16,745 research outputs found

    Relativistic MHD with Adaptive Mesh Refinement

    Get PDF
    This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the B=0\nabla\cdot {\bf B}=0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table

    Error and symmetry analysis of Misner's algorithm for spherical harmonic decomposition on a cubic grid

    Full text link
    Computing spherical harmonic decompositions is a ubiquitous technique that arises in a wide variety of disciplines and a large number of scientific codes. Because spherical harmonics are defined by integrals over spheres, however, one must perform some sort of interpolation in order to compute them when data is stored on a cubic lattice. Misner (2004, Class. Quant. Grav., 21, S243) presented a novel algorithm for computing the spherical harmonic components of data represented on a cubic grid, which has been found in real applications to be both efficient and robust to the presence of mesh refinement boundaries. At the same time, however, practical applications of the algorithm require knowledge of how the truncation errors of the algorithm depend on the various parameters in the algorithm. Based on analytic arguments and experience using the algorithm in real numerical simulations, I explore these dependencies and provide a rule of thumb for choosing the parameters based on the truncation errors of the underlying data. I also demonstrate that symmetries in the spherical harmonics themselves allow for an even more efficient implementation of the algorithm than was suggested by Misner in his original paper.Comment: 10 pages, 3 tables, 1 figure. Version 2 has a broader introduction, and includes additional information on choosing parameter

    Improvements to the construction of binary black hole initial data

    Get PDF
    Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the Spectral Einstein Code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.Comment: 28 pages, 13 figures, 1 tabl

    Adaptive mesh and geodesically sliced Schwarzschild spacetime in 3+1 dimensions

    Full text link
    We present first results obtained with a 3+1 dimensional adaptive mesh code in numerical general relativity. The adaptive mesh is used in conjunction with a standard ADM code for the evolution of a dynamically sliced Schwarzschild spacetime (geodesic slicing). We argue that adaptive mesh is particularly natural in the context of general relativity, where apart from adaptive mesh refinement for numerical efficiency one may want to use the built in flexibility to do numerical relativity on coordinate patches.Comment: 21 pages, LaTeX, 7 figures included with eps
    corecore