2,027 research outputs found

    Blind Source Separation with Optimal Transport Non-negative Matrix Factorization

    Full text link
    Optimal transport as a loss for machine learning optimization problems has recently gained a lot of attention. Building upon recent advances in computational optimal transport, we develop an optimal transport non-negative matrix factorization (NMF) algorithm for supervised speech blind source separation (BSS). Optimal transport allows us to design and leverage a cost between short-time Fourier transform (STFT) spectrogram frequencies, which takes into account how humans perceive sound. We give empirical evidence that using our proposed optimal transport NMF leads to perceptually better results than Euclidean NMF, for both isolated voice reconstruction and BSS tasks. Finally, we demonstrate how to use optimal transport for cross domain sound processing tasks, where frequencies represented in the input spectrograms may be different from one spectrogram to another.Comment: 22 pages, 7 figures, 2 additional file

    Towards explaining the speed of kk-means

    Get PDF
    The kk-means method is a popular algorithm for clustering, known for its speed in practice. This stands in contrast to its exponential worst-case running-time. To explain the speed of the kk-means method, a smoothed analysis has been conducted. We sketch this smoothed analysis and a generalization to Bregman divergences

    Image Segmentation Using Weak Shape Priors

    Full text link
    The problem of image segmentation is known to become particularly challenging in the case of partial occlusion of the object(s) of interest, background clutter, and the presence of strong noise. To overcome this problem, the present paper introduces a novel approach segmentation through the use of "weak" shape priors. Specifically, in the proposed method, an segmenting active contour is constrained to converge to a configuration at which its geometric parameters attain their empirical probability densities closely matching the corresponding model densities that are learned based on training samples. It is shown through numerical experiments that the proposed shape modeling can be regarded as "weak" in the sense that it minimally influences the segmentation, which is allowed to be dominated by data-related forces. On the other hand, the priors provide sufficient constraints to regularize the convergence of segmentation, while requiring substantially smaller training sets to yield less biased results as compared to the case of PCA-based regularization methods. The main advantages of the proposed technique over some existing alternatives is demonstrated in a series of experiments.Comment: 27 pages, 8 figure

    Automated Pruning for Deep Neural Network Compression

    Full text link
    In this work we present a method to improve the pruning step of the current state-of-the-art methodology to compress neural networks. The novelty of the proposed pruning technique is in its differentiability, which allows pruning to be performed during the backpropagation phase of the network training. This enables an end-to-end learning and strongly reduces the training time. The technique is based on a family of differentiable pruning functions and a new regularizer specifically designed to enforce pruning. The experimental results show that the joint optimization of both the thresholds and the network weights permits to reach a higher compression rate, reducing the number of weights of the pruned network by a further 14% to 33% compared to the current state-of-the-art. Furthermore, we believe that this is the first study where the generalization capabilities in transfer learning tasks of the features extracted by a pruned network are analyzed. To achieve this goal, we show that the representations learned using the proposed pruning methodology maintain the same effectiveness and generality of those learned by the corresponding non-compressed network on a set of different recognition tasks.Comment: 8 pages, 5 figures. Published as a conference paper at ICPR 201
    • …
    corecore