58,195 research outputs found

    Integrated ZigBee RFID sensor networks for resource tracking and monitoring in logistics management

    Get PDF
    The Radio Frequency Identification (RFID), which includes passive and active systems and is the hottest Auto-ID technology nowadays, and the wireless sensor network (WSN), which is one of the focusing topics on monitoring and control, are two fast-growing technologies that have shown great potential in future logistics management applications. However, an information system for logistics applications is always expected to answer four questions: Who, What, When and Where (4Ws), and neither of the two technologies is able to provide complete information for all of them. WSN aims to provide environment monitoring and control regarded as When and What , while RFID focuses on automatic identification of various objects and provides Who (ID). Most people usually think RFID can provide Where at all the time. But what normal passive RFID does is to tell us where an object was the last time it went through a reader, and normal active RFID only tells whether an object is presenting on site. This could sometimes be insufficient for certain applications that require more accurate location awareness, for which a system with real-time localization (RTLS), which is an extended concept of RFID, will be necessary to answer Where constantly. As WSN and various RFID technologies provide information for different but complementary parts of the 4Ws, a hybrid system that gives a complete answer by combining all of them could be promising in future logistics management applications. Unfortunately, in the last decade those technologies have been emerging and developing independently, with little research been done in how they could be integrated. This thesis aims to develop a framework for the network level architecture design of such hybrid system for on-site resource management applications in logistics centres. The various architectures proposed in this thesis are designed to address different levels of requirements in the hierarchy of needs, from single integration to hybrid system with real-time localization. The contribution of this thesis consists of six parts. Firstly, two new concepts, Reader as a sensor and Tag as a sensor , which lead to RAS and TAS architectures respectively, for single integrations of RFID and WSN in various scenarios with existing systems; Secondly, a integrated ZigBee RFID Sensor Network Architecture for hybrid integration; Thirdly, a connectionless inventory tracking architecture (CITA) and its battery consumption model adding location awareness for inventory tracking in Hybrid ZigBee RFID Sensor Networks; Fourthly, a connectionless stochastic reference beacon architecture (COSBA) adding location awareness for high mobility target tracking in Hybrid ZigBee RFID Sensor Networks; Fifthly, improving connectionless stochastic beacon transmission performance with two proposed beacon transmission models, the Fully Stochastic Reference Beacon (FSRB) model and the Time Slot Based Stochastic Reference Beacon (TSSRB) model; Sixthly, case study of the proposed frameworks in Humanitarian Logistics Centres (HLCs). The research in this thesis is based on ZigBee/IEEE802.15.4, which is currently the most widely used WSN technology. The proposed architectures are demonstrated through hardware implementation and lab tests, as well as mathematic derivation and Matlab simulations for their corresponding performance models. All the tests and simulations of my designs have verified feasibility and features of our designs compared with the traditional systems

    Flexible data input layer architecture (FDILA) for quick-response decision making tools in volatile manufacturing systems

    Get PDF
    This paper proposes the foundation for a flexible data input management system as a vital part of a generic solution for quick-response decision making. Lack of a comprehensive data input layer between data acquisition and processing systems has been realized and thought of. The proposed FDILA is applicable to a wide variety of volatile manufacturing environments. It provides a generic platform that enables systems designers to define any number of data entry points and types regardless of their make and specifications in a standard fashion. This is achieved by providing a variable definition layer immediately on top of the data acquisition layer and before data pre-processing layer. For proof of concept, National Instruments’ Labview data acquisition software is used to simulate a typical shop floor data acquisition system. The extracted data can then be fed into a data mining module that builds cost modeling functions involving the plant’s Key Performance Factors

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    MONICA in Hamburg: Towards Large-Scale IoT Deployments in a Smart City

    Full text link
    Modern cities and metropolitan areas all over the world face new management challenges in the 21st century primarily due to increasing demands on living standards by the urban population. These challenges range from climate change, pollution, transportation, and citizen engagement, to urban planning, and security threats. The primary goal of a Smart City is to counteract these problems and mitigate their effects by means of modern ICT to improve urban administration and infrastructure. Key ideas are to utilise network communication to inter-connect public authorities; but also to deploy and integrate numerous sensors and actuators throughout the city infrastructure - which is also widely known as the Internet of Things (IoT). Thus, IoT technologies will be an integral part and key enabler to achieve many objectives of the Smart City vision. The contributions of this paper are as follows. We first examine a number of IoT platforms, technologies and network standards that can help to foster a Smart City environment. Second, we introduce the EU project MONICA which aims for demonstration of large-scale IoT deployments at public, inner-city events and give an overview on its IoT platform architecture. And third, we provide a case-study report on SmartCity activities by the City of Hamburg and provide insights on recent (on-going) field tests of a vertically integrated, end-to-end IoT sensor application.Comment: 6 page

    Developing an Efficient DMCIS with Next-Generation Wireless Networks

    Get PDF
    The impact of extreme events across the globe is extraordinary which continues to handicap the advancement of the struggling developing societies and threatens most of the industrialized countries in the globe. Various fields of Information and Communication Technology have widely been used for efficient disaster management; but only to a limited extent though, there is a tremendous potential for increasing efficiency and effectiveness in coping with disasters with the utilization of emerging wireless network technologies. Early warning, response to the particular situation and proper recovery are among the main focuses of an efficient disaster management system today. Considering these aspects, in this paper we propose a framework for developing an efficient Disaster Management Communications and Information System (DMCIS) which is basically benefited by the exploitation of the emerging wireless network technologies combined with other networking and data processing technologies.Comment: 6 page

    A Secure Lightweight Approach of Node Membership Verification in Dense HDSN

    Full text link
    In this paper, we consider a particular type of deployment scenario of a distributed sensor network (DSN), where sensors of different types and categories are densely deployed in the same target area. In this network, the sensors are associated with different groups, based on their functional types and after deployment they collaborate with one another in the same group for doing any assigned task for that particular group. We term this sort of DSN as a heterogeneous distributed sensor network (HDSN). Considering this scenario, we propose a secure membership verification mechanism using one-way accumulator (OWA) which ensures that, before collaborating for a particular task, any pair of nodes in the same deployment group can verify each other-s legitimacy of membership. Our scheme also supports addition and deletion of members (nodes) in a particular group in the HDSN. Our analysis shows that, the proposed scheme could work well in conjunction with other security mechanisms for sensor networks and is very effective to resist any adversary-s attempt to be included in a legitimate group in the network.Comment: 6 page
    corecore