45 research outputs found

    Using Least Squares to Construct Improved Clough-Tocher Interpolant

    Get PDF
    In this thesis, a quartic Clough-Tocher interpolation scheme is introduced, and additional modifications, to adjust the macro-boundary and the order of continuity across domain triangles, are provided to improve both the mathematical and the visual quality of the resulting surface. Furthermore, a proof is given to show the convergence of the interpolation scheme under some specific constraints

    C-1-Cubic Quasi-Interpolation Splines over a CT Refinement of a Type-1 Triangulation

    Get PDF
    C1 continuous quasi-interpolating splines are constructed over Clough–Tocher refinement of a type-1 triangulation. Their Bernstein–Bézier coefficients are directly defined from the known values of the function to be approximated, so that a set of appropriate basis functions is not required. The resulting quasi-interpolation operators reproduce cubic polynomials. Some numerical tests are given in order to show the performance of the approximation scheme

    High-order adaptive methods for computing invariant manifolds of maps

    Get PDF
    The author presents efficient and accurate numerical methods for computing invariant manifolds of maps which arise in the study of dynamical systems. In order to decrease the number of points needed to compute a given curve/surface, he proposes using higher-order interpolation/approximation techniques from geometric modeling. He uses B´ezier curves/triangles, fundamental objects in curve/surface design, to create adaptive methods. The methods are based on tolerance conditions derived from properties of B´ezier curves/triangles. The author develops and tests the methods for an ordinary parametric curve; then he adapts these methods to invariant manifolds of planar maps. Next, he develops and tests the method for parametric surfaces and then he adapts this method to invariant manifolds of three-dimensional maps

    Watertight conversion of trimmed CAD surfaces to Clough-Tocher splines

    Get PDF
    The boundary representations (B-reps) that are used to represent shape in Computer-Aided Design systems create unavoidable gaps at the face boundaries of a model. Although these inconsistencies can be kept below the scale that is important for visualisation and manufacture, they cause problems for many downstream tasks, making it difficult to use CAD models directly for simulation or advanced geometric analysis, for example. Motivated by this need for watertight models, we address the problem of converting B-rep models to a collection of cubic C1C1 Clough–Tocher splines. These splines allow a watertight join between B-rep faces, provide a homogeneous representation of shape, and also support local adaptivity. We perform a comparative study of the most prominent Clough–Tocher constructions and include some novel variants. Our criteria include visual fairness, invariance to affine reparameterisations, polynomial precision and approximation error. The constructions are tested on both synthetic data and CAD models that have been triangulated. Our results show that no construction is optimal in every scenario, with surface quality depending heavily on the triangulation and parameterisation that are used.This research was supported by the Engineering and Physical Sciences Research Council through Grant EP/K503757/1.This is the final version. It was first published by Elsevier at http://www.sciencedirect.com/science/article/pii/S0167839615000795

    Unterteilungsmethoden fĂĽr Triangulierungen und bivariate Splineinterpolation

    Full text link
    In dieser Arbeit beschreiben wir eine effiziente Unterteilungsmethode für die Interpolation mit bivariaten Splines auf beliebigen Triangulierungen. Bei unserer Methode müssen nur wenige Dreiecke einer Triangulierung Δ unterteilt werden. [...] weiter s. Originaldokumen

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation

    Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data

    Get PDF
    We prove the inf-sup stability of a discontinuous Galerkin scheme for second order elliptic operators in (unbalanced) mesh-dependent norms for quasi-uniform meshes for all spatial dimensions. This results in a priori error bounds in these norms. As an application we examine some problems with rough source term where the solution can not be characterised as a weak solution and show quasi-optimal error control

    Generalized Finite Element Systems for smooth differential forms and Stokes problem

    Full text link
    We provide both a general framework for discretizing de Rham sequences of differential forms of high regularity, and some examples of finite element spaces that fit in the framework. The general framework is an extension of the previously introduced notion of Finite Element Systems, and the examples include conforming mixed finite elements for Stokes' equation. In dimension 2 we detail four low order finite element complexes and one infinite family of highorder finite element complexes. In dimension 3 we define one low order complex, which may be branched into Whitney forms at a chosen index. Stokes pairs with continuous or discontinuous pressure are provided in arbitrary dimension. The finite element spaces all consist of composite polynomials. The framework guarantees some nice properties of the spaces, in particular the existence of commuting interpolators. It also shows that some of the examples are minimal spaces.Comment: v1: 27 pages. v2: 34 pages. Numerous details added. v3: 44 pages. 8 figures and several comments adde
    corecore