965 research outputs found

    ToPoliNano: Nano-magnet Logic Circuits Design and Simulation

    Get PDF
    Among the emerging technologies Field-Coupled devices like Quantum dot Cellular Automata are particularly interesting. Of all the practical implementations of this principle NanoMagnet Logic shows many important features, such as a very low power consumption and the feasibility with up-to- date technology. However, its working principle, based on the interaction among neighbor cells, is quite different with respect to CMOS devices behavior. Dedicated design and simulation tools for this technology are necessary to further study this technology, but at the moment there are no such tools available in the scientific scenario. We present here ToPoliNano, a software developed as a design and simulation tool for NanoMagnet Logic, that can be easily adapted to many others emerging technologies, particularly to any kind of Field-Coupled devices. ToPoliNano allows to design circuits following a top-down approach similar to the one used in CMOS and to simulate them using a switch model specifically targeted for high complexity circuits. This tool greatly enhances the ability to analyze, explore and improve the design of Field- Coupled circuit

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.  Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl

    Nanosensor Data Processor in Quantum-Dot Cellular Automata

    Get PDF
    Quantum-dot cellular automata (QCA) is an attractive nanotechnology with the potential alterative to CMOS technology. QCA provides an interesting paradigm for faster speed, smaller size, and lower power consumption in comparison to transistor-based technology, in both communication and computation. This paper describes the design of a 4-bit multifunction nanosensor data processor (NSDP). The functions of NSDP contain (i) sending the preprocessed raw data to high-level processor, (ii) counting the number of the active majority gates, and (iii) generating the approximate sigmoid function. The whole system is designed and simulated with several different input data

    Asynchronous Solutions for Nano-Magnetic Logic Circuits

    Get PDF
    In the years to come new solutions will be required to overcome the limitations of scaled CMOS technology. One approach is to adopt Nano-Magnetic Logic Circuits, highly appealing for their extremely reduced power consumption. Despite the interesting nature of this approach, many problems arise when this technology is considered for real designs. The wire is the most critical of these problems from the circuit implementation point of view. It works as a pipelined interconnection, and its delay in terms of clock cycles depends on its length. Serious complications arise at the design phase, both in terms of synthesis and of physical design. One possible solution is the use of a delay insensitive asynchronous logic, Null Convention Logic (NCL TM ). Nevertheless its use has many negative consequences in terms of area occupation and speed loss with respect to a Boolean version. In this article we analyze and compare different solutions: nanomagnetic circuits based on full NCL, mixed Boolean-NCL, and fully Boolean logic. We discuss the advantages of these logics, but also the issues they raise. In particular we analyze feedback signals, which, due to their intrinsic pipelined nature, cause errors that still have not found a solution in the literature. The innovative arrangement we propose solves most of the problems and thus soundly increases the knowledge of this technology. The analysis is performed using a VHDL behavioral model we developed and a microprocessor we designed based on this model, as a sound and realistic test bench. </jats:p

    Flip Flops Design in Quantum Dot Cellular Automata Technology: Towards Digitization

    Get PDF
    Quantum-Dot Cellular Automata (QCA) is a transistor-less technology. In QCA, Columbic repulsion between electrons in the quantum dots makes data transfer possible. This paper presents the design of flip flops using a proposed Rotated-Normal Cells with Displacement (RND) inverter and a cell interaction method. The SR latch, SR Flip Flop (FF), D FF, and T FF are developed using QCA. The proposed D FF gives total and average energy dissipation of 1.31e-002eV and 1.19e-003eV respectively. It also gives a delay of 1 clock phase.&nbsp; The Proposed T FF provides total and average energy dissipation of 2.40e-002eV and 2.18e-003eV respectively, depicting efficient D FF and T FF in energy dissipation. The proposed SR Flip flop design gives an efficient area. The FFs with the proposed RND inverter and cell interaction method can be the best choice for future Nano communication to construct Nano circuits with less energy dissipation and high speed
    • 

    corecore