $< 0.0443$ \&\& 

if(a $< 0.0401$ \&\& 

if(a $< 0.0391$ \&\& 

if(a $< 0.0321$ \&\& 

if(a $< 0.0274$ \&\& 

if(a $< 0.0245$ \&\& 

if(a $< 0.0211$ \&\& 

if(a $< 0.0185$ \&\& 

if(a $< 0.0168$ \&\& 

if(a $< 0.0149$ \&\& 

if(a $< 0.0134$ \&\& 

if(a $< 0.0123$ \&\& 

if(a $< 0.0111$ \&\& 

if(a $< 0.0104$ \&\& 

if(a $< 0.0085$ \&\& 

if(a $< 0.0080$ \&\& 

if(a $< 0.0075$ \&\& 

if(a $< 0.0070$ \&\& 

if(a $< 0.0065$ \&\& 

if(a $< 0.0061$ \&\& 

if(a $< 0.0057$ \&\& 

if(a $< 0.0063$ \&\& 

if(a $< 0.0059$ \&\& 

if(a $< 0.0053$ \&\& 

if(a $< 0.0048$) dis 

a $\geq0.1371$) 

a $\geq0.1022$) 

a $\geq0.0652$) 

a $\geq0.0541$) 

a $\geq0.0443$) 

a $\geq0.0401$) 

a $\geq0.0391$) 

a $\geq0.0321$) 

a $\geq0.0274$) 

a $\geq0.0245$) 

a $\geq0.0211$) 

a $\geq0.0185$) 

a $\geq0.0168$) 

a $\geq0.0149$) 

a $\geq0.0134$) 

a $\geq0.0123$) 

a $\geq0.0111$) 

a $\geq0.0104$) 

a $\geq0.0085$) 

a $\geq0.0080$) 

a $\geq0.0075$) 

a $\geq0.0070$) 

a $\geq0.0065$) 

a $\geq0.0061$) 

a $\geq0.0057$) 

a $\geq0.0063$) 

a $\geq0.0059$) 

a $\geq0.0053$) 

a $\geq0.0048$) 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

distn 

= 99; 

$=$ pointcal(4,5,a); 

$=$ pointcal(5,6,a); 

$=$ pointcal(6,7,a); 

$=$ pointcal(7,8,a); 

$=$ pointcal(8,9,a); 

$=$ pointcal(9,10,a); 

$=$ pointcal(10,11,a) 

$=$ pointcal(11,12,a) 

$=$ pointcal(12,13,a) 

$=$ pointcal(13,14,a) 

$=$ pointcal(14,15,a) 

$=$ pointcal(15,16,a) 

$=$ pointcal(16,17,a) 

$=$ pointcal(17,18,a) 

$=$ pointcal(18,19,a) 

$=$ pointcal(19,20,a) 

$=$ pointcal(20,21,a) 

$=$ pointcal(21,22,a) 

$=$ pointcal(22,23,a) 

$=$ pointcal(23,24,a) 

$=$ pointcal(24,25,a) 

$=$ pointcal(25,26,a) 

$=$ pointcal(26,27,a) 

$=$ pointcal(27,28,a) 

$=$ pointcal(28,29,a) 

$=$ pointcal(29,30,a) 

$=$ pointcal(30,31,a) 

$=$ pointcal(31,32,a) 

$=$ pointcal(32,33,a) 
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• b = headPan; 

}; 

echo distn; 

} #End of "dist" table. 

}; 

function robot.stopdist() 

{ 

stopdist: 

{ 

stop dist 

} 

}; 

function robot.showdist0 

{ 

showdist: 

{ 

c = robot.dist(); 

} 

}; 

function robot .showdirO 

{ 

echo head.Pan; 

}; 

#The end of distance measurement code 
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