5 research outputs found

    On the Expressive Power of the Normal Form for Branching-Time Temporal logics

    Get PDF
    With the emerging applications that involve complex distributed systems branching-time specifications are specifically important as they reflect dynamic and non-deterministic nature of such applications. We describe the expressive power of a simple yet powerful branching-time specification framework – branching-time normal form, which has been developed as part of clausal resolution for branching-time temporal logics. We show the encoding of B¨uchi Tree Automata in the language of the normal form, thus representing, syntactically, tree automata in a high-level way. Thus we can treat BNF as a normal form for the latter. These results enable us (1) to translate given problem specifications into the normal form and apply as a verification method a deductive reasoning technique – the clausal temporal resolution; (2) to apply one of the core components of the resolution method - the loop searching to extract, syntactically, hidden invariants in a wide range of complex temporal specifications

    Clausal reasoning for branching-time logics

    Get PDF
    Computation Tree Logic (CTL) is a branching-time temporal logic whose underlying model of time is a choice of possibilities branching into the future. It has been used in a wide variety of areas in Computer Science and Artificial Intelligence, such as temporal databases, hardware verification, program reasoning, multi-agent systems, and concurrent and distributed systems. In this thesis, firstly we present a refined clausal resolution calculus R�,S CTL for CTL. The calculus requires a polynomial time computable transformation of an arbitrary CTL formula to an equisatisfiable clausal normal form formulated in an extension of CTL with indexed existential path quantifiers. The calculus itself consists of eight step resolution rules, two eventuality resolution rules and two rewrite rules, which can be used as the basis for an EXPTIME decision procedure for the satisfiability problem of CTL. We give a formal semantics for the clausal normal form, establish that the clausal normal form transformation preserves satisfiability, provide proofs for the soundness and completeness of the calculus R�,S CTL, and discuss the complexity of the decision procedure based on R�,S CTL. As R�,S CTL is based on the ideas underlying Bolotov’s clausal resolution calculus for CTL, we provide a comparison between our calculus R�,S CTL and Bolotov’s calculus for CTL in order to show that R�,S CTL improves Bolotov’s calculus in many areas. In particular, our calculus is designed to allow first-order resolution techniques to emulate resolution rules of R�,S CTL so that R�,S CTL can be implemented by reusing any first-order resolution theorem prover. Secondly, we introduce CTL-RP, our implementation of the calculus R�,S CTL. CTL-RP is the first implemented resolution-based theorem prover for CTL. The prover takes an arbitrary CTL formula as input and transforms it into a set of CTL formulae in clausal normal form. Furthermore, in order to use first-order techniques, formulae in clausal normal form are transformed into firstorder formulae, except for those formulae related to eventualities, i.e. formulae containing the eventuality operator 3. To implement step resolution and rewrite rules of the calculus R�,S CTL, we present an approach that uses first-order ordered resolution with selection to emulate the step resolution rules and related proofs. This approach enables us to make use of a first-order theorem prover, which implements the first-order ordered resolution with selection, in order to realise our calculus. Following this approach, CTL-RP utilises the first-order theorem prover SPASS to conduct resolution inferences for CTL and is implemented as a modification of SPASS. In particular, to implement the eventuality resolution rules, CTL-RP augments SPASS with an algorithm, called loop search algorithm for tackling eventualities in CTL. To study the performance of CTL-RP, we have compared CTL-RP with a tableau-based theorem prover for CTL. The experiments show good performance of CTL-RP. i ii ABSTRACT Thirdly, we apply the approach we used to develop R�,S CTL to the development of a clausal resolution calculus for a fragment of Alternating-time Temporal Logic (ATL). ATL is a generalisation and extension of branching-time temporal logic, in which the temporal operators are parameterised by sets of agents. Informally speaking, CTL formulae can be treated as ATL formulae with a single agent. Selective quantification over paths enables ATL to explicitly express coalition abilities, which naturally makes ATL a formalism for specification and verification of open systems and game-like multi-agent systems. In this thesis, we focus on the Next-time fragment of ATL (XATL), which is closely related to Coalition Logic. The satisfiability problem of XATL has lower complexity than ATL but there are still many applications in various strategic games and multi-agent systems that can be represented in and reasoned about in XATL. In this thesis, we present a resolution calculus RXATL for XATL to tackle its satisfiability problem. The calculus requires a polynomial time computable transformation of an arbitrary XATL formula to an equi-satisfiable clausal normal form. The calculus itself consists of a set of resolution rules and rewrite rules. We prove the soundness of the calculus and outline a completeness proof for the calculus RXATL. Also, we intend to extend our calculus RXATL to full ATL in the future

    Faithful Modeling of Product Lines with Kripke Structures and Modal Logic

    Get PDF
    Software product lines are now an established framework for software design. They are specified by special diagrams called feature models. For formal analysis, the latter are usually encoded by Boolean propositional theories. We discuss a major deficiency of this semantics, and show that it can be fixed by considering a product to be an instantiation process rather than its final result. We call intermediate states of this process partial products, and argue that what a feature model really defines is a poset of its partial products. We argue that such structures can be viewed as special Kripke structure that we call partial product Kripke structures, ppKS. To specify these Kripke structures, we propose a CTL-based logic, called partial product CTL, ppCTL. We show how to represent a feature model M by a ppCTL theory ML(M) (ML stands for modal logic) such that any ppKS satisfying the theory is equal to the partial product line determined by M. Hence, ML(M) can be considered a sound and complete representation of M. We also discuss several applications of the modal logic view in feature modeling, including refactoring of feature models

    A refined resolution calculus for CTL

    No full text
    corecore