5 research outputs found

    Energy Aware Clustering System for Wireless Sensor Networks utilizing Rider Sunflower Optimization Approach

    Get PDF
    Wireless Sensor Networks (WSN) are spatially disseminated sensors that are utilized for monitoring physical or environmental factors, like sound, temperature, pressure, and so on, to collectively drive their information from the networking to the base station. The WSN is composed of hundreds or thousands, where all the nodes are interconnected with other Sensor Node (SN). Clustering is the most popular topology management technique in WSN, grouping nodes to manage them or execute different tasks in a distributed manner, like resource management. It includes grouping sensors and selecting Cluster Heads (CHs) for every cluster. Therefore, this study presents a new Rider Sunflower Optimizing Model-Based Energy Aware Clustering Approach (RSFOA-EACA) for WSNs. The prime goal of the RSFOA-EACA technique is in the optimum selection of CH for data transmission in the WSN. With Rider Optimization Algorithm (ROA) and Sunflower Optimization (SFO) incorporation, the RSFOA-EACA technique mainly depends upon the RSFOA. Furthermore, the RSFOA-EACA algorithm derives a Fitness Function (FF) by the computation of distance, Residual Energy (RE), Node Degree (ND), and network coverage. The CH selecting enables proper inter-cluster transmission in the network. The experimental analysis of the RSFOA-EACA method is investigated by implementing a sequence of simulations. The simulation values emphasized the promising energy efficiency outcomes of the RSFOA-EACA approach

    A Quantum Ant Colony Multi-Objective Routing Algorithm in WSN and Its Application in a Manufacturing Environment

    No full text
    In many complex manufacturing environments, the running equipment must be monitored by Wireless Sensor Networks (WSNs), which not only requires WSNs to have long service lifetimes, but also to achieve rapid and high-quality transmission of equipment monitoring data to monitoring centers. Traditional routing algorithms in WSNs, such as Basic Ant-Based Routing (BABR) only require the single shortest path, and the BABR algorithm converges slowly, easily falling into a local optimum and leading to premature stagnation of the algorithm. A new WSN routing algorithm, named the Quantum Ant Colony Multi-Objective Routing (QACMOR) can be used for monitoring in such manufacturing environments by introducing quantum computation and a multi-objective fitness function into the routing research algorithm. Concretely, quantum bits are used to represent the node pheromone, and quantum gates are rotated to update the pheromone of the search path. The factors of energy consumption, transmission delay, and network load-balancing degree of the nodes in the search path act as fitness functions to determine the optimal path. Here, a simulation analysis and actual manufacturing environment verify the QACMOR’s improvement in performance

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things

    Enhancing graph-routing algorithm for industrial wireless sensor networks

    Get PDF
    Industrial Wireless Sensor Networks (IWSNs) are gaining increasing traction, especially in domains such as the Industrial Internet of Things (IIoT), and the Fourth Industrial Revolution (Industry 4.0). Devised for industrial automation, they have stringent requirements regarding data packet delivery, energy consumption balance, and End-to-End Transmission (E2ET) time. Achieving effective communication is critical to the fulfilment of these requirements and is significantly facilitated by the implementation of graph-routing – the main routing method in the Wireless Highway Addressable Remote Transducer (WirelessHART), which is the global standard of IWSNs. However, graph-routing in IWSN creates a hotspot challenge resulting from unbalanced energy consumption. This issue stems from the typical configuration of WirelessHART paths, which transfers data packets from sensor nodes through mesh topology to a central system called the Network Manager (NM), which is connected to a network gateway. Therefore, the overall aim of this research is to improve the performance of IWSNs by implementing a graph-routing algorithm with unequal clustering and optimisation techniques. In the first part of this thesis, a basic graph-routing algorithm based on unequal clustering topologies is examined with the aim of helping to balance energy consumption, maximise data packet delivery, and reduce the number of hops in the network. To maintain network stability, the creation of static clusters is proposed using the WirelessHART Density-controlled Divide-and-Rule (WDDR) topology. Graph-routing can then be built between Cluster Heads (CHs), which are selected according to the maximum residual energy rate between the sensor nodes in each static cluster. Simulation results indicate that graph-routing with the WDDR topology and probabilistic unequal clustering outperforms mesh topology, even as the network density increased, despite isolated nodes found in the WDDR topology. The second part of this thesis focuses on using the Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) algorithm. This addresses the three IWSN requirements that form the focus of this research, by proposing three single-objective graph-routing paths: minimum distance (PODis), maximum residual energy (POEng), and minimum end-to-end transmission time (POE2E). The research also adapts the CMA-ES to balance multiple objectives, resulting in the Best Path of Graph-Routing with a CMA-ES (BPGR-ES). Simulation results show that the BPGR-ES effectively balances IWSN requirements, but single-objective paths of graph-routing does not achieve balanced energy consumption with mesh topology, resulting in a significant reduction in the efficiency of the network. Therefore, the third part of this thesis focuses on an Improvement of the WDDR (IWDDR) topology to avoid isolated nodes in the static cluster approaches. The IWDDR topology is used to evaluate the performance of the single-objective graph-routing paths (PODis, POEng, and POE2E). The results show that in IWDDR topology, single-objective graph-routing paths result in more balanced energy consumption
    corecore