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Abstract

In the last few years, there has been a trend to enrich traditional revenue management models built

upon the independent demand paradigm by accounting for customer choice behavior. This extension

involves both modeling and computational challenges.

One way to describe choice behavior is to assume that each customer belongs to a segment, which is

characterized by a consideration set, i.e., a subset of the products provided by the firm that a customer

views as options. Customers choose a particular product according to a multinomial-logit criterion, a

model widely used in the marketing literature.

In this paper, we consider the choice-based, deterministic, linear programming model (CDLP) of

Gallego et al. [6], and the follow-up dynamic programming (DP) decomposition heuristic of van Ryzin and

Liu [16], and focus on the more general version of these models, where customers belong to overlapping

segments. To solve the CDLP for real-size networks, we need to develop a column generation algorithm.

We prove that the associated column generation subproblem is indeed NP-Complete, and propose a

simple, greedy heuristic to overcome the complexity of an exact algorithm. Our computational results

show that the heuristic is quite effective, and that the overall approach has good practical potential and

leads to high quality solutions.
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1 Introduction

Capacity control-based revenue management (RM) involves controlling a fixed and perishable capacity of
resources over a finite horizon, with the objective of maximizing revenues. Applications of RM include service
industries like airlines, hotels, railways, cruises, etc. In this paper, we will use the terminology for the airline
application as representative of the problem.

Traditionally, RM systems have been built upon the independent demand model assumption. This as-
sumption views demand as a sequence of requests for products, which are insensitive to the capacity controls
applied by the airline, and to market conditions like price offered by the competitors, frequency of depar-
tures, brand preference of the customers, etc (e.g. see Talluri and van Ryzin [13] for further details). Under
the independent demand model assumption, it is also generally assumed that low fare demand comes first.
Thus, the airline’s problem is posed as “how much capacity should be reserved for the high fare demand that
will come later?”. There is wide agreement nowadays about the limitations of this assumption, based on the
observation that the sale of a product is indeed the outcome of a customer’s purchase decision subject to
market conditions. Furthermore, the expansion of low-cost airlines offering simplified, undifferentiated fare
structures, and their usual strategy of saturating a market with several flights during the day, has raised the
interest in formally capturing customer choice behavior in RM systems.

Accounting for customer choice behavior involves two main challenges. The first is to model the choice
decision of a customer at a particular moment in time, and to estimate the parameters that describe that
decision. The second is to incorporate this sophisticated demand model in the optimization module of a RM
system, so that the availability controls explicitly account for customer choice behavior.

A very interesting piece of work on this second matter is the paper by Gallego et al. [6]. They propose a
customer choice-based linear programming (CDLP) model for network RM, which is the choice-based analog
of the deterministic linear programming (DLP) model of traditional RM. Although their formulation is for
the case of flexible product offerings, where the firm has the flexibility of offering a collection of products
to serve market demand, its application for choice-based RM is straightforward: It includes offer sets, i.e.
sets of products offered by the seller at different points in time during the booking horizon, thus re-stating
the problem as “which alternatives should the firm make available to the customers in order to profitably
influence their choices?”. The decision variables are the lengths of time during which the different offer sets
must be available during the booking horizon. As a limitation, their market demand model does not allow
any kind of segmentation.

In a follow-up paper, van Ryzin and Liu [16] present two approaches to implement the outcome of the
CDLP: In the first approach, the primal solution of the CDLP is applied right away, and the offer sets remain
available for the length of time indicated by the values of the decision variables; and the other approach uses
the optimal dual variables in a decomposition scheme that split the global network problem into a collection
of computationally tractable leg-level problems. They present a market segmentation model, in which each
customer belongs to one specific segment. In their case, the segments are defined by disjoint consideration
sets of products. Their results show that the decomposition heuristic produces significant improvements in
revenue compared to a direct application of the CDLP primal solution. They also compare the revenue gap
of both approaches with respect to results obtained under the traditional independent demand assumption,
and verify that the decomposition heuristic consistently outperforms the latter, while the performance of
CDLP is sort of mixed.

Motivated by the appealing ideas of Gallego et al. [6], and the promising results of van Ryzin and Liu [16],
in this paper, we consider the extension of the CDLP -and its derivations- to the general case of overlapping
segments (i.e. segments whose corresponding consideration sets have a nonempty intersection). In Gallego
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et al. [6], the absence of market segments eliminates the different preference weights that different customers
could have for the same product. In van Ryzin and Liu [16], the restriction imposed in the numerical
experiments is a strong one, since it partitions the space of products among different customer segments.
For instance, consider a simple airline market with two parallel flights (say, one morning flight, and one
afternoon flight), and two fare classes (high and low) per flight. One segment could be defined by time-
sensitive customers, with strong morning preference, i.e. customers who prefer to pay the low fare, but are
eventually willing to pay the high fare in the morning flight. Another segment could be defined by price-
sensitive customers, that will go for the lowest available fare, no matter the time. Clearly, the preference
order is different for these two types of customers (which is precluded in the model of Gallego et al. [6]), and
the product “morning flight, low fare class” belongs simultaneously to both consideration sets (which is not
allowed in the model of van Ryzin and Liu [16]). Certainly, allowing for overlapping segments would be a
more natural fit for modeling real situations of market segmentation, and constitutes a strong limitation of
the previous two papers. The cases known so far where the CDLP model and its derivations can be solved
efficiently are very restrictive. In this paper, we present a method that closes the gap between the CDLP
framework and its real practical potential.

As in van Ryzin and Liu [16], we also focus on the multinomial logit (MNL) choice model of demand,
a model widely used in the marketing and economics literature. The main difficulty, from a computational
standpoint, suffered by their approach is solving the CDLP efficiently by column generation. Indeed, it turns
out that the column generation subproblem is difficult on its own. A structurally similar problem to the
column generation one arises in the operational policy derived from the decomposition algorithm, when the
firm needs to dynamically compute the next offer set to exhibit. As van Ryzin and Liu [16] show in Section
6.3, for the case of non-overlapping segments, this can be done in polynomial time. For the more general case
of overlapping segments, the problem is of the fractional-programming type. Our theoretical contribution is
a negative result in this regard: even the column generation subproblem is NP-Complete. The proof that we
present here relies on a polynomial transformation from the graph theory problem minimum vertex cover,
well-known to be NP-complete.

Being able to solve –or at least approximately solve– the column generation subproblem in an efficient
way, has broader implications than the clear benefit that it would bring to our methodology. For example,
in a marketing science framework, our column generation subproblem is equivalent to the problem faced
by a seller that receives streams of customers from overlapping segments, and needs to decide the optimal
assortment of products to offer in order to maximize the instantaneous revenue rate, when the product prices
are fixed.

In order to provide a polynomial algorithm for the column generation subproblem, we use a greedy
heuristic that performs quite well in practice, from its computational speed as well as quality of solutions
obtained perspectives, finding optimal solutions in most of the cases that we considered.

The main practical contribution of our paper is illustrated by computational experiments. We run an
exhaustive series of computational tests extending the decomposition heuristic of van Ryzin and Liu [16] to
the overlapping segment case, and comparing its performance with CDLP, a randomized variation of CDLP,
and a reoptimization scheme that uses elements of both the decomposition heuristic (DCOMP) and the
primitive CDLP. Our results are somewhat aligned with the findings of van Ryzin and Liu [16]: DCOMP
outperforms the other methods, especially in scarce capacity settings. However, the other methods show
a good revenue performance, outperforming the behavior of the independent demand model assumption
generally by more than 10%, indeed showing that choice behavior is a first order effect from a revenue
management perspective.

Our experiments also show the practical feasibility of this approach by providing the computational times
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of the different methods. The speed for solving the column generation subproblem gives a strong support for
the potential of the choice-based methods. The decomposition heuristic is clearly the most time consuming
method, taking around 8 to 10 minutes in a small to medium network setting (four nodes, seven legs, eleven
products, ten customer segments). However, its core is building off-line a big two-dimensional table to be
used later on when computing real time the offer sets. This is indeed a batch process that is typically run
overnight by the airlines, and hence it is still practically feasible. Nevertheless, if time becomes an issue for
larger networks, the computational times of the other methods are at least an order of magnitude shorter,
hence constituting an interesting alternative considering the high quality of the solutions obtained.

The remainder of this paper is organized as follows: In Section 2, we review the related literature. In
Section 3, we introduce the stochastic model, and the related choice-based linear programming formulation
CDLP. Section 4 presents our approach for solving the column generation subproblem derived from CDLP.
Our main theoretical result –the NP-Completeness of this subproblem– is included here. Section 5 describes
the decomposition heuristic, and explains the difficulty of even solving each of the leg-level problems exactly
in polynomial time. Our numerical results are reported in Section 6, and we conclude in Section 7.

2 Literature review

A complete description of traditional network RM models can be found in Talluri and van Ryzin [13, Chapter
3]. As was pointed out before, these methods typically work under the independent demand model paradigm,
which is understood nowadays as a serious limitation for modeling customer behavior.

The interest in enriching these models with choice behavior finds its roots in the work by Belobaba and
Hopperstad [1], who conduct simulation studies to understand the implications of passenger choice behavior
with respect to the independent demand assumption.

On the theoretical side, Talluri and van Ryzin [14] provide an exact analysis of the optimal control policy
for a single-leg RM model under a general discrete choice model of demand. They prove that the optimal
policy is quite simple, and consists of opening sequentially sets from an ordered family of efficient sets. Zhang
and Cooper [21] analyze choice among parallel flights in the same O-D market. Their model assumes that
customers choose among the same fare class on different flights but not among fare classes. They develop
bounds and approximations for the resulting dynamic program. Using a simulation-based optimization
approach, but constrained to a parametric class of policies (in their case, virtual nesting controls), van Ryzin
and Vulcano [17] report promising computational results for optimizing RM controls under a very general
model of network choice behavior. The paper by van Ryzin [15] provides a very clear introduction to demand
models for RM.

We describe customer choice behavior by using overlapping segments, where the preferences of each
segment are described by a MNL model (e.g. see Ben-Akiva and Lerman [2] for a detailed description
of the MNL choice model). The MNL belongs to the wide class of random utility models. This class
models choice behavior assuming that individual customers’ utilities for alternatives are random variables,
and that customers are utility maximizers. Our demand model is, in fact, an example of the so-called
mixed multinomial logit (MMNL) model, first introduced by Cardell and Dunbar [3]. The general MMNL
model choice probabilities are defined by mixing a MNL model over a mixing distribution. McFadden and
Train [10] establish the important result that, in theory, any random utility model can be captured by a
correct specification of G, also providing support to the flexibility of our model in terms of its capability to
represent more general customer choice behavior.

As mentioned above, our computational method builds upon the papers of Gallego et al. [6] and van
Ryzin and Liu [16]. The recent work by Zhang and Adelman [20] is also related to that line of research.
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They approximate the value function with an affine function of the state vector, but the column generation
algorithm that they propose is also focused on the disjoint consideration set case.

3 Model

Our model set-up is similar to van Ryzin and Liu [16, Section 3]. Consider a network that has m resources or
legs which can be used to provide n products (e.g. in an airline network each resource could correspond to a
single-leg flight, and a product is defined by an itinerary and fare-class combination). The initial capacities
are denoted by c = (c1, . . . , cm). The set of products is denoted by N = {1, . . . , n}. Define the incidence
matrix A = [aij ] ∈ {0, 1}m×n. We let aij = 1 if resource i is used by product j, and aij = 0 otherwise. Thus,
the j-th column of A, Aj , is the incidence vector for product j; and the i-th row of A, Ai, is the incidence
vector for resource i. We use the notation i ∈ Aj to indicate that resource i is used by product j; and j ∈ Ai

to mean that product j uses resource i. The state of the network is described by a vector x = (x1, . . . , xm)
of remaining resource capacities. If one unit of product j is sold, the state of the network changes to x−Aj .
The revenue obtained from accepting a request for one unit of product j is rj .

We consider discrete time periods which are indexed forward in time by t, t = 1, . . . , T , for a finite T .
We assume that there is at most one customer arrival within each time period, requesting a single unit of a
product. The probability of an arrival in each small time period is denoted by λ.

Customers belong to different market segments l = 1, . . . , L, and each segment is characterized by one
consideration set Cl ⊂ N . Note that this is different from Gallego et al. [6], who just allow for a unique
segment C1 = N . On the other hand, the distinguishing feature of our model with respect to van Ryzin and
Liu [16] is that we allow for overlapping segments. That is, we admit that Cl

⋂
Cl′ 6= ∅ for l 6= l′. From

the firm’s perspective, each arriving customer belongs to segment l with probability pl, with
∑L

l=1 pl = 1.
Hence, the arriving stream of segment-l customers is a Poisson process with rate λl = λ pl, and the total
arrival rate λ verifies λ =

∑L
l=1 λl.

The firm’s decision is the set of products to make available in each period t. We call this subset S ⊂ N

of available (open) products, the firm’s offer set. Given an offer set S, an arriving customer chooses product
j ∈ S with probability Pj(S), where Pj(S) = 0 if j 6∈ S. We will denote the no-purchase probability by P0(S)
, and by total probability, we have that

∑
j∈S Pj(S) + P0(S) = 1. As is generally the case in the choice

behavior related RM literature, these probabilities will be based on the multinomial logit model (MNL).
Under the MNL choice model, the choice probability of a segment-l customer is defined by a preference
vector vl ≥ 0, that indicates the customer “preference weight” for each product contained in Cl. This vector,
together with the no-purchase preference vl0, determine a customer’s choice probabilities as follows: If we let
Plj(S) denote the probability that a customer from segment l chooses product j ∈ Cl

⋂
S when S is offered,

then,
Plj(S) =

vlj∑
h∈Cl

⋂
S vlh + vl0

If j 6∈ Cl

⋂
S or j 6∈ Cl, then vlj = 0 (and hence Plj(S) = 0). For mathematical tractability, we assume that

vl0 > 0 for l = 1, . . . , L. In words, every arrival has a positive probability of not purchasing any product.
Noting that from the seller’s perspective the segment of a customer is not distinguishable, the probability
that an arriving customer chooses product j ∈ S is given by

Pj(S) =
L∑

l=1

pl Plj(S) (1)
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We assume that the firm is risk neutral and seeks to maximize expected revenues. The firm’s decision
problem is to find a policy for choosing offer sets S at any time t during the booking horizon.

3.1 Dynamic programming formulation

Following van Ryzin and Liu [16], this problem can be formulated as a dynamic program (DP):

Vt(x) = max
S⊂N





∑

j∈S

λPj(S)(rj + Vt+1(x−Aj)) + (λP0(S) + 1− λ)Vt+1(x)





= max
S⊂N





∑

j∈S

λPj(S)(rj − (Vt+1(x)− Vt+1(x−Aj)))



 + Vt+1(x), (2)

with boundary conditions:

Vt(0) = 0, t = 1, . . . , T

VT+1(x) = 0, ∀x ≥ 0

Unfortunately this is not manageable for most realistic networks because of the curse of dimensionality of
the state space. In order to circumvent this complexity, the most widely used approach in network RM is
to approximate the DP with a LP. This is the approach taken in Gallego et al. [6], and in van Ryzin and
Liu [16], and it is also the one that we take here.

3.2 Linear programming formulation

Note that we can interpret Pj(S) as the deterministic quantity of product j sold when the set S is offered
and a customer arrives. Let R(S) denote the expected revenue generated from an arriving customer when
set S is offered, i.e.,

R(S) =
∑

j∈S

rjPj(S)

Given an arrival, let Qi(S) denote the conditional probability of using a unit of capacity on leg i when we
offer set S. The vector of capacity consumption (conditional) probabilities is given by Q(S) = AP (S), where
P (S) = (P1(S), . . . , Pn(S))T is the vector of purchase probabilities.

Since the firm knows the market segmentation, but ex ante does not know which set each arriving
customer belongs to, it just picks a subset S from the set of all available products N . We include here the
choice-based LP (corresponding to formulation (2) in van Ryzin and Liu [16]):

V CDLP = max
∑

S⊂N

λR(S)t(S) (3)

s.t.∑

S⊂N

λQ(S) t(S) ≤ c

∑

S⊂N

t(S) ≤ T

t(S) ≥ 0, ∀S ⊂ N

Even though the airline must decide at any period t which set S to offer, from an aggregated, deterministic
revenue perspective it only matters how many periods each set S is offered. The decision variables t(S)
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represent the number of periods during which set S is offered. The first (m-dimensional) constraint is about
capacity availability; the second (unidimensional) one is about time availability (i.e. length of the booking
horizon).

The goodness of this approximation is supported by its asymptotic optimality, verified by van Ryzin and
Liu [16, Section 4]. Namely, when capacity and demand are scaled up proportionately, the revenue obtained
under CDLP converges to the optimal revenue under the exact DP formulation.

4 Solving the CDLP by column generation

Note that the CDLP (3) has 2n − 1 primal variables, corresponding to all the possible non-empty subsets of
N . However, as suggested by Gallego et al. [6], we can use column generation techniques to try to circumvent
the size of the problem. The sketch of the algorithm is as follows: We start with a limited number of columns
(subsets S) and solve a reduced LP using only these columns. We then check if there is any column left out
of the problem that has a positive reduced cost relative to the current dual prices of the reduced problem.
If so, a positive reduced cost column is added and the LP is resolved. If there is no such positive reduced
cost column, then the current solution is optimal.

The reduced primal problem corresponding to the CDLP (3), assuming that we initially consider only a
limited number of linearly independent subsets (columns) N = {S1, . . . , Sk}, is described by

V CDLP−R = max
∑

S⊂N
λR(S) t(S) (4)

s.t.∑

S⊂N
λQ(S) t(S) ≤ c

∑

S⊂N
t(S) ≤ T

t(S) ≥ 0, ∀S ⊂ N
Let π ∈ Rm and σ ∈ R be the dual prices for this reduced problem. We must check if there is any

set S 6∈ N that has a positive reduced cost. This is achieved by solving the following column generation
subproblem:

max
S⊂N

{
λR(S)− λ πT Q(S)

}− σ (5)

We let the binary vector y ∈ {0, 1}n be the characteristic vector of set S. It indicates which products are
offered at any point in time, so that if S is the set currently offered, yj = 1 if j ∈ S, and yj = 0 otherwise.
We can then express (5) in terms of the binary variables yj for the MNL choice model:

max
y∈{0,1}n

{
L∑

l=1

λl

∑
j∈Cl

(rj −AT
j π)vljyj∑

i∈Cl
vliyi + vl0

}
− σ (6)

If the optimal function value for (6) is nonpositive, then π and σ are dual feasible, and our current solution
to the reduced problem is in fact optimal for the original CDLP (3). Otherwise, the optimal solution S∗ is the
new column to add to our reduced formulation (4), and the iteration is repeated. Note that the assumption
vl ≥ 0, vl0 > 0,∀l, ensures that the optimization problem (6) is always well defined.

4.1 Complexity of the column generation subproblem

Unlike the problem in van Ryzin and Liu [16, Section 6.3.1.], problem (6) is not separable in the variables
yj , 1 ≤ j ≤ n, since each product j could belong simultaneously to two or more consideration sets, and so yj
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could appear in the denominator multiple times, for different segments l.
In fact, problem (6) is a hyperbolic (or fractional) 0–1 programming problem. The general version of

hyperbolic binary programming, i.e.

max
y∈{0,1}n

L∑

l=1

al0 +
∑n

j=1 aljyj

bl0 +
∑n

j=1 bljyj
, (7)

where all coefficients are positive, is known to be NP-Hard (see Prokopyev et al. [11]). However, our
problem (6) is a particular case of (7), where the variables are linked with less degree of freedom in such a
way that problem (7) cannot be reduced to it, even for values L = 2, n ≥ 2. On the other extreme, when
the segments are disjoint, recall that we know from van Ryzin and Liu [16, Section 6.3] that problem (6) is
polynomial (e.g. see also Hammer and Rudeanu [8], and Hansen et al. [9]). The following theorem establishes
that the NP-Hard problem minimum vertex cover (see Garey and Johnson [7, problem GT1]) can be reduced
to (6), so that our problem (6) is also NP-Hard.

Theorem 1 The 0–1 fractional programming problem

max
y∈{0,1}n

{
L∑

l=1

λl

∑
j∈Cl

wjvljyj∑
i∈Cl

vliyi + vl0

}
(8)

where wj , vlj > 0, l = 1, . . . , L, j = 1, . . . , n, and Cl ⊂ N , is NP-Hard.

Proof. Given a connected graph G = (V,E), with nodes V = {1, . . . , v}, v ≥ 2, and arcs E ⊂ {(i, j) ∈
V × V, i < j}, a minimum vertex cover of G is a subset V ′ ⊂ V such that every arc in E is incident to at
least one node in V ′.

Let I be an instance of minimum vertex cover. We will construct an instance J of problem (8) cor-
responding to I. There are v + 1 binary decision variables y1, . . . , yv, yv+1, and v + |E| summands in the
objective function, where the first v summands are:

2yv+1 + y1

yv+1 + y1 + 1/v2
+

2yv+1 + y2

yv+1 + y2 + 1/v2
+ · · ·+ 2yv+1 + yv

yv+1 + yv + 1/v2

and the last |E| summands are of the form

yi + yj

yi + yj + 1/v2
, for every (i, j) ∈ E

Note that we can recover formulation (8) by taking n = v + 1, wv+1 = 2, wj = 1, 1 ≤ j ≤ v, and by
defining L = v+|E|; Ci = {v+1, i}, i = 1, . . . , v, and Cv+j = {i, j}, j = 1, . . . , |E|, where the arcs are labeled
following the lexicographic order. For l = 1, . . . , L, we also need λl = 1, vl0 = 1/v2, and vlj = 11{j ∈ V

⋂
Cl}.

The following facts hold:

1. An optimal solution of J must verify yv+1 = 1, since for all i ∈ V ,

2 + yi

1 + yi + 1/v2
>

yi

yi + 1/v2
, ∀v ≥ 2

2. For every arc (i0, j0) ∈ E, in the optimum of J , we cannot have yi0 = yj0 = 0. To see this, we argue
by contradiction: Let S be an optimal solution of J , with yi0 = yj0 = 0, for (i0, j0) ∈ E, and let S′ be
the same as S, but with yi0 = 1. The affected terms would be:

2yv+1 + yi0

yv+1 + yi0 + 1/v2
, and

yi0 + yj

yi0 + yj + 1/v2
, for all j such that (i0, j) ∈ E.

8



For the first one, we decrease the value of the solution S′ with respect to the value of the solution S

by less than 1/2 for v ≥ 2 (recall that from fact 1 above, yv+1 = 1):

3v2

2v2 + 1
− 2v2

v2 + 1
= − v4 − v2

2v4 + 3v2 + 1
> −1

2

For the second one, we increase the value of the solution by at least 1/2 for v ≥ 2, for every arc in E

that has i0 as one incident node (recall that we have fixed yj0 = 0):

1
1 + 1/v2

≥ 1
2

So, we can increase the objective function value by setting yi0 = 1, which is a contradiction.

3. We are left with showing that an optimal solution of J has the smallest possible number of variables yi,
i = 1, . . . , v, set at yi = 1. Let S be an optimal solution of J , and S′ another optimal solution of J , but
with fewer variables yi set at one, i.e. |S| > |S′|. We define V alue1(S) and V alue2(S) (respectively,
V alue1(S′), V alue2(S′)) as the partial sum of the first v terms of objective function value in (8) and
the last |E| terms when plugging in the corresponding values of the decision variables y.

Comparing V alue1(S) with V alue1(S’), give us

V alue1(S)− V alue1(S′) = |S| 3
2 + 1/v2

+ (n− |S|) 2
1 + 1/v2

− |S′| 3
2 + 1/v2

− (n− |S′|) 2
1 + 1/v2

= (|S′| − |S|) v4 − v2

2v4 + 3v2 + 1

< −1
4
, ∀v ≥ 2

Regarding the last |E| terms, the difference between the value of the summand (k, j) ∈ S and the value
of the summand (k, j) ∈ S′ is at most

2
2 + 1/v2

− 1
1 + 1/v2

=
2v2

2v2 + 1
− v2

v2 + 1
=

v2

2v4 + 3v2 + 1

Since the number of arcs verifies |E| ≤ n(n− 1)/2, then

V alue2(S)− V alue2(S′) ≤ v(v − 1)
2

v2

2v4 + 3v2 + 1

=
v4 − v3

4v4 + 6v2 + 2

<
1
4

So, V alue1(S′)+V alue2(S′) > V alue1(S)+V alue2(S), which contradicts the fact that S is an optimal
solution of instance J .

Hence, we have found a polynomial transformation from instance I to instance J , such that a solution
of J implies a solution to I. 2

We can now state the following corollary:

Corollary 1 The associated decision problem to the optimization problem (8), i.e., “Given a constant K > 0,
is there an assignment of variables y ∈ {0, 1}n such that

max
y∈{0,1}n

{
L∑

l=1

λl

∑
j∈Cl

wjvljyj∑
i∈Cl

vliyi + vl0

}
> K ?” (9)

is NP-Complete.
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Proof. The decision problem (9) is NP, since given an instance of YES, it clearly takes polynomial time to
check that the inequality is satisfied. The NP-Hard feature holds from Theorem 1. 2.

Note that the equivalence between formulation (8) and our column generation problem (6) relies on the
fact that wj =

(
rj −AT

j π
)
, and that yj = 0 in the optimal solution to (6) whenever wj ≤ 0.

4.2 Approaches for solving the column generation subproblem

4.2.1 MIP formulation

The hyperbolic column generation problem can be reformulated as a MIP problem (e.g. see Prokopyev et
al. [11]). By defining the variables

xl =
1∑

i∈Cl
vliyi + vl0

, l = 1, . . . , L, (10)

the column generation problem (6) can be rewritten as:

max
L∑

l=1

∑

j∈Cl

λl(rj −AT
j π)vljyjxl

s.t.: xlvl0 +
∑

i∈Cl

vliyixl = 1, l = 1, . . . , L (11)

yj ∈ {0, 1}, j ∈ N,

xl ≥ 0 l = 1, . . . , L

The nonlinear terms yixl can be linearized (see Wu [19]), and a linear mixed 0-1 formulation can be obtained.
The linearization is based on the following observation: A polynomial mixed 0-1 term z = xy, where x is
a continuous variable and y is a 0-1 variable, can be represented by the following linear inequalities: (1)
x− z ≤ K −Ky; (2) z ≤ x; (3) z ≤ Ky; and (4) z ≥ 0, where K is a large number greater than x.

In the context of our problem, if we define variables zli = xlyi, and apply this result, it is possible to
obtain the next MIP formulation:

max
L∑

l=1

∑

j∈Cl

λl(rj −AT
j π)vljzlj

s.t.: xlvl0 +
∑

i∈Cl

vlizli = 1, ∀l

xl − zli ≤ K −Kyi , ∀l, i ∈ Cl

zli ≤ xl , ∀l, i ∈ Cl

zli ≤ Kyi , ∀l, i ∈ Cl

yj ∈ {0, 1}, xl ≥ 0, zli ≥ 0

Since xl = 1∑
i∈Cl

vliyi+vl0
, it is enough to take K ≥ 1/v, where v = min{vli : i = 0, 1, . . . , n; l = 1, . . . , L}.

The advantage of this reformulation is that any MIP software package can be used to solve the hyperbolic
0-1 problem. In fact, according to our experience, standard built-in methods provided by MIP software
packages work pretty fast for the cases that we considered. However, the complexity results presented above
show that the column generation problem is a difficult optimization problem, and therefore an alternative
approach guaranteed to run in polynomial time is reasonable to implement in order to obtain quickly a good
quality solution.
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4.2.2 Greedy heuristic

Seeking computational simplification, we implement a greedy, constructive heuristic. It starts from an empty
set S, and progressively adds products to it according to the maximum marginal contribution to the current
solution. 1

Heuristic for the column generation subproblem

1. For all products j such that rj −AT
j π ≤ 0, set yj = 0.

2. Let S′ ⊂ N be the set of products j with no assigned value for yj .

3. Compute j∗1 = argmaxj∈S′{
∑L

l=1

(rj−AT
j π)vlj

vlj+vl0
}. Set S := {j∗1}, S′ := S′ − {j∗1}.

4. Repeat

(a) Compute

j∗ := argmaxj∈S′{
L∑

l=1

λl

∑
i∈Cl

⋂
(S

⋃
{j})(ri −AT

i π)vli∑
i∈Cl

⋂
(S

⋃
{j}) vli + vl0

}

(b) If Value(S
⋃{j∗}) > Value(S), then S := S

⋃{j∗}, and S′ := S′ − {j∗}.

until S is not modified.

5. For all j ∈ S, set yj = 1. For j 6∈ S, set yj = 0.

The worst case complexity of this procedure is O(n2L), where in practice, L is typically smaller than n.
According to our experience, this greedy heuristic works pretty fast, and drives towards the optimal solution
in most of the cases that we considered. Nevertheless, we show here an example where it fails to give the
optimum.

Our approach to solve the CDLP by column generation first uses the greedy heuristic in order to identify
an entering column to the base. If this method does not find an entering column, then we use the exact
MIP procedure. As we said above, when there is still a column to enter the base, in most of the cases, the
heuristic finds it.

5 Decomposition approximation algorithm

In this section, we describe how we extend the decomposition method used in van Ryzin and Liu [16, Section
6.2] to the overlapping-segment case. Following them, the main idea is to decompose the network DP into
a collection of single leg DPs, each of which is one-dimensional and therefore does not suffer from the curse
of dimensionality.

In order to come up with an operational policy, there are two phases that the firm should undergo. The
first phase is an off-line process; it consists of assessing the expected value of the remaining capacity. This
value depends on the number of available seats in the network flights, and on the time-to-go in the booking
horizon. The second phase is a real time process: in every period, the firm needs to compute, dynamically,
the next offer set.

1This heuristic was also used by Prokopyev et al. [11] as the construction phase of a GRASP to solve a general fractional

programming problem.

11



5.1 Phase 1: Assessing the value of capacity

Let π∗ = (π∗1 , . . . , π∗m) denote the optimal dual prices of (4) (and hence, of (3)), corresponding to the m

capacity constraints. Consider the following approximation for the network value function (2) at leg i:

Vt(x) ≈ V̂ i
t (xi) +

∑

k 6=i

π∗k xk,

where V̂ i
t (xi) is a dynamic (time dependent) and nonlinear approximation of the value of the remaining

capacity of leg i, and the π∗k xk are static (time independent) and linear approximations of the value of
capacity of other legs. Thus, an estimate of the opportunity cost of product j when providing a dynamic
approximation of the capacity value at leg i is

Vt(x)− Vt(x−Aj) ≈
{

∆V̂ i
t (xi) +

∑
k∈Aj ,k 6=i π∗k if i ∈ Aj∑

k∈Aj
π∗k if i 6∈ Aj ,

where ∆V̂ i
t (xi) = V̂ i

t (xi)− V̂ i
t (xi − 1). Note that this can be written as

Vt(x)− Vt(x−Aj) ≈ (∆V̂ i
t+1(xi)− π∗i )11{i ∈ Aj}+

∑

k∈Aj

π∗k.

Taking this approximation, and substituting it into the exact network DP (2), we get the following one-
dimensional DP approximation for the network value at each leg i = 1, . . . , m:

V̂ i
t (xi) = max

S⊂N





∑

j∈S

λPj(S)


rj − (∆V̂ i

t+1(xi)− π∗i )11{i ∈ Aj} −
∑

k∈Aj

π∗k






 + V̂ i

t+1(xi), (12)

with boundary conditions:

V̂ i
T+1(xi) = 0, ∀xi ≥ 0

V̂ i
t (0) = 0, ∀t

Each of these leg-level value functions constitutes a dynamic approximation of the network value function
at time t, given that there are xi units of capacity remaining. Therefore, we can average out these approxi-
mations, and provide the following network approximation for the true value function (2):

Vt(x) ≈ 1
m

m∑

i=1

(
V̂ i

t (xi) +
∑

k 6=i

π∗kxk

)
(13)

The computation of the table ∆V̂ i
t (xi), i = 1, . . . ,m; t = 1, . . . , T , is the building block for providing,

dynamically, the offer sets S. Typically, airlines compute this table overnight, in a batch process. This task
could be weekly if we are far from the departure date of the flights, and daily during the last month in the
booking horizon.

5.2 Phase 2: Computing the offer sets dynamically

Based on the assessed value of capacity, the real time operational policy consists of deciding the set of
products to offer in the next time period.

From (13), we can compute an estimate for the marginal value of capacity on leg i as a convex combination
of the dynamic approximation and the corresponding dual variable of the CDLP:

∆V i
t (x) ≈ 1

m
∆V̂ i

t (xi) +
m− 1

m
π∗i
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This approximation is slightly different from the one in van Ryzin and Liu [16, Section 6.2], since it explicitly
expresses the marginal value of capacity as a convex combination of the dynamic and the static estimates.
Note that for big values of m (i.e. for networks with several legs), ∆V i

t (x) ≈ π∗i . One could alternatively
consider other heuristic approximations, of the form

∆V i
t (x) ≈ ∆V̄ i

t (x) := β∆V̂ i
t (xi) + (1− β)π∗i , for 0 ≤ β ≤ 1. (14)

Fine tuning the parameter β in a real world application should deserve particular attention for an airline.
During the booking horizon, the firm should select a set S dynamically at each time t by solving

max
S⊂N





∑

j∈S,j available

λPj(S)
(
rj −∆V̄ T

t (x)Aj

)


 , (15)

where ∆V̄t(x) = (∆V̄ 1
t+1(x), . . . , ∆V̄ m

t+1(x)) is the vector of approximate displacement costs. Our candidate
products to include in S are the available products j ∈ N , in the sense that they must satisfy xi > 0, for all
i ∈ Aj .

Note that problem (15) has the same structure as the one in (8), since it is also driven by the complexity
of solving the hyperbolic 0–1 programming problem determined by the MNL probabilities Pj(S). Hence, it
is also NP-Complete, driving towards the need of experimenting with heuristics or approximation schemes,
as the one discussed in Section 4.2.2.

Problem (15) is also particularly relevant to the marketing science literature related to customer-choice
behavior. It represents the optimization problem faced by a seller that serves a multi-segment arriving
stream of customers, who choose according to a MNL model. Prices are fixed, and represented by pj =
rj −∆V̄ T

t (x)Aj in equation (15). Here, the objective is maximizing the instantaneous revenue rate.

6 Computational results

In this section, we evaluate different methods based on the CDLP to solve in practice the network revenue
management problem when customers belonging to overlapping segments choose according to the MNL
model. We assess the convenience of each method based on the quality of the solutions obtained, and on the
computational feasibility in terms of the time consumed.

Our computational experiments were conducted in a SUN UltraSparc III server (CPU of 1Ghz, RAM of
2GB, operating system SunOS 5.9). The algorithms were coded in C++, and compiled using gcc version
3.4.6. The code was linked to the Cplex 8.1 optimization routines.

We use Monte Carlo simulation to mimic customer choice behavior. The simulation of each stream of
customers starts in period t = 0. Depending on the method used (to be explained below), we determine the
next set S∗ to offer. The probability of selling product j ∈ S in a small time period is given by λPj(S). To
determine the product sold (if any), we generate a Unif[0,1] r.v. and use the discrete cumulative distribution
for j ∈ S. If a product j is sold, we subtract one unit of capacity from the legs i ∈ Aj , and proceed to the
next period where we show the new S∗, until reaching period T .

We tested the following methods:

1. DCOMP: This is the choice-based decomposition heuristic discussed in Section 5. First, we solve the
CDLP in (3) by using the column generation algorithm. Then, we use the leg-level decomposition
in (12), and build off-line the table V̂ i

t (xi), for all t = 1, . . . , T , and for all xi = 1, . . . , ci. We do this
for all legs i = 1, . . . , m. The marginal value of capacity is computed by setting β = 1 in (14). When

13



processing the arriving stream of customers, upon each arrival, we solve (15) and determine the next
set S∗ to offer.

2. DCOMP-0.5: This method is analogous to DCOMP, but setting β = 0.5 is equation (14).

3. CDLP: This method implements the primal solution of the CDLP formulation described in Section 3.2.
Recall that the optimal solution to (3) indicates the total time to offer each set S. However, the sequence
in which the sets are offered is, in principle, ambiguous. In this case, we offer the sets following the
lexicographic order of the indices of the LP variables. Since the variables t(S) in (3) could take
fractional values, we round them to the nearest integer. We truncate the booking horizon at T in case
sets are offered beyond T after rounding.

4. RCDLP: This is a randomized version of CDLP. Namely, we shuffle the order of the indices of the
primal variables of the LP (3).2

5. ROPT-freq: In this case, we reoptimize the CDLP with a predetermined frequency, in order to get
updated values for the dual variables. We then use those values in the dynamic calculation (15) of
the offer sets, which corresponds to setting β = 0 in equation (14). The idea of this method is to
provide static estimates of the marginal value of capacity, but update frequently enough such that
the estimation accounts for a more accurate state of the network. The idea is to somehow capture
the dynamic approximation of DCOMP, but at a lower computational cost since ROPT-freq does not
require computation of any table like Vt(x) beforehand.

We use values 0.1 and 0.01 for the parameter freq, representing the frequency of the reoptimization
of the CDLP to get new dual variables. That is, we partition the booking horizon into 10 and 100
evenly split time slots, respectively. When reoptimizing (3), we use the remaining time, capacity, and
estimated demand-to-come as input parameters. 3

Note that the offer set remains the same within each time slot except when a product j belonging to
the current offer set becomes unavailable. In that case, we need to recompute (15).

6. INDEP: This method implements the traditional independent demand model assumption, and serves
as a benchmark for explicitly accounting for customer choice behavior. This method involves first
solving a DLP, for which the mean demand of product j is set at λPj(N)T , for all j ∈ N . That is,
we assume that all products are simultaneously offered. We next use the dual variables in a dynamic
programming decomposition scheme as described in Talluri and van Ryzin [13, Chapter 3], which is
equivalent to the decomposition algorithm of Section 5, but replacing Pj(S) with Pj(N), for all j and
S.

In the tables below we report an upper bound (UB) on the optimal expected revenue, given by the
objective function value of (3). The suboptimality gaps of the different methods are calculated with respect
to DCOMP.

In each of the examples, we test different network load factors. We use a parameter α to scale all leg
capacities, where α = 1 corresponds to the original base case. We alter the preferences in the choice behavior
by varying the no-purchase preference vector v0 = (v10, . . . , vL0).

2Similar to what was observed in van Ryzin and Liu [16], the performance of CDLP and RCDLP is very similar, and it is

not clear whether one dominates the other. For this reason, we only report revenues for CDLP.
3Given that for this method we obtain better results by reoptimizing more frequently, we only report the revenue generated

by ROPT-0.01.
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6.1 Example 1: Parallel Flights

This example is illustrated in Figure 1. It is based on a network with three parallel flights, and two fare
classes on each flight (high (H), and low (L)), producing a total of six products. We assume there are four
customer segments: customers that are willing to choose only among high-class products; customers that
are willing to choose only among low-class products; customers that are considering all products, but with
more preference for those in class H; and finally customers that are considering all products, but with more
preference for those in class L. This is a generalization of the model studied by Zhang and Cooper [21], and
also by van Ryzin and Liu [16, Section 7.1].

The table in Figure 1 and Table 1 show respectively the product and segment definitions. Leg 1 corre-
sponds to a morning flight, leg 2 to an afternoon flight, and leg 3 to an evening flight. The initial capacities
are c = (30, 50, 40). The booking horizon consists of T = 300 time periods, with an average of 150 arrivals
per stream of demand. We generate 2,000 streams of demand, and process each stream using all the methods
mentioned above.

Product Leg Class Fare

1 1 L 400

2 1 H 800

3 2 L 500

4 2 H 1000

5 3 L 300

6 3 H 600

Airline network Product definition

Figure 1: Parallel flights example

Segment Consideration set Pref. vector λl Description

1 {2,4,6} (5,10,1) 0.1 Price insensitive, afternoon preference

2 {1,3,5} (5,1,10) 0.15 Price sensitive, evening preference

3 {1,2,3,4,5,6} (10,8,6,4,3,1) 0.2 Early preference, price sensitive

4 {1,2,3,4,5,6} (8,10,4,6,1,3) 0.05 Price insensitive, early preference

Table 1: Segment definitions for Parallel Flights instance

Table 2 summarizes the expected revenues obtained under the different policies, and Table 3 summarizes
the suboptimality gaps of the other methods with respect to DCOMP. For instance, the first row in the
tables represents the case c0.6 = 0.6 × (30, 50, 40) = (18, 30, 24), and v0 = (1, 5, 5, 1), namely the weight for
the no-purchase option for segments 1 and 4 is 1, and for segments 2 and 3 is 5.

We observe that the performance of DCOMP and DCOMP-0.5 is very similar, and that they both
outperform CDLP in most cases, with confidence intervals for the revenue gaps with respect to DCOMP
that exclude zero in 10 of the 15 cases. Differences are more significant in the high load factor cases (i.e.
α = 0.6, 0.8, and 1.0). The gains of the choice-based methods with respect to INDEP are generally quite
significant.

For the ample capacity cases (say, α = 1.2 and 1.4), all choice-based methods perform similarly in terms
of expected revenues. In this example, we do not observe evidence of the risk of reoptimizing frequently (see
Cooper [4], Cooper et al [5], and Secomandi [12] for discussions on the spiral down effect). In fact, given
that T = 300, we are recomputing the dual variables once every three booking periods for the ROPT-0.01
case. Looking at the revenue differences achieved between ROPT-0.01 and ROPT-0.1, we could assess that
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α v0 UB
DCOMP DCOMP-0.5 CDLP ROPT-0.01 INDEP

Mean %LF Mean %LF Mean %LF Mean %LF Mean %LF

(1,5,5,1) 56,884 55,948 98.60 55,872 97.82 54,177 94.60 51,632 95.83 49,794 97.41

0.6 (1,10,5,1) 56,848 55,882 98.36 55,698 97.29 54,051 94.45 51,946 93.81 49,655 96.77

(5,20,10,5) 53,819 51,326 94.59 51,338 94.23 50,058 92.94 48,602 97.35 46,246 92.53

(1,5,5,1) 71,936 69,533 95.78 69,163 94.79 68,105 94.69 66,336 94.57 60,346 94.14

0.8 (1,10,5,1) 71,794 69,129 95.24 68,863 94.50 67,896 94.58 66,237 93.82 59,552 91.40

(5,20,10,5) 61,868 60,147 90.48 60,222 90.49 59,073 90.82 56,724 91.98 53,044 81.94

(1,5,5,1) 79,155 76,954 95.65 77,096 95.91 75,726 94.96 77,106 95.36 66,224 85.38

1.0 (1,10,5,1) 76,866 75,639 90.88 75,655 90.97 73,788 90.26 75,399 91.26 64,831 81.76

(5,20,10,5) 63,255 62,775 78.09 62,792 78.15 62,702 78.41 62,040 79.94 56,203 72.44

(1,5,5,1) 80,371 79,817 84.28 79,818 84.24 79,666 84.33 79,834 84.58 68,970 76.84

1.2 (1,10,5,1) 78,045 77,520 79.06 77,526 79.07 77,348 79.26 77,529 79.49 67,570 73.71

(5,20,10,5) 63,296 63,111 67.52 63,113 67.52 62,491 68.88 62,422 70.20 58,543 65.88

(1,5,5,1) 81,066 80,408 73.08 80,376 72.83 80,362 72.75 80,439 73.27 71,418 70.60

1.4 (1,10,5,1) 78,816 78,123 68.56 78,097 68.32 78,091 68.24 78,136 68.80 69,949 67.87

(5,20,10,5) 63,337 63,211 60.54 63,212 60.54 62,553 62.04 62,822 62.82 60,732 60.82

Table 2: Revenue results for the Parallel Flights example.

resolving the CDLP to obtain updated dual variables works very well, specially for the low to moderate load
factor cases (i.e. α ≥ 1.0). On the other hand, for the highly constrained capacity cases, the combination
between the dynamic and static components of DCOMP-0.5 more than compensates the frequent update of
the dual variables.

α v0 % DCOMP-0.5 % CDLP % ROPT-0.01 % INDEP

(1,5,5,1) 0.13 ± 0.18 3.16 ± 0.31 7.71 ± 0.24 10.99 ± 0.23

0.6 (1,10,5,1) 0.32 ± 0.20 3.27 ± 0.32 7.04 ± 0.27 11.14 ± 0.23

(5,20,10,5) -0.02 ± 0.39 2.47 ± 0.41 5.30 ± 0.36 9.89 ± 0.37

(1,5,5,1) 0.53 ± 0.33 2.05 ± 0.33 4.59 ± 0.30 13.21 ± 0.33

0.8 (1,10,5,1) 0.38 ± 0.35 1.78 ± 0.34 4.18 ± 0.32 13.85 ± 0.34

(5,20,10,5) -0.12 ± 0.47 1.78 ± 0.44 5.69 ± 0.42 11.80 ± 0.46

(1,5,5,1) -0.18 ± 0.34 1.59 ± 0.33 -0.19 ± 0.34 13.94 ± 0.38

1.0 (1,10,5,1) -0.02 ± 0.42 2.44 ± 0.38 0.31 ± 0.23 14.28 ± 0.41

(5,20,10,5) -0.53 ± 0.56 0.11 ± 0.54 1.17 ± 0.54 10.46 ± 0.52

(1,5,5,1) 0.00 ± 0.46 0.18 ± 0.45 -0.02 ± 0.29 13.58 ± 0.43

1.2 (1,10,5,1) 0.00 ± 0.48 0.22 ± 0.47 -0.01 ± 0.48 12.83 ± 0.45

(5,20,10,5) 0.00 ± 0.57 0.98 ± 0.56 1.09 ± 0.57 7.23 ± 0.53

(1,5,5,1) 0.03 ± 0.48 0.05 ± 0.47 -0.03 ± 0.49 11.18 ± 0.45

1.4 (1,10,5,1) 0.03 ± 0.50 0.04 ± 0.50 -0.01 ± 0.50 10.46 ± 0.46

(5,20,10,5) 0.00 ± 0.56 1.04 ± 0.56 0.61 ± 0.56 3.92 ± 0.54

Table 3: 95% confidence intervals for the suboptimality gaps with respect to DCOMP in the Parallel Flights
example.

The example also shows the impact of the customer preferences on the expected revenues. Specifically,
for a given α, the revenues decrease with v0 (i.e., the higher the values of the coordinates of v0, the higher
the no-purchase likelihood of an arrival, and hence the lower the expected revenue).

One important fact regarding the CDLP is that the column generation algorithm iterates on average just
5 times, when there are 26−1 = 63 variables in the model. Recall that the approach that we follow first uses
the heuristic described in Section 4.2.2 to find an entering column, and if it fails, then it calls the exact MIP
procedure described in Section 4.2.1. In this case, the latter manages to find an entering column in 4.16%
of the cases, meaning that the greedy heuristic provides good quality solutions more than 95% of the times.
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6.2 Example 2: Small Network

This example is based on the same small network considered in van Ryzin and Liu [16, Section 7.2]. It consists
of 7 flight legs with two fare classes per leg, and a total of 22 products. Figure 2 shows the network with the
initial leg capacities and describes the products. There is local traffic, and also passengers connecting through
the hub H. There are ten overlapping consideration sets, corresponding respectively to different customer
segments. They are defined in terms of their origin-destination market, fare-class, and time preferences.
Table 4 describes the ten customer segments.

To simplify notation, we have reduced the length of vector v0. In this case, L = 10, and a complete
description of this vector consists of 10 coordinates. Since the segments can be classified in 5 pairs according
to the O-D, we report just two coordinates for v0, assuming that the no-purchase preference weight is repeated
for the different pairs. For example, v0 = (1, 5, 1, 5, 1, 5, 1, 5, 1, 5) is represented as v0 = (1, 5).

The booking horizon consists of T = 1, 000 time periods, with an average of 910 arrivals per stream of
demand. We generate 2,000 streams of demand per case (i.e., per combination (α, v0)), and process each
stream using all the methods mentioned above.

Airline network.

Prod. Legs Class Fare Prod. Legs Class Fare

1 1 H 1000 12 1 L 500

2 2 H 400 13 2 L 200

3 3 H 400 14 3 L 200

4 4 H 300 15 4 L 150

5 5 H 300 16 5 L 150

6 6 H 500 17 6 L 250

7 7 H 500 18 7 L 250

8 {2, 4} H 600 19 {2, 4} L 300

9 {3, 5} H 600 20 {3, 5} L 300

10 {2, 6} H 700 21 {2, 6} L 350

11 {3, 7} H 700 22 {3, 7} L 350

Product definition.

Figure 2: Network definition for the Small Network instance.

Segment O-D Consideration set Pref. vector λl Description

1 A → B {1,8,9,12,19,20} (10,8,8,6,4,4) 0.08 Price insensitive, early pref.

2 A → B {1,8,9,12,19,20} (1,2,2,8,10,10) 0.2 Price sensitive

3 A → H {2,3,13,14} (10,10,5,5) 0.05 Price insensitive

4 A → H {2,3,13,14} (2,2,10,10) 0.2 Price sensitive

5 H → B {4,5,15,16} (10,10,5,5) 0.1 Price insensitive

6 H → B {4,5,15,16} (2,2,10,8) 0.15 Price sensitive, slight early pref.

7 H → C {6,7,17,18} (10,8,5,5) 0.02 Price insensitive, slight early pref.

8 H → C {6,7,17,18} (2,2,10,8) 0.05 Price sensitive

9 A → C {10,11,21,22} (10,8,5,5) 0.02 Price insensitive, slight early pref.

10 A → C {10,11,21,22} (2,2,10,10) 0.04 Price sensitive

Table 4: Segment definitions for the Small Network instance.

Table 5 summarizes the expected revenues obtained under the different policies, and Table 6 summarizes
the suboptimality gaps of the other methods with respect to DCOMP. We observe again that DCOMP and
DCOMP-0.5 exhibit a similar performance. We observe that DCOMP outperforms CDLP in nine of the
fifteen cases, and is comparable to it in the other six.

The first row in Table 5 shows a poor performance of DCOMP. A similar behavior is observed for a couple
of cases in van Ryzin and Liu [16, Section 7.3]. In their case, this phenomenon occurs in the extreme case
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where the probability of no-purchase is zero, and its reason is the degeneracy of the optimal primal solution.
Neither of these observations applies in our case, and further investigation would be needed.

α v0 UB
DCOMP DCOMP-0.5 CDLP ROPT-0.01 INDEP

Mean %LF Mean %LF Mean %LF Mean %LF Mean %LF

(1,5) 215,793 197,038 88.90 196,920 88.06 207,890 91.27 200,444 93.37 172,362 97.71

0.6 (5,10) 200,515 194,146 93.35 191,443 92.09 194,393 91.90 192,896 95.07 163,905 96.76

(10,20) 170,137 167,866 92.68 167,902 92.79 164,089 91.45 166,919 93.07 151,801 92.48

(1,5) 266,934 262,823 86.79 263,023 86.37 261,264 85.62 252,013 86.90 204,572 94.60

0.8 (5,10) 223,173 220,891 90.48 221,012 90.51 215,884 89.38 217,073 90.75 191,066 90.22

(10,20) 188,574 186,219 85.29 185,969 85.27 184,182 84.86 186,325 85.61 172,246 84.09

(1,5) 281,967 279,506 81.34 279,536 81.36 277,738 80.80 278,344 81.04 226,002 87.71

1.0 (5,10) 235,284 233,929 84.41 233,891 84.27 230,342 83.86 233,138 84.09 209,701 83.64

(10,20) 192,038 191,646 76.10 191,623 76.05 190,283 76.34 191,727 75.89 188,058 76.73

(1,5) 284,772 284,736 71.85 284,747 71.85 282,842 71.55 283,280 72.47 243,930 82.48

1.2 (5,10) 238,562 238,539 72.38 238,502 72.26 238,299 72.03 238,548 72.35 225,691 77.65

(10,20) 192,373 192,530 65.86 192,524 65.87 192,511 65.88 192,532 65.87 192,416 65.80

(1,5) 287,076 286,743 62.14 286,629 62.16 285,417 61.96 286,160 62.24 259,039 76.96

1.4 (5,10) 238,562 238,843 61.80 238,843 61.80 238,843 61.80 238,843 61.80 231,937 68.82

(10,20) 192,373 192,541 56.48 192,541 56.48 192,541 56.48 192,541 56.48 192,468 56.42

Table 5: Revenue results for the Small Network example.

Note that when there is a high chance of not buying (i.e., v0 = (10, 20)), ROPT (specially ROPT-0.01)
performs very well, even slightly better than DCOMP for α = 0.8 and α = 1. This could be due to the fact
that the marginal value of capacity does not change from one small period to the other one, since residual
capacity is more likely to remain the same, given the lack of transactions. Hence, the dual variables are
providing an accurate estimate for it.

Like in the previous example, the gains of the choice-based methods with respect to INDEP are quite
significant, even though in several cases the load factor of INDEP is higher than the load factor of DCOMP.
This indicates that the choice based methods and INDEP induce a different passenger mix. Namely, INDEP
sells more tickets, but in a less smart way.

Note that for the ample capacity cases α = 1.2 and α = 1.4, all choice-based methods perform similarly
in terms of expected revenues. This is due to the fact that for these ample cases, the capacity exceeds the
demand over the different legs. Then, offering all (or almost all) the products is an appropriate strategy.

Table 7 shows computational time statistics (in seconds) for the different methods under the choice
scenarios studied. The column COLGEN shows the time elapsed for solving the CDLP, including the
column generation subproblem. The fourth column represents the time for filling the table Vt(x) used in the
decomposition heuristic DCOMP (see the description of phase 1 in Section 5), while the next is the average
time needed to dynamically solve problem (15) once. In this example, we used the exact linearization
procedure discussed in Section 4.2.1. The reported times for ROPT-freq are the total cumulative time
to reoptimize across the whole booking horizon. The times for INDEP correspond to the solution of the
associated DLP.

The main message from Table 7 is that all the choice-based methods are computationally feasible. Cer-
tainly, building the DP table Vt(x) is the most time consuming. But this is a batch process that will be run
periodically by the airline. The solution of the dynamic problem (15) is noticeably fast using the exact MIP
method (just a small fraction of a second), and hence the operational policy is indeed feasible.

Eventually, if the computational time for filling table Vt(x) becomes an issue in a larger network, the
airline could safely use the less time-consuming CDLP or ROPT, and still get high quality solutions.

The noticeable short times observed for COLGEN are due to the fact that the number of iterations
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α v0 % DCOMP-0.5 % CDLP % ROPT-0.01 % INDEP

(1,5) 0.05 ± 0.16 -5.50 ± 0.18 -1.72 ± 0.17 12.52 ± 0.15

0.6 (5,10) 1.39 ± 0.17 -0.12 ± 0.18 0.64 ± 0.16 15.57 ± 0.15

(10,20) -0.02 ± 0.18 2.25 ± 0.19 0.56 ± 0.17 9.57 ± 0.16

(1,5) -0.07 ± 0.13 0.59 ± 0.15 4.11 ± 0.14 22.16 ± 0.13

0.8 (5,10) -0.05 ± 0.15 2.26 ± 0.15 1.72 ± 0.15 13.50 ± 0.16

(10,20) 0.13 ± 0.20 1.09 ± 0.19 -0.05 ± 0.20 7.50 ± 0.20

(1,5) -0.01 ± 0.14 0.63 ± 0.15 0.41 ± 0.15 19.14 ± 0.15

1.0 (5,10) 0.01 ± 0.16 1.53 ± 0.16 0.33 ± 0.19 10.35 ± 0.17

(10,20) 0.01 ± 0.22 0.71 ± 0.22 -0.04 ± 0.30 1.87 ± 0.22

(1,5) 0.00 ± 0.16 0.66 ± 0.16 0.51 ± 0.17 14.33 ± 0.16

1.2 (5,10) 0.01 ± 0.19 0.10 ± 0.18 0.00 ± 0.19 5.38 ± 0.18

(10,20) 0.00 ± 0.22 0.00 ± 0.23 0.00 ± 0.22 0.05 ± 0.21

(1,5) 0.03 ± 0.17 0.46 ± 0.17 0.20 ± 0.17 9.66 ± 0.16

1.4 (5,10) 0.00 ± 0.19 0.00 ± 0.19 0.00 ± 0.19 2.89 ± 0.19

(10,20) 0.00 ± 0.22 0.00 ± 0.22 0.00 ± 0.22 0.03 ± 0.22

Table 6: 95% confidence intervals for the suboptimality gaps with respect to DCOMP in the Small Network
example.

α v0 COLGEN V i
t Solution of (15) ROPT-0.01 INDEP

(1,5) 0.05 171.81 0.01 6.64 0.30

0.6 (5,10) 0.11 246.14 0.02 11.00 0.31

(10,20) 0.07 282.52 0.02 6.08 0.31

(1,5) 0.07 285.43 0.03 7.71 0.42

0.8 (5,10) 0.15 372.04 0.09 10.41 0.42

(10,20) 0.05 406.98 0.02 4.19 0.43

(1,5) 0.09 409.9 0.06 7.43 0.54

1.0 (5,10) 0.08 498.79 0.04 4.52 0.53

(10,20) 0.05 518.30 0.02 2.74 0.54

(1,5) 0.09 506.72 0.06 7.09 0.64

1.2 (5,10) 0.04 616.86 0.02 2.74 0.64

(10,20) 0.04 636.43 0.01 2.29 0.67

(1,5) 0.07 599.47 0.05 6.53 0.75

1.4 (5,10) 0.04 729.83 0.02 2.62 0.78

(10,20) 0.03 737.17 0.01 2.29 0.79

Table 7: Computational times (in seconds) for Small Network instance
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Figure 3: Number of iterations of COLGEN as a function of α and v0 for the Small Network example.
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that it performs is very small relative to the number of variables of the CDLP (see Figure 3). In this
example, there are 22 products, giving 222−1 = 4, 194, 303 variables. Nevertheless, the maximum number of
iterations observed across all the cases is 28, a number several various of magnitude smaller than the number
of variables. Furthermore, the greedy heuristic finds an entering column in more than 99% of the iterations
of COLGEN.

Another interesting observation is that for α = 1.2 or 1.4, and v0 = (5, 10) or v0 = (10, 20), COLGEN
iterates just once, and the optimal solution has only one variable in the base: t(S) = N , i.e., the complete
set of products. This is due to the fact that for these ample capacity cases, the only relevant constraint is
the time constraint. Figure 3 also shows that the number of iterations for each v0 decreases as α increases.
Again, this is explained by the fact that the complexity of COLGEN reduces as the leg capacities increase.

6.3 Example 3: Hub-and-Spoke Network

This example is based on the five airport network of Figure 4, and itinerary/fare data from Williamson [18].
There are ten roundtrip itineraries. Each itinerary is segmented into 4 different classes: Y, M, B and Q (see
Figure 4). Each product is a combination of one-way itinerary and class. For example: product 1 is the
one-way itinerary ATLBOS for class Y, which has revenue r1 = 310 and uses leg 3; product 2 corresponds to
ATLBOS, class M, with revenue r2 = 290. Product 2 also uses leg 3. Product 5 is BOSATL, class Y, with
associated r5 = 310; it uses leg 4. This gives eight legs in the network and eighty products.

Airline network.

O-D Market Legs Revenue

Y M B Q

ATLBOS/BOSATL 3/4 310 290 95 69

ATLLAX/LAXATL 2/1 455 391 142 122

ATLMIA/MIAATL 7/8 280 209 94 59

ATLSAV/SAVATL 5/6 159 140 64 49

BOSLAX/LAXBOS 4-2/1-3 575 380 159 139

BOSMIA/MIABOS 4-7/8-3 403 314 124 89

BOSSAV/SAVBOS 4-5/6-3 319 250 109 69

LAXMIA/MIALAX 1-7/8-2 477 239 139 119

LAXSAV/SAVLAX 1-5/6-2 502 450 154 134

MIASAV/SAVMIA 8-5/6-7 226 168 84 59

Product definition.

Figure 4: Network definition for the Hub and Spoke Network instance.

There are 40 overlapping customer segments in this example, as described in Table 8. For each possible
O-D pair, we define a segment of price sensitive customers that just considers classes B and Q; and another
segment of price sensitive customers, but who are eventually willing to buy up to highest class Y. For
instance, for the ATL/BOS market, the segments defined are:

• ATL/BOS H, characterized by a consideration set that includes all possible products between ATL
and BOS, with preference order for classes Q > B > M > Y .

• ATL/BOS L, characterized by a consideration set that includes classes B and Q between ATL and
BOS, with preference order for classes Q > B.

The booking horizon consists of T = 2, 000 time periods, with an average of 1,732 arrivals per stream
of demand. We generate 500 streams of arrivals per case, and process each stream using all the methods
mentioned before. Table 9 summarizes the expected revenues and load factors obtained under DCOMP,
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Segment Cl vl λl Segment Cl vl λl

ATL/BOS H {1,2,3,4} {6,7,9,10} 0.015 BOS/MIA H {41,42,43,44} {6,7,10,10} 0.008

ATL/BOS L {3,4} {8,10} 0.035 BOS/MIA L {43,44} {8,10} 0.03

BOS/ATL H {5,6,7,8} {6,7,9,10} 0.015 MIA/BOS H {45,46,47,48} {6,7,10,10} 0.008

BOS/ATL L {7,8} {8,10} 0.035 MIA/BOS L {47,48} {8,10} 0.03

ATL/LAX H {9,10,11,12} {5,6,9,10} 0.01 BOS/SAV H {49,50,51,52} {5,6,9,10} 0.01

ATL/LAX L {11,12} {10,10} 0.04 BOS/SAV L {51,52} {8,10} 0.035

LAX/ATL H {13,14,15,16} {5,6,9,10} 0.01 SAV/BOS H {53,54,55,56} {5,6,9,10} 0.01

LAX/ATL L {15,16} {10,10} 0.04 SAV/BOS L {55,56} {8,10} 0.035

ATL/MIA H {17,18,19,20} {5,5,10,10} 0.012 LAX/MIA H {57,58,59,60} {5,6,10,10} 0.012

ATL/MIA L {19,20} {8,10} 0.035 LAX/MIA L {59,60} {9,10} 0.028

MIA/ATL H {21,22,23,24} {5,5,10,10} 0.012 MIA/LAX H {61,62,63,64} {5,6,10,10} 0.012

MIA/ATL L {23,24} {8,10} 0.035 MIA/LAX L {63,64} {9,10} 0.028

ATL/SAV H {25,26,27,28} {4,5,8,9} 0.01 LAX/SAV H {65,66,67,68} {6,7,10,10} 0.016

ATL/SAV L {27,28} {7,10} 0.03 LAX/SAV L {67,68} {10,10} 0.03

SAV/ATL H {29,30,31,32} {4,5,8,9} 0.01 SAV/LAX H {69,70,71,72} {6,7,10,10} 0.016

SAV/ATL L {31,32} {7,10} 0.03 SAV/LAX L {71,72} {10,10} 0.03

BOS/LAX H {33,34,35,36} {5,5,7,10} 0.01 MIA/SAV H {73,74,75,76} {6,7,8,10} 0.01

BOS/LAX L {35,36} {9,10} 0.032 MIA/SAV L {75,76} {9,10} 0.025

LAX/BOS H {37,38,39,40} {5,5,7,10} 0.01 MIA/SAV H {77,78,79,80} {6,7,8,10} 0.01

LAX/BOS L {39,40} {9,10} 0.032 MIA/SAV L {79,80} {9,10} 0.025

Table 8: Segment definitions for Hub-and-Spoke Network example.

DCOMP-0.5, CDLP, and INDEP.4 Table 10 summarizes the suboptimality gaps of the other methods with
respect to DCOMP. The notation for the no-purchase preference vector v0 is the same as the notation used
in Example 6.2.

α v0 UB
DCOMP DCOMP-0.5 CDLP INDEP

Mean %LF Mean %LF Mean %LF Mean %LF

(1,5) 163,897 160,624 97.10 160,206 95.03 156,557 95.70 110,471 98.64

0.6 (5,10) 132,674 130,971 97.68 130,875 97.29 126,425 95.45 104,330 98.30

(10,20) 111,897 110,314 97.61 110,209 96.93 106,688 95.53 96,661 97.85

(1,5) 177,384 175,598 97.70 173,520 93.66 170,301 96.05 130,841 98.72

0.8 (5,10) 146,338 144,597 97.44 144,377 96.99 140,857 95.90 123,399 98.37

(10,20) 122,464 121,062 96.24 120,985 96.14 117,621 96.03 114,012 97.53

(1,5) 187,270 185,384 96.43 184,785 95.99 181,673 95.57 149,246 98.63

1.0 (5,10) 156,243 154,718 94.52 154,508 94.21 151,907 95.03 140,161 98.03

(10,20) 128,386 127,343 91.65 127,255 91.88 125,811 92.27 126,091 92.09

(1,5) 195,269 193,511 94.88 192,953 94.89 190,000 93.71 165,880 98.29

1.2 (5,10) 160,206 159,386 87.28 159,354 87.37 157,877 87.36 154,210 95.57

(10,20) 128,448 128,336 78.36 128,336 78.36 128,336 78.36 128,361 78.38

(1,5) 197,113 196,886 86.70 196,860 86.77 196,639 86.79 179,983 96.54

1.4 (5,10) 160,453 160,350 76.28 160,352 76.28 160,350 76.28 159,435 85.54

(10,20) 128,448 128,336 68.22 128,336 68.22 128,336 68.22 128,363 68.24

Table 9: Simulation results for Hub-and-Spoke Network example.

Once again, the results obtained for DCOMP and DCOMP-0.5 are very similar. However, there is a
clear dominance of these two policies with respect to CDLP, of the order of 2%, which is significant for
revenue management standards. It is also clear the advantage of using choice-based models with respect to

4We do not report results for ROPT in this example. Given the size of the problem, and the fact that we should reoptimize

frequently in every single simulated stream of demand, it would have taken a long computational time to get the results for the

confidence intervals.
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the standard INDEP paradigm, specially for the scarce capacity cases. The magnitude of the improvement
could be as high as 30%, and is generally between 3% and 15%, indicating the importance of accounting for
choice behavior in revenue management systems.

α v0 % DCOMP-0.5 % CDLP % INDEP

(1,5) 0.26 ± 0.42 2.53 ± 0.38 31.22 ± 0.33

0.6 (5,10) 0.07 ± 0.41 3.47 ± 0.40 20.34 ± 0.35

(10,20) 0.09 ± 0.41 3.28 ± 0.40 12.37 ± 0.37

(1,5) 1.18 ± 0.38 3.01 ± 0.36 25.48 ± 0.31

0.8 (5,10) 0.15 ± 0.37 2.58 ± 0.36 14.66 ± 0.31

(10,20) 0.06 ± 0.37 2.84 ± 0.36 5.82 ± 0.33

(1,5) 0.32 ± 0.33 2.00 ± 0.32 19.49 ± 0.27

1.0 (5,10) 0.13 ± 0.34 1.81 ± 0.32 9.40 ± 0.29

(10,20) 0.06 ± 0.36 1.20 ± 0.35 0.98 ± 0.35

(1,5) 0.28 ± 0.30 1.81 ± 0.29 14.27 ± 0.25

1.2 (5,10) 0.02 ± 0.32 0.94 ± 0.31 3.24 ± 0.28

(10,20) 0.00 ± 0.39 0.00 ± 0.39 -0.01 ± 0.40

(1,5) 0.00 ± 0.31 0.11 ± 0.31 8.57 ± 0.27

1.4 (5,10) 0.00 ± 0.35 0.00 ± 0.35 0.57 ± 0.32

(10,20) 0.00 ± 0.39 0.00 ± 0.39 -0.02 ± 0.40

Table 10: 95% confidence intervals for the suboptimality gaps with respect to DCOMP in the Hub-and-Spoke
Network example.

Table 11 shows computational time statistics for the methods under evaluation. The most time consuming
process is the computation of the table V i

t , which varies between 2.5 and 10 hours. This is explained by the
size of the problem: 2,000 time periods, and eight legs with capacities between 120 and 180 seats (depending
on the scale factor α). Nevertheless, they may be acceptable times for an overnight batch process.

Differently from the previous examples, and given that here there are 80 products, we use the greedy
heuristic to solve dynamically problem (15) in order to decide the next offer set. The fifth column in Table 11
shows that it takes less than a tenth of a second. The high quality of the solutions obtained indicates that
this option does not hurt the performance of the policies.

α v0
COLGEN V i

t Solution of (15) INDEP

(seconds) (minutes) (seconds) (seconds)

(1,5) 73.31 168.28 0.005 3.62

0.6 (5,10) 0.70 205.11 0.006 3.66

(10,20) 1.53 228.25 0.007 3.73

(1,5) 851.36 245.9 0.006 4.93

0.8 (5,10) 5.75 295.40 0.007 4.99

(10,20) 10.60 327.94 0.008 5.10

(1,5) 3184.22 341.30 0.006 6.31

1.0 (5,10) 3.01 393.24 0.008 6.40

(10,20) 0.25 422.22 0.008 6.39

(1,5) 1188.89 442.15 0.007 7.67

1.2 (5,10) 10.55 490.50 0.007 7.67

(10,20) 0.13 516.08 0.008 7.68

(1,5) 107.52 548.21 0.007 8.94

1.4 (5,10) 0.85 576.21 0.007 8.96

(10,20) 0.13 584.09 0.007 8.85

Table 11: Computational times for the Hub-and-Spoke Network.
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In this example, the times reported for COLGEN are significantly higher than in previous examples,
specially for v0 = (1, 5). However, in 10 of the 15 cases, a solution is obtained in less than 11 seconds, when
there are 280 − 1 variables t(S). Figure 5 shows the number of iterations of COLGEN for each v0, as a
function of α. Again, we see that the number of iterations exhibits a decreasing trend in α. In the extreme
case α = 1.4, all the cases converge to a single iteration, because the solutions consist of a unique offer set
t(S). But the difference in times is also influenced by the computational overhead of solving the column
generation subproblem. In this example, the greedy heuristic fails 12.36% of the times in finding an entering
column, and the exact MIP linearization procedure is then called. In fact, the call to the MIP procedure
occurs most of the times when v0 = (1, 5) (actually, in 11% of the times).
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Figure 5: Number of iterations of COLGEN as a function of α and v0 for the Hub-and-Spoke Network
example.

7 Conclusions

In this paper, we consider the choice-based, deterministic, linear programming model (CDLP) of Gallego
et al. [6], and then explored by van Ryzin and Liu [16]. We study the more general case where customers
belonging to overlapping segments choose according to the multinomial logit model. In order to solve the
CDLP for real-size networks, we need to develop a column generation algorithm. We prove that even the
column generation subproblem –formulated as a 0-1 fractional programming problem– is NP-Complete, and
propose a polynomial time, greedy heuristic to solve it. This heuristic performs remarkably well in practice,
both from its computational time and the quality of the solutions derived. We also present a MIP formulation
of the 0-1 fractional programming, column generation problem, to be used when solving the master CDLP
problem and the greedy heuristic does not find an entering column. According to our experience, though,
in most of the cases a routine call to the heuristic from the master CDLP is enough to get a new entering
column.

Being able to efficiently solve the column generation subproblem has broader implications. For example,
the column generation problem shares the structure of the marketing science problem defined by a seller that
receives streams of customers from overlapping segments, and needs to decide what the optimal assortment
of products to offer is in order to maximize the instantaneous revenue rate, when the prices of the products
are fixed. The greedy heuristic constitutes a useful practical technique for solving it.

Going back to our revenue management problem, in this paper we also extend the decomposition heuristic
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(DCOMP) proposed in van Ryzin and Liu [16] to the overlapping segment case. We run an exhaustive series
of computational tests, and compare its performance with CDLP, a randomized variation of CDLP, and a
reoptimization scheme that uses elements of both DCOMP and CDLP. Our results are somewhat aligned
with the findings of van Ryzin and Liu [16]: DCOMP outperforms the other methods, especially in high
load factor settings. However, the other methods show a remarkably good revenue performance, consistently
outperforming the behavior of the independent demand model assumption, in several cases by more than
10% (especially in high load factor cases), confirming that choice behavior is a first order effect from a
revenue management perspective.

Our experiments also show the practical feasibility of the column generation approach by providing
the computational times of the different methods. The decomposition heuristic is clearly the most time
consuming method. However, its core is about building off-line a big two-dimensional table to be used
afterwards when computing real time the set of products to offer. This is indeed a batch process that is
typically run overnight by the airlines, and hence it is still practically feasible. Nevertheless, if time becomes
an issue for larger networks, the computational times of the other methods (i.e. CDLP, RCDLP, and
ROPT) are at least an order of magnitude shorter, hence constituting an interesting alternative considering
the high quality of the solutions obtained. Among these other methods, considering the tradeoff between
computational time and quality of the solutions obtained, both CDLP and the randomized version of it seem
to be the most promising approaches to implement in practice.
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