6,095 research outputs found

    airline revenue management

    Get PDF
    With the increasing interest in decision support systems and the continuous advance of computer science, revenue management is a discipline which has received a great deal of interest in recent years. Although revenue management has seen many new applications throughout the years, the main focus of research continues to be the airline industry. Ever since Littlewood (1972) first proposed a solution method for the airline revenue management problem, a variety of solution methods have been introduced. In this paper we will give an overview of the solution methods presented throughout the literature.revenue management;seat inventory control;OR techniques;mathematical programming

    Decomposition methods for dynamic room allocation in hotel revenue management

    Get PDF
    Long-term stays are quite common in the hotel business. Consequently, it is crucial for the hotel managements to consider the allocation of available rooms to a stream of customers requesting to stay multiple days. This requirement leads to the solving of dynamic network revenue management problems that are computationally challenging. A remedy is to apply decomposition approaches so that an approximate solution can be obtained by solving many simpler problems. In this study, we investigate several room allocation policies in hotel revenue management. We work on various decomposition methods to find reservation policies for advance bookings and stay-over customers. We also devise solution algorithms to solve the resulting problems efficiently

    Bid Price Control for Demand Fulfillment in a Make-to-Stock Production System

    Get PDF
    In this paper, we consider RM approaches for demand fulfillment in a make-to-stock (MTS) production system with known exogenous replenishments and stochastic demand from multiple customer classes. We propose three bid-price control models and evaluate their performance numerically

    Airline Revenue Management with Shifting Capacity

    Get PDF
    Airline revenue management is the practice of controlling the booking requests such that the planes are filled with the most profitable passengers. In revenue management the capacities of the business and economy class sections of the plane are traditionally considered to be fixed and distinct capacities. In this paper, we give up this notion and instead consider the use of convertible seats. A row of these seats can be converted from business class seats to economy class seats and vice versa. This offers an airline company the possibility to adjust the capacity configuration of the plane to the demand pattern at hand. We show how to incorporate the shifting capacity opportunity into a dynamic, network-based revenue management model. We also extend the model to include cancellations and overbooking. With a small test case we show that incorporating the shifting capacity opportunity into the revenue management decision indeed provides a means to improve revenues.convertible seats;dynamic capacity management;revenue management;seat inventory control;shifting capacity

    Stochastic programming for multiple-leg network revenue management

    Get PDF
    Airline seat inventory control is a very profitable tool in the airline industry. Mathematical programming models provide booking limits or bid-prices for all itineraries and fare classes based on demand forecasts. But the actual revenue generated in the booking process fails to meet expectations. Simple deterministic models based on expected demand generate better revenue than more advanced probabilistic models. Recently suggested models put even more effort into demand forecasting. We will show that the dynamic booking process rather than the demand forecasts needs to be addressed. In particular the nesting strategies applied in booking control will counter-effect the profitability of advanced estimation of booking limits and bid-prices.simulation;revenue management;mathematical programming

    Data-Driven Estimation in Equilibrium Using Inverse Optimization

    Get PDF
    Equilibrium modeling is common in a variety of fields such as game theory and transportation science. The inputs for these models, however, are often difficult to estimate, while their outputs, i.e., the equilibria they are meant to describe, are often directly observable. By combining ideas from inverse optimization with the theory of variational inequalities, we develop an efficient, data-driven technique for estimating the parameters of these models from observed equilibria. We use this technique to estimate the utility functions of players in a game from their observed actions and to estimate the congestion function on a road network from traffic count data. A distinguishing feature of our approach is that it supports both parametric and \emph{nonparametric} estimation by leveraging ideas from statistical learning (kernel methods and regularization operators). In computational experiments involving Nash and Wardrop equilibria in a nonparametric setting, we find that a) we effectively estimate the unknown demand or congestion function, respectively, and b) our proposed regularization technique substantially improves the out-of-sample performance of our estimators.Comment: 36 pages, 5 figures Additional theorems for generalization guarantees and statistical analysis adde

    A Column Generation Algorithm for Choice-Based Network Revenue Management

    Get PDF
    In the last few years, there has been a trend to enrich traditional revenue management models built upon the independent demand paradigm by accounting for customer choice behavior. This extension involves both modeling and computational challenges. One way to describe choice behavior is to assume that each customer belongs to a segment, which is characterized by a consideration set, i.e., a subset of the products provided by the firm that a customer views as options. Customers choose a particular product according to a multinomial-logit criterion, a model widely used in the marketing literature. In this paper, we consider the choice-based, deterministic, linear programming model (CDLP) of Gallego et al. [6], and the follow-up dynamic programming (DP) decomposition heuristic of van Ryzin and Liu [16], and focus on the more general version of these models, where customers belong to overlapping segments. To solve the CDLP for real-size networks, we need to develop a column generation algorithm. We prove that the associated column generation subproblem is indeed NP-Complete, and propose a simple, greedy heuristic to overcome the complexity of an exact algorithm. Our computational results show that the heuristic is quite effective, and that the overall approach has good practical potential and leads to high quality solutions.Operations Management Working Papers Serie
    corecore