168,356 research outputs found

    Increasing security of supply by the use of a local power controller during large system disturbances

    Get PDF
    This paper describes intelligent ways in which distributed generation and local loads can be controlled during large system disturbances, using Local Power Controllers. When distributed generation is available, and a system disturbance is detected early enough, the generation can be dispatched, and its output power can be matched as closely as possible to local microgrid demand levels. Priority-based load shedding can be implemented to aid this process. In this state, the local microgrid supports the wider network by relieving the wider network of the micro-grid load. Should grid performance degrade further, the local microgrid can separate itself from the network and maintain power to the most important local loads, re-synchronising to the grid only after more normal performance is regained. Such an intelligent system would be a suitable for hospitals, data centres, or any other industrial facility where there are critical loads. The paper demonstrates the actions of such Local Power Controllers using laboratory experiments at the 10kVA scale

    A scientometric analysis and review of fall from height research in construction

    Get PDF
    Fall from height (FFH) in the construction industry has earned much attention among researchers in recent years. The present review-based study introduced a science mapping approach to evaluate the FFH studies related to the construction industry. This study, through an extensive bibliometric and scientometric assessment, recognized the most active journals, keywords and the nations in the field of FFH studies since 2000. Analysis of the authors’ keywords revealed the emerging research topics in the FFH research community. Recent studies have been discovered to pay more attention to the application of Computer and Information Technology (CIT) tools, particularly building information modelling (BIM) in research related to FFH. Other emerging research areas in the domain of FFH include rule checking, and prevention through design. The findings summarized the mainstream research areas (e.g., safety management program), discussed existing research gaps in FFH domain (e.g., the adaptability of safety management system), and suggests future directions in FFH research. The recommended future directions could contribute to improving safety for the FFH research community by evaluating existing fall prevention programs in different contexts; integrating multiple CIT tools in the entire project lifecycle; designing fall safety courses to workers associated with temporary agents and prototype safety knowledge tool development. The current study was restricted to the FFH literature sample included the journal articles published only in English and in Scopus

    The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization

    Full text link
    This paper focuses on an examination of an applicability of Recurrent Neural Network models for detecting anomalous behavior of the CERN superconducting magnets. In order to conduct the experiments, the authors designed and implemented an adaptive signal quantization algorithm and a custom GRU-based detector and developed a method for the detector parameters selection. Three different datasets were used for testing the detector. Two artificially generated datasets were used to assess the raw performance of the system whereas the 231 MB dataset composed of the signals acquired from HiLumi magnets was intended for real-life experiments and model training. Several different setups of the developed anomaly detection system were evaluated and compared with state-of-the-art OC-SVM reference model operating on the same data. The OC-SVM model was equipped with a rich set of feature extractors accounting for a range of the input signal properties. It was determined in the course of the experiments that the detector, along with its supporting design methodology, reaches F1 equal or very close to 1 for almost all test sets. Due to the profile of the data, the best_length setup of the detector turned out to perform the best among all five tested configuration schemes of the detection system. The quantization parameters have the biggest impact on the overall performance of the detector with the best values of input/output grid equal to 16 and 8, respectively. The proposed solution of the detection significantly outperformed OC-SVM-based detector in most of the cases, with much more stable performance across all the datasets.Comment: Related to arXiv:1702.0083
    • 

    corecore