6,969 research outputs found

    Using Topological Data Analysis for diagnosis pulmonary embolism

    Full text link
    Pulmonary Embolism (PE) is a common and potentially lethal condition. Most patients die within the first few hours from the event. Despite diagnostic advances, delays and underdiagnosis in PE are common.To increase the diagnostic performance in PE, current diagnostic work-up of patients with suspected acute pulmonary embolism usually starts with the assessment of clinical pretest probability using plasma d-Dimer measurement and clinical prediction rules. The most validated and widely used clinical decision rules are the Wells and Geneva Revised scores. We aimed to develop a new clinical prediction rule (CPR) for PE based on topological data analysis and artificial neural network. Filter or wrapper methods for features reduction cannot be applied to our dataset: the application of these algorithms can only be performed on datasets without missing data. Instead, we applied Topological data analysis (TDA) to overcome the hurdle of processing datasets with null values missing data. A topological network was developed using the Iris software (Ayasdi, Inc., Palo Alto). The PE patient topology identified two ares in the pathological group and hence two distinct clusters of PE patient populations. Additionally, the topological netowrk detected several sub-groups among healthy patients that likely are affected with non-PE diseases. TDA was further utilized to identify key features which are best associated as diagnostic factors for PE and used this information to define the input space for a back-propagation artificial neural network (BP-ANN). It is shown that the area under curve (AUC) of BP-ANN is greater than the AUCs of the scores (Wells and revised Geneva) used among physicians. The results demonstrate topological data analysis and the BP-ANN, when used in combination, can produce better predictive models than Wells or revised Geneva scores system for the analyzed cohortComment: 18 pages, 5 figures, 6 tables. arXiv admin note: text overlap with arXiv:cs/0308031 by other authors without attributio

    A Computer Aided Detection system for mammographic images implemented on a GRID infrastructure

    Full text link
    The use of an automatic system for the analysis of mammographic images has proven to be very useful to radiologists in the investigation of breast cancer, especially in the framework of mammographic-screening programs. A breast neoplasia is often marked by the presence of microcalcification clusters and massive lesions in the mammogram: hence the need for tools able to recognize such lesions at an early stage. In the framework of the GPCALMA (GRID Platform for Computer Assisted Library for MAmmography) project, the co-working of italian physicists and radiologists built a large distributed database of digitized mammographic images (about 5500 images corresponding to 1650 patients) and developed a CAD (Computer Aided Detection) system, able to make an automatic search of massive lesions and microcalcification clusters. The CAD is implemented in the GPCALMA integrated station, which can be used also for digitization, as archive and to perform statistical analyses. Some GPCALMA integrated stations have already been implemented and are currently on clinical trial in some italian hospitals. The emerging GRID technology can been used to connect the GPCALMA integrated stations operating in different medical centers. The GRID approach will support an effective tele- and co-working between radiologists, cancer specialists and epidemiology experts by allowing remote image analysis and interactive online diagnosis.Comment: 5 pages, 5 figures, to appear in the Proceedings of the 13th IEEE-NPSS Real Time Conference 2003, Montreal, Canada, May 18-23 200
    corecore