8 research outputs found

    Collective Communications and Computation Mechanisms on the RF Channel for Organic Printed Smart Labels and Resource-limited IoT Nodes

    Get PDF
    Radio Frequency IDentification (RFID) and Wireless Sensor Networks (WSN) are seen as enabler technologies for realizing the Internet of Things (IoT). Organic and printed Electronics (OE) has the potential to provide low cost and all-printable smart RFID labels in high volumes. With regard to WSN, power harvesting techniques and resource-efficient communications are promising key technologies to create sustainable and for the environment friendly sensing devices. However, the implementation of OE smart labels is only allowing printable devices of ultra-low hardware complexity, that cannot employ standard RFID communications. And, the deployment of current WSN technology is far away from offering battery-free and low-cost sensing technology. To this end, the steady growth of IoT is increasing the demand for more network capacity and computational power. With respect to wireless communications research, the state-of-the-art employs superimposed radio transmission in form of physical layer network coding and computation over the MAC to increase information flow and computational power, but lacks on practicability and robustness so far. With regard to these research challenges we developed in particular two approaches, i.e., code-based Collective Communications for dense sensing environments, and time-based Collective Communications (CC) for resource-limited WSNs. In respect to the code-based CC approach we exploit the principle of superimposed radio transmission to acquire highly scalable and robust communications obtaining with it at the same time as well minimalistic smart RFID labels, that can be manufactured in high volume with present-day OE. The implementation of our code-based CC relies on collaborative and simultaneous transmission of randomly drawn burst sequences encoding the data. Based on the framework of hyper-dimensional computing, statistical laws and the superposition principle of radio waves we obtained the communication of so called ensemble information, meaning the concurrent bulk reading of sensed values, ranges, quality rating, identifiers (IDs), and so on. With 21 transducers on a small-scale reader platform we tested the performance of our approach successfully proving the scalability and reliability. To this end, we implemented our code-based CC mechanism into an all-printable passive RFID label down to the logic gate level, indicating a circuit complexity of about 500 transistors. In respect to time-based CC approach we utilize the superimposed radio transmission to obtain resource-limited WSNs, that can be deployed in wide areas for establishing, e.g., smart environments. In our application scenario for resource-limited WSN, we utilize the superimposed radio transmission to calculate functions of interest, i.e., to accomplish data processing directly on the radio channel. To prove our concept in a case study, we created a WSN with 15 simple nodes measuring the environmental mean temperature. Based on our analysis about the wireless computation error we were able to minimize the stochastic error arbitrarily, and to remove the systematic error completely

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods
    corecore