6,327 research outputs found

    The Ramsey Theory of Henson graphs

    Full text link
    Analogues of Ramsey's Theorem for infinite structures such as the rationals or the Rado graph have been known for some time. In this context, one looks for optimal bounds, called degrees, for the number of colors in an isomorphic substructure rather than one color, as that is often impossible. Such theorems for Henson graphs however remained elusive, due to lack of techniques for handling forbidden cliques. Building on the author's recent result for the triangle-free Henson graph, we prove that for each k4k\ge 4, the kk-clique-free Henson graph has finite big Ramsey degrees, the appropriate analogue of Ramsey's Theorem. We develop a method for coding copies of Henson graphs into a new class of trees, called strong coding trees, and prove Ramsey theorems for these trees which are applied to deduce finite big Ramsey degrees. The approach here provides a general methodology opening further study of big Ramsey degrees for ultrahomogeneous structures. The results have bearing on topological dynamics via work of Kechris, Pestov, and Todorcevic and of Zucker.Comment: 75 pages. Substantial revisions in the presentation. Submitte

    Ramsey theorem for trees with successor operation

    Full text link
    We prove a general Ramsey theorem for trees with a successor operation. This theorem is a common generalization of the Carlson-Simpson Theorem and the Milliken Tree Theorem for regularly branching trees. Our theorem has a number of applications both in finite and infinite combinatorics. For example, we give a short proof of the unrestricted Ne\v{s}et\v{r}il-R\"odl theorem, and we recover the Graham-Rothschild theorem. Our original motivation came from the study of big Ramsey degrees - various trees used in the study can be viewed as trees with a successor operation. To illustrate this, we give a non-forcing proof of a theorem of Zucker on big Ramsey degrees.Comment: 37 pages, 9 figure

    On factorisation forests

    Get PDF
    The theorem of factorisation forests shows the existence of nested factorisations -- a la Ramsey -- for finite words. This theorem has important applications in semigroup theory, and beyond. The purpose of this paper is to illustrate the importance of this approach in the context of automata over infinite words and trees. We extend the theorem of factorisation forest in two directions: we show that it is still valid for any word indexed by a linear ordering; and we show that it admits a deterministic variant for words indexed by well-orderings. A byproduct of this work is also an improvement on the known bounds for the original result. We apply the first variant for giving a simplified proof of the closure under complementation of rational sets of words indexed by countable scattered linear orderings. We apply the second variant in the analysis of monadic second-order logic over trees, yielding new results on monadic interpretations over trees. Consequences of it are new caracterisations of prefix-recognizable structures and of the Caucal hierarchy.Comment: 27 page

    Big Ramsey degrees in universal inverse limit structures

    Full text link
    We build a collection of topological Ramsey spaces of trees giving rise to universal inverse limit structures, extending Zheng's work for the profinite graph to the setting of Fra\"{\i}ss\'{e} classes of finite ordered binary relational structures with the Ramsey property. This work is based on the Halpern-L\"{a}uchli theorem, but different from the Milliken space of strong subtrees. Based on these topological Ramsey spaces and the work of Huber-Geschke-Kojman on inverse limits of finite ordered graphs, we prove that for each such Fra\"{\i}ss\'{e} class, its universal inverse limit structures has finite big Ramsey degrees under finite Baire-measurable colourings. For finite ordered graphs, finite ordered kk-clique free graphs (k3k\geq 3), finite ordered oriented graphs, and finite ordered tournaments, we characterize the exact big Ramsey degrees.Comment: 20 pages, 5 figure

    Constrained Ramsey Numbers

    Full text link
    For two graphs S and T, the constrained Ramsey number f(S, T) is the minimum n such that every edge coloring of the complete graph on n vertices, with any number of colors, has a monochromatic subgraph isomorphic to S or a rainbow (all edges differently colored) subgraph isomorphic to T. The Erdos-Rado Canonical Ramsey Theorem implies that f(S, T) exists if and only if S is a star or T is acyclic, and much work has been done to determine the rate of growth of f(S, T) for various types of parameters. When S and T are both trees having s and t edges respectively, Jamison, Jiang, and Ling showed that f(S, T) <= O(st^2) and conjectured that it is always at most O(st). They also mentioned that one of the most interesting open special cases is when T is a path. In this work, we study this case and show that f(S, P_t) = O(st log t), which differs only by a logarithmic factor from the conjecture. This substantially improves the previous bounds for most values of s and t.Comment: 12 pages; minor revision
    corecore