75,518 research outputs found

    A Quasi-Random Approach to Matrix Spectral Analysis

    Get PDF
    Inspired by the quantum computing algorithms for Linear Algebra problems [HHL,TaShma] we study how the simulation on a classical computer of this type of "Phase Estimation algorithms" performs when we apply it to solve the Eigen-Problem of Hermitian matrices. The result is a completely new, efficient and stable, parallel algorithm to compute an approximate spectral decomposition of any Hermitian matrix. The algorithm can be implemented by Boolean circuits in O(log2n)O(\log^2 n) parallel time with a total cost of O(nω+1)O(n^{\omega+1}) Boolean operations. This Boolean complexity matches the best known rigorous O(log2n)O(\log^2 n) parallel time algorithms, but unlike those algorithms our algorithm is (logarithmically) stable, so further improvements may lead to practical implementations. All previous efficient and rigorous approaches to solve the Eigen-Problem use randomization to avoid bad condition as we do too. Our algorithm makes further use of randomization in a completely new way, taking random powers of a unitary matrix to randomize the phases of its eigenvalues. Proving that a tiny Gaussian perturbation and a random polynomial power are sufficient to ensure almost pairwise independence of the phases (mod(2π))(\mod (2\pi)) is the main technical contribution of this work. This randomization enables us, given a Hermitian matrix with well separated eigenvalues, to sample a random eigenvalue and produce an approximate eigenvector in O(log2n)O(\log^2 n) parallel time and O(nω)O(n^\omega) Boolean complexity. We conjecture that further improvements of our method can provide a stable solution to the full approximate spectral decomposition problem with complexity similar to the complexity (up to a logarithmic factor) of sampling a single eigenvector.Comment: Replacing previous version: parallel algorithm runs in total complexity nω+1n^{\omega+1} and not nωn^{\omega}. However, the depth of the implementing circuit is log2(n)\log^2(n): hence comparable to fastest eigen-decomposition algorithms know

    Diffusion in sparse networks: linear to semi-linear crossover

    Full text link
    We consider random networks whose dynamics is described by a rate equation, with transition rates wnmw_{nm} that form a symmetric matrix. The long time evolution of the system is characterized by a diffusion coefficient DD. In one dimension it is well known that DD can display an abrupt percolation-like transition from diffusion (D>0D>0) to sub-diffusion (D=0). A question arises whether such a transition happens in higher dimensions. Numerically DD can be evaluated using a resistor network calculation, or optionally it can be deduced from the spectral properties of the system. Contrary to a recent expectation that is based on a renormalization-group analysis, we deduce that DD is finite; suggest an "effective-range-hopping" procedure to evaluate it; and contrast the results with the linear estimate. The same approach is useful for the analysis of networks that are described by quasi-one-dimensional sparse banded matrices.Comment: 13 pages, 4 figures, proofed as publishe

    Weighted random--geometric and random--rectangular graphs: Spectral and eigenfunction properties of the adjacency matrix

    Get PDF
    Within a random-matrix-theory approach, we use the nearest-neighbor energy level spacing distribution P(s)P(s) and the entropic eigenfunction localization length \ell to study spectral and eigenfunction properties (of adjacency matrices) of weighted random--geometric and random--rectangular graphs. A random--geometric graph (RGG) considers a set of vertices uniformly and independently distributed on the unit square, while for a random--rectangular graph (RRG) the embedding geometry is a rectangle. The RRG model depends on three parameters: The rectangle side lengths aa and 1/a1/a, the connection radius rr, and the number of vertices NN. We then study in detail the case a=1a=1 which corresponds to weighted RGGs and explore weighted RRGs characterized by a1a\sim 1, i.e.~two-dimensional geometries, but also approach the limit of quasi-one-dimensional wires when a1a\gg1. In general we look for the scaling properties of P(s)P(s) and \ell as a function of aa, rr and NN. We find that the ratio r/Nγr/N^\gamma, with γ(a)1/2\gamma(a)\approx -1/2, fixes the properties of both RGGs and RRGs. Moreover, when a10a\ge 10 we show that spectral and eigenfunction properties of weighted RRGs are universal for the fixed ratio r/CNγr/{\cal C}N^\gamma, with Ca{\cal C}\approx a.Comment: 8 pages, 6 figure

    Large-scale Binary Quadratic Optimization Using Semidefinite Relaxation and Applications

    Full text link
    In computer vision, many problems such as image segmentation, pixel labelling, and scene parsing can be formulated as binary quadratic programs (BQPs). For submodular problems, cuts based methods can be employed to efficiently solve large-scale problems. However, general nonsubmodular problems are significantly more challenging to solve. Finding a solution when the problem is of large size to be of practical interest, however, typically requires relaxation. Two standard relaxation methods are widely used for solving general BQPs--spectral methods and semidefinite programming (SDP), each with their own advantages and disadvantages. Spectral relaxation is simple and easy to implement, but its bound is loose. Semidefinite relaxation has a tighter bound, but its computational complexity is high, especially for large scale problems. In this work, we present a new SDP formulation for BQPs, with two desirable properties. First, it has a similar relaxation bound to conventional SDP formulations. Second, compared with conventional SDP methods, the new SDP formulation leads to a significantly more efficient and scalable dual optimization approach, which has the same degree of complexity as spectral methods. We then propose two solvers, namely, quasi-Newton and smoothing Newton methods, for the dual problem. Both of them are significantly more efficiently than standard interior-point methods. In practice, the smoothing Newton solver is faster than the quasi-Newton solver for dense or medium-sized problems, while the quasi-Newton solver is preferable for large sparse/structured problems. Our experiments on a few computer vision applications including clustering, image segmentation, co-segmentation and registration show the potential of our SDP formulation for solving large-scale BQPs.Comment: Fixed some typos. 18 pages. Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Optimal Fluctuations and Tail States of non-Hermitian Operators

    Full text link
    A statistical field theory is developed to explore the density of states and spatial profile of `tail states' at the edge of the spectral support of a general class of disordered non-Hermitian operators. These states, which are identified with symmetry broken, instanton field configurations of the theory, are closely related to localized sub-gap states recently identified in disordered superconductors. By focusing separately on the problems of a quantum particle propagating in a random imaginary scalar potential, and a random imaginary vector potential, we discuss the methodology of our approach and the universality of the results. Finally, we address potential physical applications of our findings.Comment: 27 pages AMSLaTeX (with LaTeX2e), 12 eps figures (J. Phys. A, to appear
    corecore