1,261 research outputs found

    Satisfaction classes in nonstandard models of first-order arithmetic

    Get PDF
    A satisfaction class is a set of nonstandard sentences respecting Tarski's truth definition. We are mainly interested in full satisfaction classes, i.e., satisfaction classes which decides all nonstandard sentences. Kotlarski, Krajewski and Lachlan proved in 1981 that a countable model of PA admits a satisfaction class if and only if it is recursively saturated. A proof of this fact is presented in detail in such a way that it is adaptable to a language with function symbols. The idea that a satisfaction class can only see finitely deep in a formula is extended to terms. The definition gives rise to new notions of valuations of nonstandard terms; these are investigated. The notion of a free satisfaction class is introduced, it is a satisfaction class free of existential assumptions on nonstandard terms. It is well known that pathologies arise in some satisfaction classes. Ideas of how to remove those are presented in the last chapter. This is done mainly by adding inference rules to M-logic. The consistency of many of these extensions is left as an open question.Comment: Thesis for the degree of licentiate of philosophy, 74 pages, 4 figure

    Reverse Mathematics and parameter-free Transfer

    Full text link
    Recently, conservative extensions of Peano and Heyting arithmetic in the spirit of Nelson's axiomatic approach to Nonstandard Analysis, have been proposed. In this paper, we study the Transfer axiom of Nonstandard Analysis restricted to formulas without parameters. Based on this axiom, we formulate a base theory for the Reverse Mathematics of Nonstandard Analysis and prove some natural reversals, and show that most of these equivalences do not hold in the absence of parameter-free Transfer.Comment: 22 pages; to appear in Annals of Pure and Applied Logi

    The computational content of Nonstandard Analysis

    Get PDF
    Kohlenbach's proof mining program deals with the extraction of effective information from typically ineffective proofs. Proof mining has its roots in Kreisel's pioneering work on the so-called unwinding of proofs. The proof mining of classical mathematics is rather restricted in scope due to the existence of sentences without computational content which are provable from the law of excluded middle and which involve only two quantifier alternations. By contrast, we show that the proof mining of classical Nonstandard Analysis has a very large scope. In particular, we will observe that this scope includes any theorem of pure Nonstandard Analysis, where `pure' means that only nonstandard definitions (and not the epsilon-delta kind) are used. In this note, we survey results in analysis, computability theory, and Reverse Mathematics.Comment: In Proceedings CL&C 2016, arXiv:1606.0582
    • …
    corecore