4,665 research outputs found

    Kinect vs. low-cost inertial sensing for gesture recognition

    Get PDF
    In this paper, we investigate efficient recognition of human gestures / movements from multimedia and multimodal data, including the Microsoft Kinect and translational and rotational acceleration and velocity from wearable inertial sensors. We firstly present a system that automatically classifies a large range of activities (17 different gestures) using a random forest decision tree. Our system can achieve near real time recognition by appropriately selecting the sensors that led to the greatest contributing factor for a particular task. Features extracted from multimodal sensor data were used to train and evaluate a customized classifier. This novel technique is capable of successfully classifying various gestures with up to 91 % overall accuracy on a publicly available data set. Secondly we investigate a wide range of different motion capture modalities and compare their results in terms of gesture recognition accuracy using our proposed approach. We conclude that gesture recognition can be effectively performed by considering an approach that overcomes many of the limitations associated with the Kinect and potentially paves the way for low-cost gesture recognition in unconstrained environments

    Kinect vs. low-cost inertial sensing For gesture recognition

    Get PDF
    In this paper, we investigate efficient recognition of human gestures / movements from multimedia and multimodal data, including the Microsoft Kinect and translational and rotational acceleration and velocity from wearable inertial sensors. We firstly present a system that automatically classifies a large range of activities (17 different gestures) using a random forest decision tree. Our system can achieve near real time recognition by appropriately selecting the sensors that led to the greatest contributing factor for a particular task. Features extracted from multimodal sensor data were used to train and evaluate a customized classifier. This novel technique is capable of successfully classifying var- ious gestures with up to 91 % overall accuracy on a publicly available data set. Secondly we investigate a wide range of different motion capture modalities and compare their results in terms of gesture recognition accu- racy using our proposed approach. We conclude that gesture recognition can be effectively performed by considering an approach that overcomes many of the limitations associated with the Kinect and potentially paves the way for low-cost gesture recognition in unconstrained environments

    A Multilayer Hidden Markov Models-Based Method for Human-Robot Interaction

    Get PDF
    To achieve Human-Robot Interaction (HRI) by using gestures, a continuous gesture recognition approach based on Multilayer Hidden Markov Models (MHMMs) is proposed, which consists of two parts. One part is gesture spotting and segment module, the other part is continuous gesture recognition module. Firstly, a Kinect sensor is used to capture 3D acceleration and 3D angular velocity data of hand gestures. And then, a Feed-forward Neural Networks (FNNs) and a threshold criterion are used for gesture spotting and segment, respectively. Afterwards, the segmented gesture signals are respectively preprocessed and vector symbolized by a sliding window and a K-means clustering method. Finally, symbolized data are sent into Lower Hidden Markov Models (LHMMs) to identify individual gestures, and then, a Bayesian filter with sequential constraints among gestures in Upper Hidden Markov Models (UHMMs) is used to correct recognition errors created in LHMMs. Five predefined gestures are used to interact with a Kinect mobile robot in experiments. The experimental results show that the proposed method not only has good effectiveness and accuracy, but also has favorable real-time performance

    Automatic recognition of Soundpainting for the Generation of Electronic Music Sounds

    Get PDF
    This work aims to explore the use of a new gesture-based interaction built on automatic recognition of Soundpainting structured gestural language. In the proposed approach, a composer (called Soundpainter) performs Soundpainting gestures facing a Kinect sensor (Microsoft). Then, a gesture recognition system captures gestures that are sent to a sound generator software. The proposed method was used to stage an artistic show in which a Soundpainter had to improvise with 6 different gestures to generate a musical composition from different sounds in real time. The accuracy of the gesture recognition system was evaluated as well as Soundpainter's user experience. In addition, a user evaluation study for using our proposed system in a learning context was also conducted. Current results open up perspectives for the design of new artistic expressions based on the use of automatic gestural recognition supported by Soundpainting language

    Hand gesture recognition based on signals cross-correlation

    Get PDF

    Hand gesture recognition with jointly calibrated Leap Motion and depth sensor

    Get PDF
    Novel 3D acquisition devices like depth cameras and the Leap Motion have recently reached the market. Depth cameras allow to obtain a complete 3D description of the framed scene while the Leap Motion sensor is a device explicitly targeted for hand gesture recognition and provides only a limited set of relevant points. This paper shows how to jointly exploit the two types of sensors for accurate gesture recognition. An ad-hoc solution for the joint calibration of the two devices is firstly presented. Then a set of novel feature descriptors is introduced both for the Leap Motion and for depth data. Various schemes based on the distances of the hand samples from the centroid, on the curvature of the hand contour and on the convex hull of the hand shape are employed and the use of Leap Motion data to aid feature extraction is also considered. The proposed feature sets are fed to two different classifiers, one based on multi-class SVMs and one exploiting Random Forests. Different feature selection algorithms have also been tested in order to reduce the complexity of the approach. Experimental results show that a very high accuracy can be obtained from the proposed method. The current implementation is also able to run in real-time
    • 

    corecore