535 research outputs found

    Mathematical optimization techniques for resource allocation in cognitive radio networks

    Get PDF
    Introduction of data intensive multimedia and interactive services together with exponential growth of wireless applications have created a spectrum crisis. Many spectrum occupancy measurements, however, have shown that most of the allocated spectrum are used inefficiently indicating that radically new approaches are required for better utilization of spectrum. This motivates the concept of opportunistic spectrum sharing or the so-called cognitive radio technology that has great potential to improve spectrum utilization. This technology allows the secondary users to access the spectrum which is allocated to the licensed users in order to transmit their own signal without harmfully affecting the licensed users' communications. In this thesis, an optimal radio resource allocation algorithm is proposed for an OFDM based underlay cognitive radio networks. The proposed algorithm optimally allocates transmission power and OFDM subchannels to the users at the basestation in order to satisfy the quality of services and interference leakage constraints based on integer linear programming. To reduce the computational complexity, a novel recursive suboptimal algorithm is proposed based on a linear optimization framework. To exploit the spatial diversity, the proposed algorithms are extended to a MIMO-OFDM based cognitive radio network. Finally, a novel spatial multiplexing technique is developed to allocate resources in a cognitive radio network which consists of both the real time and the non-real users. Conditions required for convergence of the proposed algorithm are analytically derived. The performance of all these new algorithms are verified using MATLAB simulation results.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mathematical optimization techniques for resource allocation and spatial multiplexing in spectrum sharing networks

    Get PDF
    Due to introduction of smart phones with data intensive multimedia and interactive applications and exponential growth of wireless devices, there is a shortage for useful radio spectrum. Even though the spectrum has become crowded, many spectrum occupancy measurements indicate that most of the allocated spectrum is underutilised. Hence radically new approaches in terms of allocation of wireless resources are required for better utilization of radio spectrum. This has motivated the concept of opportunistic spectrum sharing or the so-called cognitive radio technology that has great potential to improve spectrum utilization. The cognitive radio technology allows an opportunistic user namely the secondary user to access the spectrum of the licensed user (known as primary user) provided that the secondary transmission does not harmfully affect the primary user. This is possible with the introduction of advanced resource allocation techniques together with the use of wireless relays and spatial diversity techniques. In this thesis, various mathematical optimization techniques have been developed for the efficient use of radio spectrum within the context of spectrum sharing networks. In particular, optimal power allocation techniques and centralised and distributed beamforming techniques have been developed. Initially, an optimization technique for subcarrier and power allocation has been proposed for an Orthogonal Frequency Division Multiple Access (OFDMA) based secondary wireless network in the presence of multiple primary users. The solution is based on integer linear programming with multiple interference leakage and transmission power constraints. In order to enhance the spectrum efficiency further, the work has been extended to allow multiple secondary users to occupy the same frequency band under a multiple-input and multiple-output (MIMO) framework. A sum rate maximization technique based on uplink-downlink duality and dirty paper coding has been developed for the MIMO based OFDMA network. The work has also been extended to handle fading scenarios based on maximization of ergodic capacity. The optimization techniques for MIMO network has been extended to a spectrum sharing network with relays. This has the advantage of extending the coverage of the secondary network and assisting the primary network in return for the use of the primary spectrum. Finally, instead of considering interference mitigation, the recently emerged concept of interference alignment has been used for the resource allocation in spectrum sharing networks. The performances of all these new algorithms have been demonstrated using MATLAB based simulation studies
    • …
    corecore