1,589 research outputs found

    On the use of the digital twin concept for the structural integrity protection of architectural heritage

    Get PDF
    Undoubtedly, heritage buildings serve as essential embodiments of the cultural richness and diversity of the world’s states, and their conservation is of the utmost importance. Specifically, the protection of the structural integrity of these buildings is highly relevant not only because of the buildings themselves but also because they often contain precious artworks, such as sculptures, paintings, and frescoes. When a disaster causes damage to heritage buildings, these artworks will likely be damaged, resulting in the loss of historical and artistic materials and an intangible loss of memory and identity for people. To preserve heritage buildings, state-of-the-art recommendations inspired by the Venice Charter of 1964 suggest real-time monitoring of the progressive damage of existing structures, avoiding massive interventions, and providing immediate action in the case of a disaster. The most up-to-date digital information and analysis technologies, such as digital twins, can be employed to fulfil this approach. The implementation of the digital twin paradigm can be crucial in developing a preventive approach for built cultural heritage conservation, considering its key features of continuous data exchange with the physical system and predictive analysis. This paper presents a comprehensive overview of the digital twin concept in the architecture, engineering, construction, and operation (AECO) domain. It also critically discusses some applications within the context of preserving the structural integrity of architectural heritage, with a particular emphasis on masonry structures. Finally, a prototype of the digital twin paradigm for the preservation of heritage buildings’ structural integrity is proposed.This research was supported by the doctoral grant PRT/BD/152822/2021 financed by the Portuguese Foundation for Science and Technology (FCT), under the MIT Portugal Program

    Energy-efficient through-life smart design, manufacturing and operation of ships in an industry 4.0 environment

    Get PDF
    Energy efficiency is an important factor in the marine industry to help reduce manufacturing and operational costs as well as the impact on the environment. In the face of global competition and cost-effectiveness, ship builders and operators today require a major overhaul in the entire ship design, manufacturing and operation process to achieve these goals. This paper highlights smart design, manufacturing and operation as the way forward in an industry 4.0 (i4) era from designing for better energy efficiency to more intelligent ships and smart operation through-life. The paper (i) draws parallels between ship design, manufacturing and operation processes, (ii) identifies key challenges facing such a temporal (lifecycle) as opposed to spatial (mass) products, (iii) proposes a closed-loop ship lifecycle framework and (iv) outlines potential future directions in smart design, manufacturing and operation of ships in an industry 4.0 value chain so as to achieve more energy-efficient vessels. Through computational intelligence and cyber-physical integration, we envision that industry 4.0 can revolutionise ship design, manufacturing and operations in a smart product through-life process in the near future

    Digital twins: a survey on enabling technologies, challenges, trends and future prospects

    Get PDF
    Digital Twin (DT) is an emerging technology surrounded by many promises, and potentials to reshape the future of industries and society overall. A DT is a system-of-systems which goes far beyond the traditional computer-based simulations and analysis. It is a replication of all the elements, processes, dynamics, and firmware of a physical system into a digital counterpart. The two systems (physical and digital) exist side by side, sharing all the inputs and operations using real-time data communications and information transfer. With the incorporation of Internet of Things (IoT), Artificial Intelligence (AI), 3D models, next generation mobile communications (5G/6G), Augmented Reality (AR), Virtual Reality (VR), distributed computing, Transfer Learning (TL), and electronic sensors, the digital/virtual counterpart of the real-world system is able to provide seamless monitoring, analysis, evaluation and predictions. The DT offers a platform for the testing and analysing of complex systems, which would be impossible in traditional simulations and modular evaluations. However, the development of this technology faces many challenges including the complexities in effective communication and data accumulation, data unavailability to train Machine Learning (ML) models, lack of processing power to support high fidelity twins, the high need for interdisciplinary collaboration, and the absence of standardized development methodologies and validation measures. Being in the early stages of development, DTs lack sufficient documentation. In this context, this survey paper aims to cover the important aspects in realization of the technology. The key enabling technologies, challenges and prospects of DTs are highlighted. The paper provides a deep insight into the technology, lists design goals and objectives, highlights design challenges and limitations across industries, discusses research and commercial developments, provides its applications and use cases, offers case studies in industry, infrastructure and healthcare, lists main service providers and stakeholders, and covers developments to date, as well as viable research dimensions for future developments in DTs

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Digital technologies review for manufacturing processes

    Get PDF
    It is apparent the industrial processes transformations caused by industry 4.0 are in advance in some countries like China, Japan, Germany and United States. But, in return, the developing countries, as the emergent Brazil, seem like to have a long way to achieve digital era. Considering manufacturing processes as the starting point the rise of industry 4.0, this research aims to show a review about the most important technologies used in smart manufacturing, including the main challenges to implement it at Brazil. The papers were collected from Web of Science (WoS), comprising 114 articles and 2 books to underpin this study. This exploratory research resulted in the presentation of some challenges faced by Brazilian industry to join the new industrial era, such as poor technological infrastructure, besides lack of investment in technologies and training of qualified people. Even though the primary motivation of this research was to present a panorama of smart manufacturing for Brazil, this study results contributes to the most of emergent countries, bringing together general concepts and addressing practical applications developed by several researchers from the international academic community

    Digitalization of Building Site Management in the Construction Industry

    Get PDF
     With Industry 4.0, a digital transformation has started in the construction industry. However, 4.0 technologies have difficulties in the integration of digital systems due to the diversity and complexity of the processes in the construction industry. Multidisciplinary work in architectural projects and the need for high productivity require digital renovation planning in the construction industry. The application of the technologies that emerged because of digital transformation on the building site has revealed the concept of the smart building site. Within the framework of many current issues such as the smart building site, the digital transformation on the building sites needs to be explored and defined. In this study, a bibliometric analysis was carried out on the publications in this field by evaluating the transformation potentials of the digitalized building sites of the future. Academic publications that will raise awareness in the improvement of building site management and the development of digital systems have been determined. Conceptual integrity was created by seeing the research gap for digitalization in building site management and it was aimed to guide researchers in future studies. As a result, based on the research area analysis and the diversity of academic publications, it was seen that the studies in the field of architecture were insufficient compared to the engineering fields

    The Human Digi-real Duality

    Get PDF

    Digital twin reference model development to prevent operators' risk in process plants

    Get PDF
    In the literature, many applications of Digital Twin methodologies in the manufacturing, construction and oil and gas sectors have been proposed, but there is still no reference model specifically developed for risk control and prevention. In this context, this work develops a Digital Twin reference model in order to define conceptual guidelines to support the implementation of Digital Twin for risk prediction and prevention. The reference model proposed in this paper is made up of four main layers (Process industry physical space, Communication system, Digital Twin and User space), while the implementation steps of the reference model have been divided into five phases (Development of the risk assessment plan, Development of the communication and control system, Development of Digital Twin tools, Tools integration in a Digital Twin perspective and models and Platform validation). During the design and implementation phases of a Digital Twin, different criticalities must be taken into consideration concerning the need for deterministic transactions, a large number of pervasive devices, and standardization issues. Practical implications of the proposed reference model regard the possibility to detect, identify and develop corrective actions that can affect the safety of operators, the reduction of maintenance and operating costs, and more general improvements of the company business by intervening both in strictly technological and organizational terms
    • …
    corecore